Skip to main content
Top
Published in: BMC Cancer 1/2007

Open Access 01-12-2007 | Research article

BMP-6 promotes E-cadherin expression through repressing δEF1 in breast cancer cells

Authors: Shuang Yang, Jun Du, Zhaoqi Wang, Wei Yuan, Yuhuan Qiao, Ming Zhang, Jie Zhang, Songyuan Gao, Jian Yin, Baocun Sun, Tianhui Zhu

Published in: BMC Cancer | Issue 1/2007

Login to get access

Abstract

Background

Bone morphogenetic protein-6 (BMP-6) is critically involved in many developmental processes. Recent studies indicate that BMP-6 is closely related to tumor differentiation and metastasis.

Methods

Quantitative RT-PCR was used to determine the expression of BMP-6, E-cadherin, and δEF1 at the mRNA level in MCF-7 and MDA-MB-231 breast cancer cells, as well as in 16 breast cancer specimens. Immunoblot analysis was used to measure the expression of δEF1 at the protein level in δEF1-overexpressing and δEF1-interfered MDA-MB-231 cells. Luciferase assay was used to determine the rhBMP-6 or δEF1 driven transcriptional activity of the E-cadherin promoter in MDA-MB-231 cells. Quantitative CHIP assay was used to detect the direct association of δEF1 with the E-cadherin proximal promoter in MDA-MB-231 cells.

Results

MCF-7 breast cancer cells, an ER+ cell line that expressed high levels of BMP-6 and E-cadherin exhibited very low levels of δEF1 transcript. In contrast, MDA-MB-231 cells, an ER- cell line had significantly reduced BMP-6 and E-cadherin mRNA levels, suggesting an inverse correlation between BMP-6/E-cadherin and δEF1. To determine if the same relationship exists in human tumors, we examined tissue samples of breast cancer from human subjects. In 16 breast cancer specimens, the inverse correlation between BMP-6/E-cadherin and δEF1 was observed in both ER+ cases (4 of 8 cases) and ER- cases (7 of 8 cases). Further, we found that BMP-6 inhibited δEF1 transcription, resulting in an up-regulation of E-cadherin mRNA expression. This is consistent with our analysis of the E-cadherin promoter demonstrating that BMP-6 was a potent transcriptional activator. Interestingly, ectopic expression of δEF1 was able to block BMP-6-induced transactivation of E-cadherin, whereas RNA interference-mediated down-regulation of endogenous δEF1 in breast cancer cells abolished E-cadherin transactivation by BMP-6. In addition to down-regulating the expression of δEF1, BMP-6 also physically dislodged δEF1 from E-cadherin promoter to allow the activation of E-cadherin transcription.

Conclusion

We conclude that repression of δEF1 plays a key role in mediating BMP-6-induced transcriptional activation of E-cadherin in breast cancer cells. Consistent with the fact that higher level of δEF1 expression is associated with more invasive phenotype of breast cancer cells, our collective data suggests that δEF1 is likely the switch through which BMP-6 restores E-cadherin-mediated cell-to-cell adhesion and prevents breast cancer metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Akiyoshi T, Uchida K, Tateyama S: Expression of bone morphogenetic protein-6 (BMP-6) and BMP receptors in myoepithelial cells of canine mammary gland tumors. Vet Pathol. 2004, 41: 154-163. 10.1354/vp.41-2-154.CrossRefPubMed Akiyoshi T, Uchida K, Tateyama S: Expression of bone morphogenetic protein-6 (BMP-6) and BMP receptors in myoepithelial cells of canine mammary gland tumors. Vet Pathol. 2004, 41: 154-163. 10.1354/vp.41-2-154.CrossRefPubMed
2.
go back to reference Tateyama S, Uchida K, Hidaka T, Hirao M, Yamaguchi R: Expression of bone morphogenetic protein-6 (BMP-6) in myoepithelial cells in canine mammary gland tumors. Vet Pathol. 2001, 38: 703-709. 10.1354/vp.38-6-703.CrossRefPubMed Tateyama S, Uchida K, Hidaka T, Hirao M, Yamaguchi R: Expression of bone morphogenetic protein-6 (BMP-6) in myoepithelial cells in canine mammary gland tumors. Vet Pathol. 2001, 38: 703-709. 10.1354/vp.38-6-703.CrossRefPubMed
3.
go back to reference Berx G, Van Roy F: The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 2001, 3: 289-293. 10.1186/bcr309.CrossRefPubMedPubMedCentral Berx G, Van Roy F: The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 2001, 3: 289-293. 10.1186/bcr309.CrossRefPubMedPubMedCentral
4.
go back to reference Cleton-Jansen AM: E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer?. Breast Cancer Res. 2002, 4: 5-8. 10.1186/bcr416.CrossRefPubMed Cleton-Jansen AM: E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer?. Breast Cancer Res. 2002, 4: 5-8. 10.1186/bcr416.CrossRefPubMed
5.
go back to reference Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991, 113: 173-185. 10.1083/jcb.113.1.173.CrossRefPubMed Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991, 113: 173-185. 10.1083/jcb.113.1.173.CrossRefPubMed
6.
go back to reference Vleminckx K, Vakaet L, Mareel M, Fiers W, van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991, 66: 107-119. 10.1016/0092-8674(91)90143-M.CrossRefPubMed Vleminckx K, Vakaet L, Mareel M, Fiers W, van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991, 66: 107-119. 10.1016/0092-8674(91)90143-M.CrossRefPubMed
7.
go back to reference Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998, 392: 190-193. 10.1038/32433.CrossRefPubMed Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998, 392: 190-193. 10.1038/32433.CrossRefPubMed
8.
go back to reference Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT, Lynch H, Wiesner G, Ferguson K, Eng C, Park JG, Kim SJ, Markowitz S: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000, 26: 16-17. 10.1038/79120.CrossRefPubMed Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT, Lynch H, Wiesner G, Ferguson K, Eng C, Park JG, Kim SJ, Markowitz S: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000, 26: 16-17. 10.1038/79120.CrossRefPubMed
9.
go back to reference Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004, 117: 927-939. 10.1016/j.cell.2004.06.006.CrossRefPubMed Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004, 117: 927-939. 10.1016/j.cell.2004.06.006.CrossRefPubMed
10.
go back to reference Kang Y, Massague J: Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell. 2004, 118: 277-279. 10.1016/j.cell.2004.07.011.CrossRefPubMed Kang Y, Massague J: Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell. 2004, 118: 277-279. 10.1016/j.cell.2004.07.011.CrossRefPubMed
11.
go back to reference Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000, 2: 76-83. 10.1038/35000025.CrossRefPubMed Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000, 2: 76-83. 10.1038/35000025.CrossRefPubMed
12.
go back to reference Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000, 2: 84-9. 10.1038/35000034.CrossRefPubMed Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000, 2: 84-9. 10.1038/35000034.CrossRefPubMed
13.
go back to reference Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, de Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002, 277: 39209-39216. 10.1074/jbc.M206400200.CrossRefPubMed Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, de Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002, 277: 39209-39216. 10.1074/jbc.M206400200.CrossRefPubMed
14.
go back to reference Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA, Cano A: Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci. 2004, 117: 2827-2939. 10.1242/jcs.01145.CrossRefPubMed Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA, Cano A: Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci. 2004, 117: 2827-2939. 10.1242/jcs.01145.CrossRefPubMed
15.
go back to reference Hajra KM, Chen DY, Fearon ER: The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002, 62: 1613-1618.PubMed Hajra KM, Chen DY, Fearon ER: The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002, 62: 1613-1618.PubMed
16.
go back to reference Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A: The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003, 116: 499-511. 10.1242/jcs.00224.CrossRefPubMed Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A: The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003, 116: 499-511. 10.1242/jcs.00224.CrossRefPubMed
17.
go back to reference Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001, 7: 1267-1278. 10.1016/S1097-2765(01)00260-X.CrossRefPubMed Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001, 7: 1267-1278. 10.1016/S1097-2765(01)00260-X.CrossRefPubMed
18.
go back to reference Hatsell S, Rowlands TR, Hiremath M, Cowin P: The role of b-catenin and Tcfs in mammary development and neoplasia. J Mamary Gland Biol. 2003, 8: 143-156. 10.1023/A:1025907406208.CrossRef Hatsell S, Rowlands TR, Hiremath M, Cowin P: The role of b-catenin and Tcfs in mammary development and neoplasia. J Mamary Gland Biol. 2003, 8: 143-156. 10.1023/A:1025907406208.CrossRef
19.
go back to reference Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P: The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 2006, 66: 2202-2209. 10.1158/0008-5472.CAN-05-3560.CrossRefPubMed Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P: The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 2006, 66: 2202-2209. 10.1158/0008-5472.CAN-05-3560.CrossRefPubMed
20.
go back to reference Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003, 113: 207-219. 10.1016/S0092-8674(03)00234-4.CrossRefPubMed Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003, 113: 207-219. 10.1016/S0092-8674(03)00234-4.CrossRefPubMed
21.
go back to reference Clement JH, Sanger J, Hoffken K: Expression of bone morphogenetic protein 6 in normal mammary tissue and breast cancer cell lines and its regulation by epidermal growth factor. Int J Cancer. 1999, 80: 250-256. 10.1002/(SICI)1097-0215(19990118)80:2<250::AID-IJC14>3.0.CO;2-D.CrossRefPubMed Clement JH, Sanger J, Hoffken K: Expression of bone morphogenetic protein 6 in normal mammary tissue and breast cancer cell lines and its regulation by epidermal growth factor. Int J Cancer. 1999, 80: 250-256. 10.1002/(SICI)1097-0215(19990118)80:2<250::AID-IJC14>3.0.CO;2-D.CrossRefPubMed
22.
go back to reference Gitelman EG, Kobrin MS, Ye J-Q, Lopez AR, Lee A, Derynck R: Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo. J Cell Biol. 1994, 126: 1595-1609. 10.1083/jcb.126.6.1595.CrossRefPubMed Gitelman EG, Kobrin MS, Ye J-Q, Lopez AR, Lee A, Derynck R: Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo. J Cell Biol. 1994, 126: 1595-1609. 10.1083/jcb.126.6.1595.CrossRefPubMed
23.
go back to reference Drozdoff V, Wall NA, Pledger WJ: Expression and growth inhibitory effect of decapentaplegic-Vg-related protein 6: evidence for a regulatory role in keratinocyte differentiation. Proc Natl Acad Sci USA. 1994, 91: 5528-5532. 10.1073/pnas.91.12.5528.CrossRefPubMedPubMedCentral Drozdoff V, Wall NA, Pledger WJ: Expression and growth inhibitory effect of decapentaplegic-Vg-related protein 6: evidence for a regulatory role in keratinocyte differentiation. Proc Natl Acad Sci USA. 1994, 91: 5528-5532. 10.1073/pnas.91.12.5528.CrossRefPubMedPubMedCentral
24.
go back to reference Kusafuka K, Yamaguchi A, Kayano T, Takemura T: Immuno-histochemicallocalization of the bone morphogenetic protein-6 insalivary pleomorphic adenomas. Pathol Int. 1999, 49: 1023-1027. 10.1046/j.1440-1827.1999.00991.x.CrossRefPubMed Kusafuka K, Yamaguchi A, Kayano T, Takemura T: Immuno-histochemicallocalization of the bone morphogenetic protein-6 insalivary pleomorphic adenomas. Pathol Int. 1999, 49: 1023-1027. 10.1046/j.1440-1827.1999.00991.x.CrossRefPubMed
25.
go back to reference Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET: Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res. 2005, 65: 8274-8285. 10.1158/0008-5472.CAN-05-1891.CrossRefPubMed Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET: Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res. 2005, 65: 8274-8285. 10.1158/0008-5472.CAN-05-1891.CrossRefPubMed
26.
go back to reference Hatakeyama S, Gao YH, Nemoto YO, Kataoka H, Satoh M: Expression of bone morphogenetic proteins of human neoplastic epithelial cells. Biochem Mol Biol Int. 1997, 42: 497-505.PubMed Hatakeyama S, Gao YH, Nemoto YO, Kataoka H, Satoh M: Expression of bone morphogenetic proteins of human neoplastic epithelial cells. Biochem Mol Biol Int. 1997, 42: 497-505.PubMed
27.
go back to reference Thomas BG, Hamdy FC: Bone morphogenetic protein-6: potential mediator of osteoblastic metastases in prostate cancer. Prostate Cancer Prostatic Dis. 2000, 3: 283-285. 10.1038/sj.pcan.4500482.CrossRefPubMed Thomas BG, Hamdy FC: Bone morphogenetic protein-6: potential mediator of osteoblastic metastases in prostate cancer. Prostate Cancer Prostatic Dis. 2000, 3: 283-285. 10.1038/sj.pcan.4500482.CrossRefPubMed
28.
go back to reference Kawabata A, Okano K, Uchida K, Yamaguchi R, Hayashi T, Tateyama S: Co-localization of chondromodulin-I (ChM-I) and bone morphogenetic protein-6 (BMP-6) in myoepithelial cells of canine mammary tumors. J Vet Med Sci. 2005, 67: 1097-1102. 10.1292/jvms.67.1097.CrossRefPubMed Kawabata A, Okano K, Uchida K, Yamaguchi R, Hayashi T, Tateyama S: Co-localization of chondromodulin-I (ChM-I) and bone morphogenetic protein-6 (BMP-6) in myoepithelial cells of canine mammary tumors. J Vet Med Sci. 2005, 67: 1097-1102. 10.1292/jvms.67.1097.CrossRefPubMed
29.
go back to reference Zhang M, Yan JD, Zhang L, Wang Q, Lu SJ, Zhang J, Zhu TH: Activation of bone morphogenetic protein-6 gene transcription in MCF-7 cells by estrogen. Chin Med J (Engl). 2005, 118: 1629-1636. Zhang M, Yan JD, Zhang L, Wang Q, Lu SJ, Zhang J, Zhu TH: Activation of bone morphogenetic protein-6 gene transcription in MCF-7 cells by estrogen. Chin Med J (Engl). 2005, 118: 1629-1636.
30.
go back to reference Fortini ME, Lai ZC, Rubin GM: The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs. Mech Dev. 1991, 34: 113-122. 10.1016/0925-4773(91)90048-B.CrossRefPubMed Fortini ME, Lai ZC, Rubin GM: The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs. Mech Dev. 1991, 34: 113-122. 10.1016/0925-4773(91)90048-B.CrossRefPubMed
31.
go back to reference Lai ZC, Rushton E, Bate M, Rubin GM: Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proc Natl Acad Sci USA. 1993, 90: 4122-4126. 10.1073/pnas.90.9.4122.CrossRefPubMedPubMedCentral Lai ZC, Rushton E, Bate M, Rubin GM: Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proc Natl Acad Sci USA. 1993, 90: 4122-4126. 10.1073/pnas.90.9.4122.CrossRefPubMedPubMedCentral
32.
go back to reference Funahashi J, Kamachi Y, Goto K, Kondoh H: Identification of nuclear factor delta EF1 and its binding site essential for lens-specific activity of the delta 1-crystallin enhancer. Nucleic Acids Res. 1991, 19: 3543-3547. 10.1093/nar/19.13.3543.CrossRefPubMedPubMedCentral Funahashi J, Kamachi Y, Goto K, Kondoh H: Identification of nuclear factor delta EF1 and its binding site essential for lens-specific activity of the delta 1-crystallin enhancer. Nucleic Acids Res. 1991, 19: 3543-3547. 10.1093/nar/19.13.3543.CrossRefPubMedPubMedCentral
33.
go back to reference Franklin AJ, Jetton TL, Shelton KD, Magnuson MA: BZP, a novel serum-responsive zinc finger protein that inhibits gene transcription. Mol Cell Biol. 1994, 14: 6773-6788.CrossRefPubMedPubMedCentral Franklin AJ, Jetton TL, Shelton KD, Magnuson MA: BZP, a novel serum-responsive zinc finger protein that inhibits gene transcription. Mol Cell Biol. 1994, 14: 6773-6788.CrossRefPubMedPubMedCentral
34.
go back to reference Kamachi Y, Kondoh H: Overlapping positive and negative regulatory elements determine lens-specific activity of the delta1-crystallin enhancer. Mol Cell Biol. 1993, 13: 5206-5215.CrossRefPubMedPubMedCentral Kamachi Y, Kondoh H: Overlapping positive and negative regulatory elements determine lens-specific activity of the delta1-crystallin enhancer. Mol Cell Biol. 1993, 13: 5206-5215.CrossRefPubMedPubMedCentral
35.
go back to reference Sekido R, Murai K, Kamachi Y, Kondoh H: Two mechanisms in the action of repressor deltaEF1: binding site competition with an activator and active repression. Genes Cells. 1997, 2: 771-783. 10.1046/j.1365-2443.1997.1570355.x.CrossRefPubMed Sekido R, Murai K, Kamachi Y, Kondoh H: Two mechanisms in the action of repressor deltaEF1: binding site competition with an activator and active repression. Genes Cells. 1997, 2: 771-783. 10.1046/j.1365-2443.1997.1570355.x.CrossRefPubMed
36.
go back to reference Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005, 24: 2375-2385. 10.1038/sj.onc.1208429.CrossRefPubMed Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005, 24: 2375-2385. 10.1038/sj.onc.1208429.CrossRefPubMed
37.
go back to reference Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, de Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002, 277 (42): 39209-39216. 10.1074/jbc.M206400200.CrossRefPubMed Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, de Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002, 277 (42): 39209-39216. 10.1074/jbc.M206400200.CrossRefPubMed
38.
go back to reference Ohira T, Gemmill RM, Ferguson K, Kusy S, Roche J, Brambilla E, Zeng C, Baron A, Bemis L, Erickson P, Wilder E, Rustgi A, Kitajewski J, Gabrielson E, Bremnes R, Franklin W, Drabkin HA: WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA. 2003, 100: 10429-10434. 10.1073/pnas.1734137100.CrossRefPubMedPubMedCentral Ohira T, Gemmill RM, Ferguson K, Kusy S, Roche J, Brambilla E, Zeng C, Baron A, Bemis L, Erickson P, Wilder E, Rustgi A, Kitajewski J, Gabrielson E, Bremnes R, Franklin W, Drabkin HA: WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA. 2003, 100: 10429-10434. 10.1073/pnas.1734137100.CrossRefPubMedPubMedCentral
39.
go back to reference Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2: 442-454. 10.1038/nrc822.CrossRefPubMed Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2: 442-454. 10.1038/nrc822.CrossRefPubMed
40.
go back to reference Dillner NB, Sanders MM: The zinc finger/homeodomain protein δEF1 mediates estrogen-specific induction of the ovalbumin gene. Mol Cell Endocrinol. 2002, 192: 85-91. 10.1016/S0303-7207(02)00088-6.CrossRefPubMed Dillner NB, Sanders MM: The zinc finger/homeodomain protein δEF1 mediates estrogen-specific induction of the ovalbumin gene. Mol Cell Endocrinol. 2002, 192: 85-91. 10.1016/S0303-7207(02)00088-6.CrossRefPubMed
41.
go back to reference Dillner NB, Sanders MM: Transcriptional activation by the zinc-finger homeodomain protein δEF1 in estrogen signaling cascades. DNA Cell Biol. 2004, 23: 25-34. 10.1089/104454904322745907.CrossRefPubMed Dillner NB, Sanders MM: Transcriptional activation by the zinc-finger homeodomain protein δEF1 in estrogen signaling cascades. DNA Cell Biol. 2004, 23: 25-34. 10.1089/104454904322745907.CrossRefPubMed
42.
go back to reference Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB: Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2001, 277: 5209-5218. 10.1074/jbc.M110090200.CrossRefPubMed Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB: Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2001, 277: 5209-5218. 10.1074/jbc.M110090200.CrossRefPubMed
43.
44.
go back to reference Lacroix M, Leclercq G: Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004, 83: 249-289. 10.1023/B:BREA.0000014042.54925.cc.CrossRefPubMed Lacroix M, Leclercq G: Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004, 83: 249-289. 10.1023/B:BREA.0000014042.54925.cc.CrossRefPubMed
45.
go back to reference Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A: A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat. 2006, 103: 239-46. 10.1007/s10549-006-9362-1.CrossRefPubMed Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A: A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat. 2006, 103: 239-46. 10.1007/s10549-006-9362-1.CrossRefPubMed
46.
go back to reference Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A: Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chromosomes Cancer. 2006, 45: 411-419. 10.1002/gcc.20307.CrossRefPubMed Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A: Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chromosomes Cancer. 2006, 45: 411-419. 10.1002/gcc.20307.CrossRefPubMed
47.
go back to reference Montesano R: Bone morphogenetic protein-4 abrogates lumen formation by mammary epithelial cells and promotes invasive growth. Biochem Biophys Res Commun. 2007, 353: 817-822. 10.1016/j.bbrc.2006.12.109.CrossRefPubMed Montesano R: Bone morphogenetic protein-4 abrogates lumen formation by mammary epithelial cells and promotes invasive growth. Biochem Biophys Res Commun. 2007, 353: 817-822. 10.1016/j.bbrc.2006.12.109.CrossRefPubMed
48.
go back to reference Zhang M, Wang Q, Yuan W, Yang S, Wang X, Du J, Yan JD, Zhu TH: Epigenetic Regulation of Bone morphogenetic protein-6 Gene Expression in breast cancer cells. J Steroid Biochem. 2007, 105: 91-97. 10.1016/j.jsbmb.2007.01.002.CrossRef Zhang M, Wang Q, Yuan W, Yang S, Wang X, Du J, Yan JD, Zhu TH: Epigenetic Regulation of Bone morphogenetic protein-6 Gene Expression in breast cancer cells. J Steroid Biochem. 2007, 105: 91-97. 10.1016/j.jsbmb.2007.01.002.CrossRef
49.
go back to reference Kim IY, Lee DH, Lee DK, Kim BC, Kim HT, Leach FS, Linehan WM, Morton RA, Kim SJ: Decreased expression of bone morphogenetic protein (BMP) receptor type II correlates with insensitivity to BMP-6 in human renal cell carcinoma cells. Clin Cancer Res. 2003, 9: 6046-6051.PubMed Kim IY, Lee DH, Lee DK, Kim BC, Kim HT, Leach FS, Linehan WM, Morton RA, Kim SJ: Decreased expression of bone morphogenetic protein (BMP) receptor type II correlates with insensitivity to BMP-6 in human renal cell carcinoma cells. Clin Cancer Res. 2003, 9: 6046-6051.PubMed
50.
go back to reference Raida M, Sarbia M, Clement JH, Adam S, Gabbert HE, Hoffken K: Expression, regulation and clinical significance of bone morphogenetic protein 6 in esophageal squamous-cell carcinoma. Int J Cancer. 1999, 83: 38-44. 10.1002/(SICI)1097-0215(19990924)83:1<38::AID-IJC8>3.0.CO;2-B.CrossRefPubMed Raida M, Sarbia M, Clement JH, Adam S, Gabbert HE, Hoffken K: Expression, regulation and clinical significance of bone morphogenetic protein 6 in esophageal squamous-cell carcinoma. Int J Cancer. 1999, 83: 38-44. 10.1002/(SICI)1097-0215(19990924)83:1<38::AID-IJC8>3.0.CO;2-B.CrossRefPubMed
51.
go back to reference Sulzbacher I, Birner P, Trieb K, Pichlbauer E, Lang S: The expression of bone morphogenetic proteins in osteosarcoma and its relevance as a prognostic parameter. J Clin Pathol. 2002, 55: 381-385.CrossRefPubMedPubMedCentral Sulzbacher I, Birner P, Trieb K, Pichlbauer E, Lang S: The expression of bone morphogenetic proteins in osteosarcoma and its relevance as a prognostic parameter. J Clin Pathol. 2002, 55: 381-385.CrossRefPubMedPubMedCentral
52.
go back to reference Knudsen KA, Wheelock MJ: Cadherins and the mammary gland. J Cell Biochem. 2005, 95: 488-496. 10.1002/jcb.20419.CrossRefPubMed Knudsen KA, Wheelock MJ: Cadherins and the mammary gland. J Cell Biochem. 2005, 95: 488-496. 10.1002/jcb.20419.CrossRefPubMed
53.
go back to reference Mielnicki LM, Asch HL, Asch BB: Genes, chromatin, and breast cancer: An epigenetic tale. J Mammary Gland Biol Neoplasis. 2001, 6: 169-182. 10.1023/A:1011356623442.CrossRef Mielnicki LM, Asch HL, Asch BB: Genes, chromatin, and breast cancer: An epigenetic tale. J Mammary Gland Biol Neoplasis. 2001, 6: 169-182. 10.1023/A:1011356623442.CrossRef
54.
go back to reference van Grunsven LA, Schellens A, Huylebroeck D, Verschueren K: SIP1 (Smad interacting protein 1) and deltaEF1 (delta-crystallin enhancer binding factor) are structurally similar transcriptional repressors. J Bone Joint Surg Am. 2001, 83-A (Suppl 1): S40-S47.PubMed van Grunsven LA, Schellens A, Huylebroeck D, Verschueren K: SIP1 (Smad interacting protein 1) and deltaEF1 (delta-crystallin enhancer binding factor) are structurally similar transcriptional repressors. J Bone Joint Surg Am. 2001, 83-A (Suppl 1): S40-S47.PubMed
55.
go back to reference Yang S, Zhao L, Yang JH, Chai DG, Zhang M, Zhang J, Ji XH, Zhu TH: DeltaEF1 represses BMP-2-induced osteoblast differentiation of C2C12 cells. J Biomed Sci. 2007, 14: 663-679. 10.1007/s11373-007-9155-5.CrossRefPubMed Yang S, Zhao L, Yang JH, Chai DG, Zhang M, Zhang J, Ji XH, Zhu TH: DeltaEF1 represses BMP-2-induced osteoblast differentiation of C2C12 cells. J Biomed Sci. 2007, 14: 663-679. 10.1007/s11373-007-9155-5.CrossRefPubMed
56.
go back to reference Platet N, Cathiard AM, Gleizes M, Garcia M: Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol. 2004, 51: 55-67. 10.1016/j.critrevonc.2004.02.001.CrossRefPubMed Platet N, Cathiard AM, Gleizes M, Garcia M: Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol. 2004, 51: 55-67. 10.1016/j.critrevonc.2004.02.001.CrossRefPubMed
57.
go back to reference Fearon ER: Connecting estrogen receptor function, transcriptional repression, and E-cadherin expression in breast cancer. Cancer Cell. 2003, 3: 307-10. 10.1016/S1535-6108(03)00087-4.CrossRefPubMed Fearon ER: Connecting estrogen receptor function, transcriptional repression, and E-cadherin expression in breast cancer. Cancer Cell. 2003, 3: 307-10. 10.1016/S1535-6108(03)00087-4.CrossRefPubMed
Metadata
Title
BMP-6 promotes E-cadherin expression through repressing δEF1 in breast cancer cells
Authors
Shuang Yang
Jun Du
Zhaoqi Wang
Wei Yuan
Yuhuan Qiao
Ming Zhang
Jie Zhang
Songyuan Gao
Jian Yin
Baocun Sun
Tianhui Zhu
Publication date
01-12-2007
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2007
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-7-211

Other articles of this Issue 1/2007

BMC Cancer 1/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine