Skip to main content
Top
Published in: BMC Cancer 1/2009

Open Access 01-12-2009 | Research article

Alterations of BCCIP, a BRCA2 interacting protein, in astrocytomas

Authors: Jingmei Liu, Huimei Lu, Hiroko Ohgaki, Adrian Merlo, Zhiyuan Shen

Published in: BMC Cancer | Issue 1/2009

Login to get access

Abstract

Background

Loss of heterozygosity of chromosome 10q26 has been shown to be associated with the aggressiveness of astrocytic tumors (or astrocytomas), but the responsible gene(s) residing in this region has not been fully identified. The BCCIP gene is located at chromosome 10q26. It encodes a BRCA2 and CDKN1A (p21) interacting protein. Previous studies have shown that down-regulation of BCCIP impairs recombinational DNA repair, G1/S cell cycle checkpoint, p53 trans-activation activity, cytokinesis, and chromosome stability, suggesting a potential role of BCCIP in cancer etiology. In this study, we investigated whether BCCIP is altered in astrocytomas.

Methods

Genomic DNA from 45 cases of grade IV astrocytic tumor (glioblastoma) tissues and 12 cases of normal tissues were analyzed by quantitative PCR. The BCCIP protein expression in 96 cases of grade II–IV astrocytic tumors was detected by immunohistochemistry (IHC). IHC staining of glial fibrillary acid protein (GFAP), a marker for astrocytic cells, was used to identify cells of the astrocytic lineage.

Results

We found that BCCIP protein is expressed in normal cells with positive staining of GFAP. However, BCCIP protein expression was not detectable in ~45% of all astrocytic tumors, and in > 60% in the grade IV glioblastoma. About 45% glioblastoma have significant (p < 0.01) reduction of BCCIP gene copy number when compared to normal DNA. Furthermore, the frequency of lacking BCCIP expression is associated with the aggressiveness of astrocytic tumors.

Conclusion

Our data implicate a role of BCCIP in astrocytic tumorigenesis, and lack of BCCIP may be used as a marker for astrocytomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rasheed BK, Fuller GN, Friedman AH, Bigner DD, Bigner SH: Loss of heterozygosity for 10q loci in human gliomas. Genes Chromosomes Cancer. 1992, 5: 75-82. 10.1002/gcc.2870050111.CrossRefPubMed Rasheed BK, Fuller GN, Friedman AH, Bigner DD, Bigner SH: Loss of heterozygosity for 10q loci in human gliomas. Genes Chromosomes Cancer. 1992, 5: 75-82. 10.1002/gcc.2870050111.CrossRefPubMed
2.
go back to reference Karlbom AE, James CD, Boethius J, Cavenee WK, Collins VP, Nordenskjold M, Larsson C: Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10. Hum Genet. 1993, 92: 169-74. 10.1007/BF00219686.CrossRefPubMed Karlbom AE, James CD, Boethius J, Cavenee WK, Collins VP, Nordenskjold M, Larsson C: Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10. Hum Genet. 1993, 92: 169-74. 10.1007/BF00219686.CrossRefPubMed
3.
go back to reference Balesaria S, Brock C, Bower M, Clark J, Nicholson SK, Lewis P, de Sanctis S, Evans H, Peterson D, Mendoza N, et al: Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas. Br J Cancer. 1999, 81: 1371-7. 10.1038/sj.bjc.6693403.CrossRefPubMedPubMedCentral Balesaria S, Brock C, Bower M, Clark J, Nicholson SK, Lewis P, de Sanctis S, Evans H, Peterson D, Mendoza N, et al: Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas. Br J Cancer. 1999, 81: 1371-7. 10.1038/sj.bjc.6693403.CrossRefPubMedPubMedCentral
4.
go back to reference Steck PA, Lin H, Langford LA, Jasser SA, Koul D, Yung WK, Pershouse MA: Functional and molecular analyses of 10q deletions in human gliomas. Genes Chromosomes Cancer. 1999, 24: 135-43. 10.1002/(SICI)1098-2264(199902)24:2<135::AID-GCC6>3.0.CO;2-A.CrossRefPubMed Steck PA, Lin H, Langford LA, Jasser SA, Koul D, Yung WK, Pershouse MA: Functional and molecular analyses of 10q deletions in human gliomas. Genes Chromosomes Cancer. 1999, 24: 135-43. 10.1002/(SICI)1098-2264(199902)24:2<135::AID-GCC6>3.0.CO;2-A.CrossRefPubMed
5.
go back to reference Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H: Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest. 2000, 80: 65-72. 10.1038/labinvest.3780009.CrossRefPubMed Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H: Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest. 2000, 80: 65-72. 10.1038/labinvest.3780009.CrossRefPubMed
6.
go back to reference Daido S, Takao S, Tamiya T, Ono Y, Terada K, Ito S, Ouchida M, Date I, Ohmoto T, Shimizu K: Loss of heterozygosity on chromosome 10q associated with malignancy and prognosis in astrocytic tumors, and discovery of novel loss regions. Oncol Rep. 2004, 12: 789-95.PubMed Daido S, Takao S, Tamiya T, Ono Y, Terada K, Ito S, Ouchida M, Date I, Ohmoto T, Shimizu K: Loss of heterozygosity on chromosome 10q associated with malignancy and prognosis in astrocytic tumors, and discovery of novel loss regions. Oncol Rep. 2004, 12: 789-95.PubMed
7.
go back to reference Hill C, Hunter SB, Brat DJ: Genetic markers in glioblastoma: prognostic significance and future therapeutic implications. Adv Anat Pathol. 2003, 10: 212-7. 10.1097/00125480-200307000-00004.CrossRefPubMed Hill C, Hunter SB, Brat DJ: Genetic markers in glioblastoma: prognostic significance and future therapeutic implications. Adv Anat Pathol. 2003, 10: 212-7. 10.1097/00125480-200307000-00004.CrossRefPubMed
8.
go back to reference Ohgaki H: Genetic pathways to glioblastomas. Neuropathology. 2005, 25: 1-7. 10.1111/j.1440-1789.2004.00600.x.CrossRefPubMed Ohgaki H: Genetic pathways to glioblastomas. Neuropathology. 2005, 25: 1-7. 10.1111/j.1440-1789.2004.00600.x.CrossRefPubMed
9.
go back to reference Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, et al: Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004, 64: 6892-9. 10.1158/0008-5472.CAN-04-1337.CrossRefPubMed Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, et al: Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004, 64: 6892-9. 10.1158/0008-5472.CAN-04-1337.CrossRefPubMed
10.
go back to reference Merlo A: Genes and pathways driving glioblastomas in humans and murine disease models. Neurosurg Rev. 2003, 26: 145-58.CrossRefPubMed Merlo A: Genes and pathways driving glioblastomas in humans and murine disease models. Neurosurg Rev. 2003, 26: 145-58.CrossRefPubMed
11.
go back to reference Maier D, Zhang Z, Taylor E, Hamou MF, Gratzl O, Van Meir EG, Scott RJ, Merlo A: Somatic deletion mapping on chromosome 10 and sequence analysis of PTEN/MMAC1 point to the 10q25–26 region as the primary target in low-grade and high-grade gliomas. Oncogene. 1998, 16: 3331-5. 10.1038/sj.onc.1201832.CrossRefPubMed Maier D, Zhang Z, Taylor E, Hamou MF, Gratzl O, Van Meir EG, Scott RJ, Merlo A: Somatic deletion mapping on chromosome 10 and sequence analysis of PTEN/MMAC1 point to the 10q25–26 region as the primary target in low-grade and high-grade gliomas. Oncogene. 1998, 16: 3331-5. 10.1038/sj.onc.1201832.CrossRefPubMed
12.
go back to reference Ohgaki H, Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005, 64: 479-89.CrossRefPubMed Ohgaki H, Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005, 64: 479-89.CrossRefPubMed
13.
go back to reference Homma T, Fukushima T, Vaccarella S, Yonekawa Y, Di Patre PL, Franceschi S, Ohgaki H: Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol. 2006, 65: 846-54. 10.1097/01.jnen.0000235118.75182.94.CrossRefPubMed Homma T, Fukushima T, Vaccarella S, Yonekawa Y, Di Patre PL, Franceschi S, Ohgaki H: Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol. 2006, 65: 846-54. 10.1097/01.jnen.0000235118.75182.94.CrossRefPubMed
14.
go back to reference Ittmann M: Allelic loss on chromosome 10 in prostate adenocarcinoma. Cancer Res. 1996, 56: 2143-7.PubMed Ittmann M: Allelic loss on chromosome 10 in prostate adenocarcinoma. Cancer Res. 1996, 56: 2143-7.PubMed
15.
go back to reference Ittmann MM: Chromosome 10 alterations in prostate adenocarcinoma (review). Oncol Rep. 1998, 5: 1329-35.PubMed Ittmann MM: Chromosome 10 alterations in prostate adenocarcinoma (review). Oncol Rep. 1998, 5: 1329-35.PubMed
16.
go back to reference Peiffer SL, Herzog TJ, Tribune DJ, Mutch DG, Gersell DJ, Goodfellow PJ: Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res. 1995, 55: 1922-6.PubMed Peiffer SL, Herzog TJ, Tribune DJ, Mutch DG, Gersell DJ, Goodfellow PJ: Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res. 1995, 55: 1922-6.PubMed
17.
go back to reference Petersen S, Wolf G, Bockmuhl U, Gellert K, Dietel M, Petersen I: Allelic loss on chromosome 10q in human lung cancer: association with tumour progression and metastatic phenotype. Br J Cancer. 1998, 77: 270-6.CrossRefPubMedPubMedCentral Petersen S, Wolf G, Bockmuhl U, Gellert K, Dietel M, Petersen I: Allelic loss on chromosome 10q in human lung cancer: association with tumour progression and metastatic phenotype. Br J Cancer. 1998, 77: 270-6.CrossRefPubMedPubMedCentral
18.
go back to reference Couzin J: The twists and turns in BRCA's path. Science. 2003, 302: 591-3. 10.1126/science.302.5645.591.CrossRefPubMed Couzin J: The twists and turns in BRCA's path. Science. 2003, 302: 591-3. 10.1126/science.302.5645.591.CrossRefPubMed
19.
go back to reference Meng X, Lu H, Shen Z: BCCIP functions through p53 to regulate the expression of p21Waf1/Cip1. Cell Cycle. 2004, 3: 1457-62.CrossRefPubMed Meng X, Lu H, Shen Z: BCCIP functions through p53 to regulate the expression of p21Waf1/Cip1. Cell Cycle. 2004, 3: 1457-62.CrossRefPubMed
20.
go back to reference Liu J, Yuan Y, Huan J, Shen Z: Inhibition of breast and brain cancer cell growth by BCCIPalpha, an evolutionarily conserved nuclear protein that interacts with BRCA2. Oncogene. 2001, 20: 336-45. 10.1038/sj.onc.1204098.CrossRefPubMed Liu J, Yuan Y, Huan J, Shen Z: Inhibition of breast and brain cancer cell growth by BCCIPalpha, an evolutionarily conserved nuclear protein that interacts with BRCA2. Oncogene. 2001, 20: 336-45. 10.1038/sj.onc.1204098.CrossRefPubMed
21.
go back to reference Ono T, Kitaura H, Ugai H, Murata T, Yokoyama KK, Iguchi-Ariga SM, Ariga H: TOK-1, a novel p21Cip1-binding protein that cooperatively enhances p21-dependent inhibitory activity toward CDK2 kinase. J Biol Chem. 2000, 275: 31145-54. 10.1074/jbc.M003031200.CrossRefPubMed Ono T, Kitaura H, Ugai H, Murata T, Yokoyama KK, Iguchi-Ariga SM, Ariga H: TOK-1, a novel p21Cip1-binding protein that cooperatively enhances p21-dependent inhibitory activity toward CDK2 kinase. J Biol Chem. 2000, 275: 31145-54. 10.1074/jbc.M003031200.CrossRefPubMed
22.
go back to reference Lu H, Guo X, Meng X, Liu J, Allen C, Wray J, Nickoloff JA, Shen Z: The BRCA2-interacting protein BCCIP functions in RAD51 and BRCA2 focus formation and homologous recombinational repair. Mol Cell Biol. 2005, 25: 1949-57. 10.1128/MCB.25.5.1949-1957.2005.CrossRefPubMedPubMedCentral Lu H, Guo X, Meng X, Liu J, Allen C, Wray J, Nickoloff JA, Shen Z: The BRCA2-interacting protein BCCIP functions in RAD51 and BRCA2 focus formation and homologous recombinational repair. Mol Cell Biol. 2005, 25: 1949-57. 10.1128/MCB.25.5.1949-1957.2005.CrossRefPubMedPubMedCentral
23.
go back to reference Meng X, Liu J, Shen Z: Inhibition of G1 to S cell cycle progression by BCCIP beta. Cell Cycle. 2004, 3: 343-8.PubMed Meng X, Liu J, Shen Z: Inhibition of G1 to S cell cycle progression by BCCIP beta. Cell Cycle. 2004, 3: 343-8.PubMed
24.
go back to reference Lu H, Yue J, Meng X, Nickoloff JA, Shen Z: BCCIP regulates homologous recombination by distinct domains and suppresses spontaneous DNA damage. Nucleic Acids Res. 2007, 35: 7160-7170. 10.1093/nar/gkm732.CrossRefPubMedPubMedCentral Lu H, Yue J, Meng X, Nickoloff JA, Shen Z: BCCIP regulates homologous recombination by distinct domains and suppresses spontaneous DNA damage. Nucleic Acids Res. 2007, 35: 7160-7170. 10.1093/nar/gkm732.CrossRefPubMedPubMedCentral
25.
go back to reference Wray J, Liu J, Nickoloff JA, Shen Z: Distinct RAD51 associations with RAD52 and BCCIP in response to DNA damage and replication stress. Cancer Research. 2008, 68: 2699-2707. 10.1158/0008-5472.CAN-07-6505.CrossRefPubMedPubMedCentral Wray J, Liu J, Nickoloff JA, Shen Z: Distinct RAD51 associations with RAD52 and BCCIP in response to DNA damage and replication stress. Cancer Research. 2008, 68: 2699-2707. 10.1158/0008-5472.CAN-07-6505.CrossRefPubMedPubMedCentral
26.
go back to reference Meng X, Yue J, Liu Z, Shen Z: Abrogation of the transactivation activity of p53 by BCCIP down-regulation. J Biol Chem. 2007, 282: 1570-6. 10.1074/jbc.M607520200.CrossRefPubMed Meng X, Yue J, Liu Z, Shen Z: Abrogation of the transactivation activity of p53 by BCCIP down-regulation. J Biol Chem. 2007, 282: 1570-6. 10.1074/jbc.M607520200.CrossRefPubMed
28.
go back to reference Roversi G, Pfundt R, Moroni RF, Magnani I, van Reijmersdal S, Pollo B, Straatman H, Larizza L, Schoenmakers EF: Identification of novel genomic markers related to progression to glioblastoma through genomic profiling of 25 primary glioma cell lines. Oncogene. 2006, 25: 1571-83. 10.1038/sj.onc.1209177.CrossRefPubMed Roversi G, Pfundt R, Moroni RF, Magnani I, van Reijmersdal S, Pollo B, Straatman H, Larizza L, Schoenmakers EF: Identification of novel genomic markers related to progression to glioblastoma through genomic profiling of 25 primary glioma cell lines. Oncogene. 2006, 25: 1571-83. 10.1038/sj.onc.1209177.CrossRefPubMed
29.
go back to reference Reifenberger G, Collins VP: Pathology and molecular genetics of astrocytic gliomas. J Mol Med. 2004, 82: 656-70. 10.1007/s00109-004-0564-x.CrossRefPubMed Reifenberger G, Collins VP: Pathology and molecular genetics of astrocytic gliomas. J Mol Med. 2004, 82: 656-70. 10.1007/s00109-004-0564-x.CrossRefPubMed
30.
go back to reference Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK: The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002, 61: 215-25. discussion 226–9.CrossRefPubMed Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK: The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002, 61: 215-25. discussion 226–9.CrossRefPubMed
31.
go back to reference Maier D, Comparone D, Taylor E, Zhang Z, Gratzl O, Van Meir EG, Scott RJ, Merlo A: New deletion in low-grade oligodendroglioma at the glioblastoma suppressor locus on chromosome 10q25–26. Oncogene. 1997, 15: 997-1000. 10.1038/sj.onc.1201209.CrossRefPubMed Maier D, Comparone D, Taylor E, Zhang Z, Gratzl O, Van Meir EG, Scott RJ, Merlo A: New deletion in low-grade oligodendroglioma at the glioblastoma suppressor locus on chromosome 10q25–26. Oncogene. 1997, 15: 997-1000. 10.1038/sj.onc.1201209.CrossRefPubMed
32.
go back to reference Watanabe T, Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H: Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol. 2001, 101: 185-9.PubMed Watanabe T, Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H: Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol. 2001, 101: 185-9.PubMed
33.
go back to reference Meng X, Liu J, Shen Z: Genomic structure of the human BCCIP gene and its expression in cancer. Gene. 2003, 302: 139-46. 10.1016/S0378-1119(02)01098-3.CrossRefPubMed Meng X, Liu J, Shen Z: Genomic structure of the human BCCIP gene and its expression in cancer. Gene. 2003, 302: 139-46. 10.1016/S0378-1119(02)01098-3.CrossRefPubMed
34.
go back to reference Shih AH, Holland EC: Developmental neurobiology and the origin of brain tumors. J Neurooncol. 2004, 70: 125-36. 10.1007/s11060-004-2746-3.CrossRefPubMed Shih AH, Holland EC: Developmental neurobiology and the origin of brain tumors. J Neurooncol. 2004, 70: 125-36. 10.1007/s11060-004-2746-3.CrossRefPubMed
35.
go back to reference Eng LF, Ghirnikar RS: GFAP and astrogliosis. Brain Pathol. 1994, 4: 229-37. 10.1111/j.1750-3639.1994.tb00838.x.CrossRefPubMed Eng LF, Ghirnikar RS: GFAP and astrogliosis. Brain Pathol. 1994, 4: 229-37. 10.1111/j.1750-3639.1994.tb00838.x.CrossRefPubMed
36.
go back to reference Fujisawa H, Kurrer M, Reis RM, Yonekawa Y, Kleihues P, Ohgaki H: Acquisition of the glioblastoma phenotype during astrocytoma progression is associated with loss of heterozygosity on 10q25-qter. Am J Pathol. 1999, 155: 387-94.CrossRefPubMedPubMedCentral Fujisawa H, Kurrer M, Reis RM, Yonekawa Y, Kleihues P, Ohgaki H: Acquisition of the glioblastoma phenotype during astrocytoma progression is associated with loss of heterozygosity on 10q25-qter. Am J Pathol. 1999, 155: 387-94.CrossRefPubMedPubMedCentral
37.
go back to reference Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP: Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 1999, 99: 323-34. 10.1016/S0092-8674(00)81663-3.CrossRefPubMed Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP: Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 1999, 99: 323-34. 10.1016/S0092-8674(00)81663-3.CrossRefPubMed
38.
go back to reference Rossi DJ, Weissman IL: Pten, tumorigenesis, and stem cell self-renewal. Cell. 2006, 125: 229-31. 10.1016/j.cell.2006.04.006.CrossRefPubMed Rossi DJ, Weissman IL: Pten, tumorigenesis, and stem cell self-renewal. Cell. 2006, 125: 229-31. 10.1016/j.cell.2006.04.006.CrossRefPubMed
39.
go back to reference Chow LM, Baker SJ: PTEN function in normal and neoplastic growth. Cancer Lett. 2006, 241: 184-96. 10.1016/j.canlet.2005.11.042.CrossRefPubMed Chow LM, Baker SJ: PTEN function in normal and neoplastic growth. Cancer Lett. 2006, 241: 184-96. 10.1016/j.canlet.2005.11.042.CrossRefPubMed
40.
go back to reference Stiles B, Groszer M, Wang S, Jiao J, Wu H: PTENless means more. Dev Biol. 2004, 273: 175-84. 10.1016/j.ydbio.2004.06.008.CrossRefPubMed Stiles B, Groszer M, Wang S, Jiao J, Wu H: PTENless means more. Dev Biol. 2004, 273: 175-84. 10.1016/j.ydbio.2004.06.008.CrossRefPubMed
42.
go back to reference Scott DK, Straughton D, Cole M, Bailey S, Ellison DW, Clifford SC: Identification and analysis of tumor suppressor loci at chromosome 10q23.3–10q25.3 in medulloblastoma. Cell Cycle. 2006, 5: 2381-9.CrossRefPubMed Scott DK, Straughton D, Cole M, Bailey S, Ellison DW, Clifford SC: Identification and analysis of tumor suppressor loci at chromosome 10q23.3–10q25.3 in medulloblastoma. Cell Cycle. 2006, 5: 2381-9.CrossRefPubMed
43.
go back to reference Ariyanayagam-Baksh SM, Baksh FK, Swalsky PA, Finkelstein SD: Loss of heterozygosity in the MXI1 gene is a frequent occurrence in melanoma. Mod Pathol. 2003, 16: 992-5. 10.1097/01.MP.0000087421.44975.1C.CrossRefPubMed Ariyanayagam-Baksh SM, Baksh FK, Swalsky PA, Finkelstein SD: Loss of heterozygosity in the MXI1 gene is a frequent occurrence in melanoma. Mod Pathol. 2003, 16: 992-5. 10.1097/01.MP.0000087421.44975.1C.CrossRefPubMed
44.
go back to reference Herbst RA, Podewski EK, Mommert S, Kapp A, Weiss J: PTEN and MXI1 allelic loss on chromosome 10q is rare in melanoma in vivo. Arch Dermatol Res. 1999, 291: 567-9. 10.1007/s004030050456.CrossRefPubMed Herbst RA, Podewski EK, Mommert S, Kapp A, Weiss J: PTEN and MXI1 allelic loss on chromosome 10q is rare in melanoma in vivo. Arch Dermatol Res. 1999, 291: 567-9. 10.1007/s004030050456.CrossRefPubMed
45.
go back to reference Prochownik EV, Eagle Grove L, Deubler D, Zhu XL, Stephenson RA, Rohr LR, Yin X, Brothman AR: Commonly occurring loss and mutation of the MXI1 gene in prostate cancer. Genes Chromosomes Cancer. 1998, 22: 295-304. 10.1002/(SICI)1098-2264(199808)22:4<295::AID-GCC5>3.0.CO;2-Q.CrossRefPubMed Prochownik EV, Eagle Grove L, Deubler D, Zhu XL, Stephenson RA, Rohr LR, Yin X, Brothman AR: Commonly occurring loss and mutation of the MXI1 gene in prostate cancer. Genes Chromosomes Cancer. 1998, 22: 295-304. 10.1002/(SICI)1098-2264(199808)22:4<295::AID-GCC5>3.0.CO;2-Q.CrossRefPubMed
46.
go back to reference Kuczyk MA, Serth J, Bokemeyer C, Schwede J, Herrmann R, Machtens S, Grunewald V, Hofner K, Jonas U: The MXI1 tumor suppressor gene is not mutated in primary prostate cancer. Oncol Rep. 1998, 5: 213-6.PubMed Kuczyk MA, Serth J, Bokemeyer C, Schwede J, Herrmann R, Machtens S, Grunewald V, Hofner K, Jonas U: The MXI1 tumor suppressor gene is not mutated in primary prostate cancer. Oncol Rep. 1998, 5: 213-6.PubMed
47.
go back to reference Wechsler DS, Shelly CA, Petroff CA, Dang CV: MXI1, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells. Cancer Res. 1997, 57: 4905-12.PubMed Wechsler DS, Shelly CA, Petroff CA, Dang CV: MXI1, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells. Cancer Res. 1997, 57: 4905-12.PubMed
48.
go back to reference Kim SK, Ro JY, Kemp BL, Lee JS, Kwon TJ, Hong WK, Mao L: Identification of two distinct tumor-suppressor loci on the long arm of chromosome 10 in small cell lung cancer. Oncogene. 1998, 17: 1749-53. 10.1038/sj.onc.1202073.CrossRefPubMed Kim SK, Ro JY, Kemp BL, Lee JS, Kwon TJ, Hong WK, Mao L: Identification of two distinct tumor-suppressor loci on the long arm of chromosome 10 in small cell lung cancer. Oncogene. 1998, 17: 1749-53. 10.1038/sj.onc.1202073.CrossRefPubMed
49.
go back to reference Wang DS, Rieger-Christ K, Latini JM, Moinzadeh A, Stoffel J, Pezza JA, Saini K, Libertino JA, Summerhayes IC: Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. Int J Cancer. 2000, 88: 620-5. 10.1002/1097-0215(20001115)88:4<620::AID-IJC16>3.0.CO;2-Z.CrossRefPubMed Wang DS, Rieger-Christ K, Latini JM, Moinzadeh A, Stoffel J, Pezza JA, Saini K, Libertino JA, Summerhayes IC: Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. Int J Cancer. 2000, 88: 620-5. 10.1002/1097-0215(20001115)88:4<620::AID-IJC16>3.0.CO;2-Z.CrossRefPubMed
50.
go back to reference Delnatte C, Sanlaville D, Mougenot JF, Vermeesch JR, Houdayer C, Blois MC, Genevieve D, Goulet O, Fryns JP, Jaubert F, et al: MXI1, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells. Am J Hum Genet. 2006, 78: 1066-74. 10.1086/504301.CrossRefPubMedPubMedCentral Delnatte C, Sanlaville D, Mougenot JF, Vermeesch JR, Houdayer C, Blois MC, Genevieve D, Goulet O, Fryns JP, Jaubert F, et al: MXI1, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells. Am J Hum Genet. 2006, 78: 1066-74. 10.1086/504301.CrossRefPubMedPubMedCentral
51.
go back to reference Mollenhauer J, Wiemann S, Scheurlen W, Korn B, Hayashi Y, Wilgenbus KK, von Deimling A, Poustka A: DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3–26.1 is deleted in malignant brain tumours. Nat Genet. 1997, 17: 32-9. 10.1038/ng0997-32.CrossRefPubMed Mollenhauer J, Wiemann S, Scheurlen W, Korn B, Hayashi Y, Wilgenbus KK, von Deimling A, Poustka A: DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3–26.1 is deleted in malignant brain tumours. Nat Genet. 1997, 17: 32-9. 10.1038/ng0997-32.CrossRefPubMed
52.
go back to reference Sasaki H, Betensky RA, Cairncross JG, Louis DN: DMBT1 polymorphisms: relationship to malignant glioma tumorigenesis. Cancer Res. 2002, 62: 1790-6.PubMed Sasaki H, Betensky RA, Cairncross JG, Louis DN: DMBT1 polymorphisms: relationship to malignant glioma tumorigenesis. Cancer Res. 2002, 62: 1790-6.PubMed
53.
go back to reference Sanson M, Leuraud P, Aguirre-Cruz L, He J, Marie Y, Cartalat-Carel S, Mokhtari K, Duffau H, Delattre JY, Hoang-Xuan K: Analysis of loss of chromosome 10q, DMBT1 homozygous deletions, and PTEN mutations in oligodendrogliomas. J Neurosurg. 2002, 97: 1397-401. 10.3171/jns.2002.97.6.1397.CrossRefPubMed Sanson M, Leuraud P, Aguirre-Cruz L, He J, Marie Y, Cartalat-Carel S, Mokhtari K, Duffau H, Delattre JY, Hoang-Xuan K: Analysis of loss of chromosome 10q, DMBT1 homozygous deletions, and PTEN mutations in oligodendrogliomas. J Neurosurg. 2002, 97: 1397-401. 10.3171/jns.2002.97.6.1397.CrossRefPubMed
54.
go back to reference Pang JC, Dong Z, Zhang R, Liu Y, Zhou LF, Chan BW, Poon WS, Ng HK: Mutation analysis of DMBT1 in glioblastoma, medulloblastoma and oligodendroglial tumors. Int J Cancer. 2003, 105: 76-81. 10.1002/ijc.11019.CrossRefPubMed Pang JC, Dong Z, Zhang R, Liu Y, Zhou LF, Chan BW, Poon WS, Ng HK: Mutation analysis of DMBT1 in glioblastoma, medulloblastoma and oligodendroglial tumors. Int J Cancer. 2003, 105: 76-81. 10.1002/ijc.11019.CrossRefPubMed
55.
go back to reference Rewari A, Lu H, Parikh R, Yang Q, Shen Z, Haffty BG: BCCIP as a prognostic marker for radiotherapy of laryngeal cancer. Radiother Oncol. 2009, 90: 183-8. 10.1016/j.radonc.2008.10.020.CrossRefPubMed Rewari A, Lu H, Parikh R, Yang Q, Shen Z, Haffty BG: BCCIP as a prognostic marker for radiotherapy of laryngeal cancer. Radiother Oncol. 2009, 90: 183-8. 10.1016/j.radonc.2008.10.020.CrossRefPubMed
Metadata
Title
Alterations of BCCIP, a BRCA2 interacting protein, in astrocytomas
Authors
Jingmei Liu
Huimei Lu
Hiroko Ohgaki
Adrian Merlo
Zhiyuan Shen
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2009
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-9-268

Other articles of this Issue 1/2009

BMC Cancer 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine