Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

Authors: Chunlin Shao, Melvyn Folkard, Kathryn D Held, Kevin M Prise

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells.

Methods

The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation.

Results

A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation.

Conclusion

The observation of bystander responses in breast tumour cells may offer new potential targets for radiation-based therapies in the treatment of breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Prise KM, Schettino G, Folkard M, Held KD: New insights on cell death from radiation exposure. The lancet oncology. 2005, 6 (7): 520-528. 10.1016/S1470-2045(05)70246-1.CrossRefPubMed Prise KM, Schettino G, Folkard M, Held KD: New insights on cell death from radiation exposure. The lancet oncology. 2005, 6 (7): 520-528. 10.1016/S1470-2045(05)70246-1.CrossRefPubMed
2.
go back to reference Nagasawa H, Little JB: induction of sister chromatid exchanges by extremely low doses of a-particles. Cancer Research. 1992, 52: 6394-6396.PubMed Nagasawa H, Little JB: induction of sister chromatid exchanges by extremely low doses of a-particles. Cancer Research. 1992, 52: 6394-6396.PubMed
3.
go back to reference Azzam EI, de Toledo SM, Little JB: Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98 (2): 473-478. 10.1073/pnas.011417098.PubMedPubMedCentral Azzam EI, de Toledo SM, Little JB: Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98 (2): 473-478. 10.1073/pnas.011417098.PubMedPubMedCentral
4.
go back to reference Lyng FM, Seymour CB, Mothersill C: Production of a signal by irradiated cells which leads to a response in unirradiated cells characteristic of initiation of apoptosis. British Journal of Cancer. 2000, 83 (9): 1223-1230. 10.1054/bjoc.2000.1433.CrossRefPubMedPubMedCentral Lyng FM, Seymour CB, Mothersill C: Production of a signal by irradiated cells which leads to a response in unirradiated cells characteristic of initiation of apoptosis. British Journal of Cancer. 2000, 83 (9): 1223-1230. 10.1054/bjoc.2000.1433.CrossRefPubMedPubMedCentral
5.
go back to reference Mothersill C, Seymour C: Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of irradiated cells. International Journal of Radiation Biology. 1997, 71: 421-427. 10.1080/095530097144030.CrossRefPubMed Mothersill C, Seymour C: Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of irradiated cells. International Journal of Radiation Biology. 1997, 71: 421-427. 10.1080/095530097144030.CrossRefPubMed
6.
go back to reference Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K: Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. International Journal of Radiation Biology. 2002, 78 (9): 837-844. 10.1080/09553000210149786.CrossRefPubMed Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K: Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. International Journal of Radiation Biology. 2002, 78 (9): 837-844. 10.1080/09553000210149786.CrossRefPubMed
7.
go back to reference Shao C, Furusawa Y, Kobayashi Y, Funayama T, Wada S: Bystander effect induced by counted high-LET particles in confluent human fibroblasts: a mechanistic study. FASEB Journal. 2003, 17 (11): 1422-1427. 10.1096/fj.02-1115com.CrossRefPubMed Shao C, Furusawa Y, Kobayashi Y, Funayama T, Wada S: Bystander effect induced by counted high-LET particles in confluent human fibroblasts: a mechanistic study. FASEB Journal. 2003, 17 (11): 1422-1427. 10.1096/fj.02-1115com.CrossRefPubMed
8.
go back to reference Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK: Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97 (5): 2099-2104. 10.1073/pnas.030420797.CrossRefPubMedPubMedCentral Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK: Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97 (5): 2099-2104. 10.1073/pnas.030420797.CrossRefPubMedPubMedCentral
9.
go back to reference Prise KM, Belyakov OV, Folkard M, Michael BD: Studies of bystander effects in human fibroblasts using a charged particle microbeam. International Journal of Radiation Biology. 1998, 74: 793-798. 10.1080/095530098141087.CrossRefPubMed Prise KM, Belyakov OV, Folkard M, Michael BD: Studies of bystander effects in human fibroblasts using a charged particle microbeam. International Journal of Radiation Biology. 1998, 74: 793-798. 10.1080/095530098141087.CrossRefPubMed
10.
go back to reference Shao C, Folkard M, Michael BD, Prise KM: Targeted cytoplasmic irradiation induces bystander responses. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101 (37): 13495-13500. 10.1073/pnas.0404930101.CrossRefPubMedPubMedCentral Shao C, Folkard M, Michael BD, Prise KM: Targeted cytoplasmic irradiation induces bystander responses. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101 (37): 13495-13500. 10.1073/pnas.0404930101.CrossRefPubMedPubMedCentral
11.
go back to reference Yang H, Asaad N, Held KD: Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene. 2005, 24: 2096-103. 10.1038/sj.onc.1208439.CrossRefPubMed Yang H, Asaad N, Held KD: Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene. 2005, 24: 2096-103. 10.1038/sj.onc.1208439.CrossRefPubMed
12.
go back to reference Burdak-Rothkamm S, Short SC, Folkard M, Rothkamm K, Prise KM: ATR-dependent radiation-induced gammaH2AX foci in bystander primary human astrocytes and glioma cells. Oncogene. 2007, 26 (7): 993-1002. 10.1038/sj.onc.1209863.CrossRefPubMed Burdak-Rothkamm S, Short SC, Folkard M, Rothkamm K, Prise KM: ATR-dependent radiation-induced gammaH2AX foci in bystander primary human astrocytes and glioma cells. Oncogene. 2007, 26 (7): 993-1002. 10.1038/sj.onc.1209863.CrossRefPubMed
13.
go back to reference Mothersill C, Stamato TD, Perez ML, Cummins R, Mooney R, Seymour CB: Involvement of energy metabolism in the production of 'bystander effects' by radiation. Br J Cancer. 2000, 82 (10): 1740-1746. 10.1054/bjoc.2000.1109.CrossRefPubMedPubMedCentral Mothersill C, Stamato TD, Perez ML, Cummins R, Mooney R, Seymour CB: Involvement of energy metabolism in the production of 'bystander effects' by radiation. Br J Cancer. 2000, 82 (10): 1740-1746. 10.1054/bjoc.2000.1109.CrossRefPubMedPubMedCentral
14.
go back to reference Nagasawa H, Cremesti A, Kolesnick R, Fuks Z, Little JB: Involvement of membrane signaling in the bystander effect in irradiated cells. Cancer Research. 2002, 62 (9): 2531-2534.PubMed Nagasawa H, Cremesti A, Kolesnick R, Fuks Z, Little JB: Involvement of membrane signaling in the bystander effect in irradiated cells. Cancer Research. 2002, 62 (9): 2531-2534.PubMed
15.
go back to reference Deshpande A, Goodwin EH, Bailey SM, Marrone BL, Lehnert BE: Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: Evidence for an extranuclear target. Radiation Research. 1996, 145: 260-267. 10.2307/3578980.CrossRefPubMed Deshpande A, Goodwin EH, Bailey SM, Marrone BL, Lehnert BE: Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: Evidence for an extranuclear target. Radiation Research. 1996, 145: 260-267. 10.2307/3578980.CrossRefPubMed
16.
go back to reference Ponnaiya B, Jenkins-Baker G, Brenner DJ, Hall EJ, Randers-Pehrson G, Geard CR: Biological responses in known bystander cells relative to known microbeam-irradiated cells. Radiation Research. 2004, 162 (4): 426-432. 10.1667/RR3236.CrossRefPubMed Ponnaiya B, Jenkins-Baker G, Brenner DJ, Hall EJ, Randers-Pehrson G, Geard CR: Biological responses in known bystander cells relative to known microbeam-irradiated cells. Radiation Research. 2004, 162 (4): 426-432. 10.1667/RR3236.CrossRefPubMed
17.
go back to reference Shao C, Folkard M, Michael BD, Prise KM: Bystander signaling between glioma cells and fibroblasts targeted with counted particles. Int J Cancer. 2005, 116 (1): 45-51. 10.1002/ijc.21003.CrossRefPubMed Shao C, Folkard M, Michael BD, Prise KM: Bystander signaling between glioma cells and fibroblasts targeted with counted particles. Int J Cancer. 2005, 116 (1): 45-51. 10.1002/ijc.21003.CrossRefPubMed
18.
go back to reference Little JB: Radiation carcinogenesis. Carcinogenesis. 2000, 21 (3): 397-404. 10.1093/carcin/21.3.397.CrossRefPubMed Little JB: Radiation carcinogenesis. Carcinogenesis. 2000, 21 (3): 397-404. 10.1093/carcin/21.3.397.CrossRefPubMed
19.
go back to reference Zhou H, Suzuki M, Randers-Pehrson G, Vannais D, Chen G, Trosko JE, Waldren CA, Hei TK: Radiation risk to low fluences of alpha particles may be greater than we thought. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98 (25): 14410-14415. 10.1073/pnas.251524798.CrossRefPubMedPubMedCentral Zhou H, Suzuki M, Randers-Pehrson G, Vannais D, Chen G, Trosko JE, Waldren CA, Hei TK: Radiation risk to low fluences of alpha particles may be greater than we thought. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98 (25): 14410-14415. 10.1073/pnas.251524798.CrossRefPubMedPubMedCentral
20.
go back to reference Lorimore SA, Coates PJ, Wright EG: Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene. 2003, 22 (45): 7058-7069. 10.1038/sj.onc.1207044.CrossRefPubMed Lorimore SA, Coates PJ, Wright EG: Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene. 2003, 22 (45): 7058-7069. 10.1038/sj.onc.1207044.CrossRefPubMed
21.
go back to reference Hall EJ, Hei TK: Genomic instability and bystander effects induced by high-LET radiation. Oncogene. 2003, 22 (45): 7034-7042. 10.1038/sj.onc.1206900.CrossRefPubMed Hall EJ, Hei TK: Genomic instability and bystander effects induced by high-LET radiation. Oncogene. 2003, 22 (45): 7034-7042. 10.1038/sj.onc.1206900.CrossRefPubMed
22.
go back to reference Lewis DA, Mayhugh BM, Qin Y, Trott K, Mendonca MS: Production of delayed death and neoplastic transformation in CGL1 cells by radiation-induced bystander effects. Radiation Research. 2001, 156 (3): 251-258. 10.1667/0033-7587(2001)156[0251:PODDAN]2.0.CO;2.CrossRefPubMed Lewis DA, Mayhugh BM, Qin Y, Trott K, Mendonca MS: Production of delayed death and neoplastic transformation in CGL1 cells by radiation-induced bystander effects. Radiation Research. 2001, 156 (3): 251-258. 10.1667/0033-7587(2001)156[0251:PODDAN]2.0.CO;2.CrossRefPubMed
23.
go back to reference Sawant SG, Randers-Pehrson G, Geard CR, Brenner DJ, Hall EJ: The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiation Research. 2001, 155 (3): 397-401. 10.1667/0033-7587(2001)155[0397:TBEIRO]2.0.CO;2.CrossRefPubMed Sawant SG, Randers-Pehrson G, Geard CR, Brenner DJ, Hall EJ: The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiation Research. 2001, 155 (3): 397-401. 10.1667/0033-7587(2001)155[0397:TBEIRO]2.0.CO;2.CrossRefPubMed
24.
go back to reference Azzam EI, de Toledo SM, Gooding T, Little JB: Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res. 1998, 150 (5): 497-504. 10.2307/3579865.CrossRefPubMed Azzam EI, de Toledo SM, Gooding T, Little JB: Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res. 1998, 150 (5): 497-504. 10.2307/3579865.CrossRefPubMed
25.
go back to reference Tartier L, Gilchrist S, Burdak-Rothkamm S, Folkard M, Prise KM: Cytoplasmic irradiation induces mitochondrial-dependent 53BP1 protein relocalization in irradiated and bystander cells. Cancer Research. 2007, 67 (12): 5872-5879. 10.1158/0008-5472.CAN-07-0188.CrossRefPubMedPubMedCentral Tartier L, Gilchrist S, Burdak-Rothkamm S, Folkard M, Prise KM: Cytoplasmic irradiation induces mitochondrial-dependent 53BP1 protein relocalization in irradiated and bystander cells. Cancer Research. 2007, 67 (12): 5872-5879. 10.1158/0008-5472.CAN-07-0188.CrossRefPubMedPubMedCentral
26.
go back to reference Shao C, Furusawa Y, Aoki M, Ando K: Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts. Radiation Research. 2003, 160 (3): 318-323. 10.1667/RR3044.CrossRefPubMed Shao C, Furusawa Y, Aoki M, Ando K: Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts. Radiation Research. 2003, 160 (3): 318-323. 10.1667/RR3044.CrossRefPubMed
27.
go back to reference Azzam EI, de Toledo SM, Little JB: Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene. 2003, 22 (45): 7050-7057. 10.1038/sj.onc.1206961.CrossRefPubMed Azzam EI, de Toledo SM, Little JB: Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene. 2003, 22 (45): 7050-7057. 10.1038/sj.onc.1206961.CrossRefPubMed
28.
go back to reference Mitchell SA, Randers-Pehrson G, Brenner DJ, Hall EJ: The bystander response in C3H 10T1/2 cells: the influence of cell-to-cell contact. Radiation Research. 2004, 161 (4): 397-401. 10.1667/RR3137.CrossRefPubMed Mitchell SA, Randers-Pehrson G, Brenner DJ, Hall EJ: The bystander response in C3H 10T1/2 cells: the influence of cell-to-cell contact. Radiation Research. 2004, 161 (4): 397-401. 10.1667/RR3137.CrossRefPubMed
29.
go back to reference Iyer R, Lehnert BE: Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Research. 2000, 60 (5): 1290-1298.PubMed Iyer R, Lehnert BE: Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Research. 2000, 60 (5): 1290-1298.PubMed
30.
go back to reference Lehnert BE, Goodwin EH: Extracellular factor(s) following exposure to a-particles can cause sister chromatid exchanges in normal human cells. Cancer Research. 1997, 57: 2164-2171.PubMed Lehnert BE, Goodwin EH: Extracellular factor(s) following exposure to a-particles can cause sister chromatid exchanges in normal human cells. Cancer Research. 1997, 57: 2164-2171.PubMed
31.
go back to reference Narayanan PK, Goodwin EH, Lehnert BE: a-particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Research. 1997, 57: 3963-3971.PubMed Narayanan PK, Goodwin EH, Lehnert BE: a-particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Research. 1997, 57: 3963-3971.PubMed
32.
go back to reference Shao C, Stewart V, Folkard M, Michael BD, Prise KM: Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Research. 2003, 63 (23): 8437-8442.PubMed Shao C, Stewart V, Folkard M, Michael BD, Prise KM: Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Research. 2003, 63 (23): 8437-8442.PubMed
33.
go back to reference Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, Kitai R, Ohnishi T, Kano E: Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiation Research. 2001, 155 (3): 387-396. 10.1667/0033-7587(2001)155[0387:IORBAN]2.0.CO;2.CrossRefPubMed Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, Kitai R, Ohnishi T, Kano E: Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiation Research. 2001, 155 (3): 387-396. 10.1667/0033-7587(2001)155[0387:IORBAN]2.0.CO;2.CrossRefPubMed
34.
go back to reference Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaider M: Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100 (24): 13761-13766. 10.1073/pnas.2235592100.CrossRefPubMedPubMedCentral Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaider M: Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100 (24): 13761-13766. 10.1073/pnas.2235592100.CrossRefPubMedPubMedCentral
35.
go back to reference Schmidberger H, Hermann RM, Hess CF, Emons G: Interactions between radiation and endocrine therapy in breast cancer. Endocrine-related cancer. 2003, 10 (3): 375-388. 10.1677/erc.0.0100375.CrossRefPubMed Schmidberger H, Hermann RM, Hess CF, Emons G: Interactions between radiation and endocrine therapy in breast cancer. Endocrine-related cancer. 2003, 10 (3): 375-388. 10.1677/erc.0.0100375.CrossRefPubMed
36.
go back to reference Razandi M, Pedram A, Levin ER: Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Molecular endocrinology (Baltimore, Md. 2000, 14 (9): 1434-1447. 10.1210/me.14.9.1434.CrossRef Razandi M, Pedram A, Levin ER: Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Molecular endocrinology (Baltimore, Md. 2000, 14 (9): 1434-1447. 10.1210/me.14.9.1434.CrossRef
37.
go back to reference Wazer DE, Tercilla OF, Lin PS, Schmidt-Ullrich R: Modulation in the radiosensitivity of MCF-7 human breast carcinoma cells by 17B-estradiol and tamoxifen. The British journal of radiology. 1989, 62 (744): 1079-1083.CrossRefPubMed Wazer DE, Tercilla OF, Lin PS, Schmidt-Ullrich R: Modulation in the radiosensitivity of MCF-7 human breast carcinoma cells by 17B-estradiol and tamoxifen. The British journal of radiology. 1989, 62 (744): 1079-1083.CrossRefPubMed
38.
go back to reference Villalobos M, Becerra D, Nunez MI, Valenzuela MT, Siles E, Olea N, Pedraza V, Ruiz de Almodovar JM: Radiosensitivity of human breast cancer cell lines of different hormonal responsiveness. Modulatory effects of oestradiol. International Journal of Radiation Biology. 1996, 70 (2): 161-169. 10.1080/095530096145157.CrossRefPubMed Villalobos M, Becerra D, Nunez MI, Valenzuela MT, Siles E, Olea N, Pedraza V, Ruiz de Almodovar JM: Radiosensitivity of human breast cancer cell lines of different hormonal responsiveness. Modulatory effects of oestradiol. International Journal of Radiation Biology. 1996, 70 (2): 161-169. 10.1080/095530096145157.CrossRefPubMed
39.
go back to reference Amorino GP, Freeman ML, Choy H: Enhancement of radiation effects in vitro by the estrogen metabolite 2-methoxyestradiol. Radiat Res. 2000, 153 (4): 384-391. 10.1667/0033-7587(2000)153[0384:EOREIV]2.0.CO;2.CrossRefPubMed Amorino GP, Freeman ML, Choy H: Enhancement of radiation effects in vitro by the estrogen metabolite 2-methoxyestradiol. Radiat Res. 2000, 153 (4): 384-391. 10.1667/0033-7587(2000)153[0384:EOREIV]2.0.CO;2.CrossRefPubMed
40.
go back to reference Sarkaria JN, Miller EM, Parker CJ, Jordan VC, Mulcahy RT: 4-Hydroxytamoxifen, an active metabolite of tamoxifen, does not alter the radiation sensitivity of MCF-7 breast carcinoma cells irradiated in vitro. Breast cancer research and treatment. 1994, 30 (2): 159-165. 10.1007/BF00666060.CrossRefPubMed Sarkaria JN, Miller EM, Parker CJ, Jordan VC, Mulcahy RT: 4-Hydroxytamoxifen, an active metabolite of tamoxifen, does not alter the radiation sensitivity of MCF-7 breast carcinoma cells irradiated in vitro. Breast cancer research and treatment. 1994, 30 (2): 159-165. 10.1007/BF00666060.CrossRefPubMed
41.
go back to reference Paulsen GH, Strickert T, Marthinsen AB, Lundgren S: Changes in radiation sensitivity and steroid receptor content induced by hormonal agents and ionizing radiation in breast cancer cells in vitro. Acta oncologica (Stockholm, Sweden). 1996, 35 (8): 1011-1019. 10.3109/02841869609100720.CrossRef Paulsen GH, Strickert T, Marthinsen AB, Lundgren S: Changes in radiation sensitivity and steroid receptor content induced by hormonal agents and ionizing radiation in breast cancer cells in vitro. Acta oncologica (Stockholm, Sweden). 1996, 35 (8): 1011-1019. 10.3109/02841869609100720.CrossRef
42.
go back to reference Folkard M, Vojnovic B, Prise KM, Bowey AG, Locke RJ, Schettino G, Michael BD: A charged-particle microbeam I. Development of an experimental system for targeting cells individually with counted particles. Int J Radiat Biol. 1997, 72: 375-385. 10.1080/095530097143158.CrossRefPubMed Folkard M, Vojnovic B, Prise KM, Bowey AG, Locke RJ, Schettino G, Michael BD: A charged-particle microbeam I. Development of an experimental system for targeting cells individually with counted particles. Int J Radiat Biol. 1997, 72: 375-385. 10.1080/095530097143158.CrossRefPubMed
43.
go back to reference Mobley JA, Brueggemeier RW: Estrogen receptor-mediated regulation of oxidative stress and DNA damage in breast cancer. Carcinogenesis. 2004, 25 (1): 3-9. 10.1093/carcin/bgg175.CrossRefPubMed Mobley JA, Brueggemeier RW: Estrogen receptor-mediated regulation of oxidative stress and DNA damage in breast cancer. Carcinogenesis. 2004, 25 (1): 3-9. 10.1093/carcin/bgg175.CrossRefPubMed
44.
go back to reference Folkard M, Vojnovic B, Hollis KJ, Bowey AG, Watts SJ, Schettino G, Prise KM, Michael BD: A charged particle microbeam: II A single-particle micro-collimation and detection system. International Journal of Radiation Biology. 1997, 72: 387-395. 10.1080/095530097143167.CrossRefPubMed Folkard M, Vojnovic B, Hollis KJ, Bowey AG, Watts SJ, Schettino G, Prise KM, Michael BD: A charged particle microbeam: II A single-particle micro-collimation and detection system. International Journal of Radiation Biology. 1997, 72: 387-395. 10.1080/095530097143167.CrossRefPubMed
45.
go back to reference Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DE, Tice R, Waters MD, Aitio A: IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutation research. 2000, 463 (2): 111-172. 10.1016/S1383-5742(00)00049-1.CrossRefPubMed Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DE, Tice R, Waters MD, Aitio A: IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutation research. 2000, 463 (2): 111-172. 10.1016/S1383-5742(00)00049-1.CrossRefPubMed
46.
go back to reference Arnold SF, Tims E, Bluman EM, McGrath BE: Regulation of transforming growth factor beta1 by radiation in cells of two human breast cancer cell lines. Radiat Res. 1999, 152 (5): 487-492. 10.2307/3580144.CrossRefPubMed Arnold SF, Tims E, Bluman EM, McGrath BE: Regulation of transforming growth factor beta1 by radiation in cells of two human breast cancer cell lines. Radiat Res. 1999, 152 (5): 487-492. 10.2307/3580144.CrossRefPubMed
47.
go back to reference Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, Dent P: Radiation-induced cell signaling: inside-out and outside-in. Molecular cancer therapeutics. 2007, 6 (3): 789-801. 10.1158/1535-7163.MCT-06-0596.CrossRefPubMed Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, Dent P: Radiation-induced cell signaling: inside-out and outside-in. Molecular cancer therapeutics. 2007, 6 (3): 789-801. 10.1158/1535-7163.MCT-06-0596.CrossRefPubMed
48.
go back to reference Shao C, Folkard M, Prise KM: Role of TGF-beta1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene. 2008, 27 (4): 434-440. 10.1038/sj.onc.1210653.CrossRefPubMed Shao C, Folkard M, Prise KM: Role of TGF-beta1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene. 2008, 27 (4): 434-440. 10.1038/sj.onc.1210653.CrossRefPubMed
49.
go back to reference Shao C, Prise KM, Folkard M: Signaling factors for irradiated glioma cells induced bystander responses in fibroblasts. Mutat Res. 2008, 638 (1-2): 139-145.CrossRefPubMed Shao C, Prise KM, Folkard M: Signaling factors for irradiated glioma cells induced bystander responses in fibroblasts. Mutat Res. 2008, 638 (1-2): 139-145.CrossRefPubMed
50.
go back to reference Liehr JG: Is estradiol a genotoxic mutagenic carcinogen?. Endocrine reviews. 2000, 21 (1): 40-54. 10.1210/er.21.1.40.PubMed Liehr JG: Is estradiol a genotoxic mutagenic carcinogen?. Endocrine reviews. 2000, 21 (1): 40-54. 10.1210/er.21.1.40.PubMed
51.
go back to reference Fischer WH, Keiwan A, Schmitt E, Stopper H: Increased formation of micronuclei after hormonal stimulation of cell proliferation in human breast cancer cells. Mutagenesis. 2001, 16 (3): 209-212. 10.1093/mutage/16.3.209.CrossRefPubMed Fischer WH, Keiwan A, Schmitt E, Stopper H: Increased formation of micronuclei after hormonal stimulation of cell proliferation in human breast cancer cells. Mutagenesis. 2001, 16 (3): 209-212. 10.1093/mutage/16.3.209.CrossRefPubMed
52.
go back to reference Stopper H, Schmitt E, Gregor C, Mueller SO, Fischer WH: Increased cell proliferation is associated with genomic instability: elevated micronuclei frequencies in estradiol-treated human ovarian cancer cells. Mutagenesis. 2003, 18 (3): 243-247. 10.1093/mutage/18.3.243.CrossRefPubMed Stopper H, Schmitt E, Gregor C, Mueller SO, Fischer WH: Increased cell proliferation is associated with genomic instability: elevated micronuclei frequencies in estradiol-treated human ovarian cancer cells. Mutagenesis. 2003, 18 (3): 243-247. 10.1093/mutage/18.3.243.CrossRefPubMed
53.
go back to reference Han X, Liehr JG: 8-Hydroxylation of guanine bases in kidney and liver DNA of hamsters treated with estradiol: role of free radicals in estrogen-induced carcinogenesis. Cancer Res. 1994, 54 (21): 5515-5517.PubMed Han X, Liehr JG: 8-Hydroxylation of guanine bases in kidney and liver DNA of hamsters treated with estradiol: role of free radicals in estrogen-induced carcinogenesis. Cancer Res. 1994, 54 (21): 5515-5517.PubMed
54.
go back to reference Hurh YJ, Chen ZH, Na HK, Han SY, Surh YJ: 2-Hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells. J Toxicol Environ Health A. 2004, 67 (23-24): 1939-1953. 10.1080/15287390490514598.CrossRefPubMed Hurh YJ, Chen ZH, Na HK, Han SY, Surh YJ: 2-Hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells. J Toxicol Environ Health A. 2004, 67 (23-24): 1939-1953. 10.1080/15287390490514598.CrossRefPubMed
55.
go back to reference Chhipa RR, Bhat MK: Bystander killing of breast cancer MCF-7 cells by MDA-MB-231 cells exposed to 5-fluorouracil is mediated via Fas. Journal of cellular biochemistry. 2007, 101 (1): 68-79. 10.1002/jcb.21153.CrossRefPubMed Chhipa RR, Bhat MK: Bystander killing of breast cancer MCF-7 cells by MDA-MB-231 cells exposed to 5-fluorouracil is mediated via Fas. Journal of cellular biochemistry. 2007, 101 (1): 68-79. 10.1002/jcb.21153.CrossRefPubMed
56.
go back to reference Alexandre J, Hu Y, Lu W, Pelicano H, Huang P: Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Research. 2007, 67 (8): 3512-3517. 10.1158/0008-5472.CAN-06-3914.CrossRefPubMed Alexandre J, Hu Y, Lu W, Pelicano H, Huang P: Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Research. 2007, 67 (8): 3512-3517. 10.1158/0008-5472.CAN-06-3914.CrossRefPubMed
Metadata
Title
Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation
Authors
Chunlin Shao
Melvyn Folkard
Kathryn D Held
Kevin M Prise
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-184

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine