Skip to main content
Top
Published in: BMC Cancer 1/2006

Open Access 01-12-2006 | Research article

Targeting of mutant hogg1in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress

Authors: Aditi Chatterjee, Elizabeth Mambo, Yonggang Zhang, Theodore DeWeese, David Sidransky

Published in: BMC Cancer | Issue 1/2006

Login to get access

Abstract

Background

Oxidative damage to mitochondrial DNA has been implicated as a causative factor in a wide variety of degenerative diseases, aging and cancer. The modified guanine, 7,8-dihydro-8-oxoguanine (also known as 8-hydroxyguanine) is one of the major oxidized bases generated in DNA by reactive oxygen species and has gained most of the attention in recent years as a marker of oxidative DNA injury and its suspected role in the initiation of carcinogenesis. 8-hydroxyguanine is removed by hOgg1, a DNA glycosylase/AP lyase involved in the base excision repair pathway.

Methods

We over-expressed wild type and R229Q mutant hOGG1 in the nucleus and mitochondria of cells lacking mitochondrial hOGG1 expression through an expression vector containing nuclear and mitochondrial targeting sequence respectively. We used quantitative real time PCR to analyze mtDNA integrity after exposure to oxidative damaging agents, in cells transfected with or without mitochondrially-targeted mutant hogg1.

Result

Over-expression of wild type hOgg1 in both nucleus and mitochondria resulted in increased cellular survival when compared to vector or mutant over-expression of hOGG1. Interestingly, mitochondrially-targeted mutant hogg1 resulted in more cell death than nuclear targeted mutant hogg1 upon exposure of cells to oxidative damage. Additional we examined mitochondrial DNA integrity after oxidative damage exposure using real-time quantitative PCR. The presence of mutant hogg1 in the mitochondria resulted in reduced mitochondrial DNA integrity when compared to the wild type. Our work indicates that the R229Q hOGG1 mutation failed to protect cells from oxidative damage and that such mutations in cancer may be more detrimental to cellular survival when present in the mitochondria than in the nucleus.

Conclusion

These findings suggest that deficiencies in hOGG1, especially in the mitochondria may lead to reduced mitochondrial DNA integrity, consequently resulting in decreased cell viability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wallace DC, Lott MT, Shoffner JM, Ballinger S: Mitochondrial DNA mutations in epilepsy and neurological disease. Epilepsia. 1994, 35 Suppl 1: S43-50.CrossRefPubMed Wallace DC, Lott MT, Shoffner JM, Ballinger S: Mitochondrial DNA mutations in epilepsy and neurological disease. Epilepsia. 1994, 35 Suppl 1: S43-50.CrossRefPubMed
2.
go back to reference Wallace DC: Mouse models for mitochondrial disease. Am J Med Genet. 2001, 106 (1): 71-93. 10.1002/ajmg.1393.CrossRefPubMed Wallace DC: Mouse models for mitochondrial disease. Am J Med Genet. 2001, 106 (1): 71-93. 10.1002/ajmg.1393.CrossRefPubMed
3.
go back to reference Orth M, Schapira AH: Mitochondria and degenerative disorders. Am J Med Genet. 2001, 106 (1): 27-36. 10.1002/ajmg.1425.CrossRefPubMed Orth M, Schapira AH: Mitochondria and degenerative disorders. Am J Med Genet. 2001, 106 (1): 27-36. 10.1002/ajmg.1425.CrossRefPubMed
4.
go back to reference DiMauro S, Schon EA: Mitochondrial DNA mutations in human disease. Am J Med Genet. 2001, 106 (1): 18-26. 10.1002/ajmg.1392.CrossRefPubMed DiMauro S, Schon EA: Mitochondrial DNA mutations in human disease. Am J Med Genet. 2001, 106 (1): 18-26. 10.1002/ajmg.1392.CrossRefPubMed
5.
go back to reference Lightowlers RN, Chinnery PF, Turnbull DM, Howell N: Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. 1997, 13 (11): 450-455. 10.1016/S0168-9525(97)01266-3.CrossRefPubMed Lightowlers RN, Chinnery PF, Turnbull DM, Howell N: Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. 1997, 13 (11): 450-455. 10.1016/S0168-9525(97)01266-3.CrossRefPubMed
6.
go back to reference Beal MF: Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol. 1996, 6 (5): 661-666. 10.1016/S0959-4388(96)80100-0.CrossRefPubMed Beal MF: Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol. 1996, 6 (5): 661-666. 10.1016/S0959-4388(96)80100-0.CrossRefPubMed
7.
go back to reference Croteau DL, Bohr VA: Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem. 1997, 272 (41): 25409-25412. 10.1074/jbc.272.41.25409.CrossRefPubMed Croteau DL, Bohr VA: Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem. 1997, 272 (41): 25409-25412. 10.1074/jbc.272.41.25409.CrossRefPubMed
8.
go back to reference Cadet J, Berger M, Douki T, Ravanat JL: Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol. 1997, 131: 1-87.PubMed Cadet J, Berger M, Douki T, Ravanat JL: Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol. 1997, 131: 1-87.PubMed
9.
go back to reference Dizdaroglu M: Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med. 1991, 10 (3-4): 225-242. 10.1016/0891-5849(91)90080-M.CrossRefPubMed Dizdaroglu M: Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med. 1991, 10 (3-4): 225-242. 10.1016/0891-5849(91)90080-M.CrossRefPubMed
10.
go back to reference Grollman AP, Moriya M: Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993, 9 (7): 246-249. 10.1016/0168-9525(93)90089-Z.CrossRefPubMed Grollman AP, Moriya M: Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993, 9 (7): 246-249. 10.1016/0168-9525(93)90089-Z.CrossRefPubMed
11.
go back to reference Boiteux S, Radicella JP: Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie. 1999, 81 (1-2): 59-67. 10.1016/S0300-9084(99)80039-X.CrossRefPubMed Boiteux S, Radicella JP: Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie. 1999, 81 (1-2): 59-67. 10.1016/S0300-9084(99)80039-X.CrossRefPubMed
12.
go back to reference Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA: 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem. 1992, 267 (1): 166-172.PubMed Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA: 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem. 1992, 267 (1): 166-172.PubMed
13.
go back to reference Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP: Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res. 1991, 254 (3): 281-288.CrossRefPubMed Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP: Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res. 1991, 254 (3): 281-288.CrossRefPubMed
14.
go back to reference Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM: Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990, 29 (30): 7024-7032. 10.1021/bi00482a011.CrossRefPubMed Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM: Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990, 29 (30): 7024-7032. 10.1021/bi00482a011.CrossRefPubMed
15.
go back to reference Michaels ML, Miller JH: The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol. 1992, 174 (20): 6321-6325.PubMedPubMedCentral Michaels ML, Miller JH: The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol. 1992, 174 (20): 6321-6325.PubMedPubMedCentral
16.
go back to reference van der Kemp PA, Thomas D, Barbey R, de Oliveira R, Boiteux S: Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc Natl Acad Sci U S A. 1996, 93 (11): 5197-5202. 10.1073/pnas.93.11.5197.CrossRefPubMedPubMedCentral van der Kemp PA, Thomas D, Barbey R, de Oliveira R, Boiteux S: Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc Natl Acad Sci U S A. 1996, 93 (11): 5197-5202. 10.1073/pnas.93.11.5197.CrossRefPubMedPubMedCentral
17.
go back to reference Nash HM, Bruner SD, Scharer OD, Kawate T, Addona TA, Spooner E, Lane WS, Verdine GL: Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol. 1996, 6 (8): 968-980. 10.1016/S0960-9822(02)00641-3.CrossRefPubMed Nash HM, Bruner SD, Scharer OD, Kawate T, Addona TA, Spooner E, Lane WS, Verdine GL: Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol. 1996, 6 (8): 968-980. 10.1016/S0960-9822(02)00641-3.CrossRefPubMed
18.
go back to reference Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S: Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997, 94 (15): 8010-8015. 10.1073/pnas.94.15.8010.CrossRefPubMedPubMedCentral Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S: Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997, 94 (15): 8010-8015. 10.1073/pnas.94.15.8010.CrossRefPubMedPubMedCentral
19.
go back to reference Rosenquist TA, Zharkov DO, Grollman AP: Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci U S A. 1997, 94 (14): 7429-7434. 10.1073/pnas.94.14.7429.CrossRefPubMedPubMedCentral Rosenquist TA, Zharkov DO, Grollman AP: Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci U S A. 1997, 94 (14): 7429-7434. 10.1073/pnas.94.14.7429.CrossRefPubMedPubMedCentral
20.
go back to reference Arai K, Morishita K, Shinmura K, Kohno T, Kim SR, Nohmi T, Taniwaki M, Ohwada S, Yokota J: Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997, 14 (23): 2857-2861. 10.1038/sj.onc.1201139.CrossRefPubMed Arai K, Morishita K, Shinmura K, Kohno T, Kim SR, Nohmi T, Taniwaki M, Ohwada S, Yokota J: Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997, 14 (23): 2857-2861. 10.1038/sj.onc.1201139.CrossRefPubMed
21.
go back to reference Aburatani H, Hippo Y, Ishida T, Takashima R, Matsuba C, Kodama T, Takao M, Yasui A, Yamamoto K, Asano M: Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 1997, 57 (11): 2151-2156.PubMed Aburatani H, Hippo Y, Ishida T, Takashima R, Matsuba C, Kodama T, Takao M, Yasui A, Yamamoto K, Asano M: Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res. 1997, 57 (11): 2151-2156.PubMed
22.
go back to reference Takao M, Aburatani H, Kobayashi K, Yasui A: Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res. 1998, 26 (12): 2917-2922. 10.1093/nar/26.12.2917.CrossRefPubMedPubMedCentral Takao M, Aburatani H, Kobayashi K, Yasui A: Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res. 1998, 26 (12): 2917-2922. 10.1093/nar/26.12.2917.CrossRefPubMedPubMedCentral
23.
go back to reference Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y: Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Biol Cell. 1999, 10 (5): 1637-1652.CrossRefPubMedPubMedCentral Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y: Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Biol Cell. 1999, 10 (5): 1637-1652.CrossRefPubMedPubMedCentral
24.
go back to reference Thomas D, Scot AD, Barbey R, Padula M, Boiteux S: Inactivation of OGG1 increases the incidence of G . C-->T . A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol Gen Genet. 1997, 254 (2): 171-178. 10.1007/s004380050405.CrossRefPubMed Thomas D, Scot AD, Barbey R, Padula M, Boiteux S: Inactivation of OGG1 increases the incidence of G . C-->T . A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol Gen Genet. 1997, 254 (2): 171-178. 10.1007/s004380050405.CrossRefPubMed
25.
go back to reference Ni TT, Marsischky GT, Kolodner RD: MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol Cell. 1999, 4 (3): 439-444. 10.1016/S1097-2765(00)80346-9.CrossRefPubMed Ni TT, Marsischky GT, Kolodner RD: MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol Cell. 1999, 4 (3): 439-444. 10.1016/S1097-2765(00)80346-9.CrossRefPubMed
26.
go back to reference Moriya M, Grollman AP: Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C-->T:a transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet. 1993, 239 (1-2): 72-76.PubMed Moriya M, Grollman AP: Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C-->T:a transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet. 1993, 239 (1-2): 72-76.PubMed
27.
go back to reference Le Page F, Margot A, Grollman AP, Sarasin A, Gentil A: Mutagenicity of a unique 8-oxoguanine in a human Ha-ras sequence in mammalian cells. Carcinogenesis. 1995, 16 (11): 2779-2784.CrossRefPubMed Le Page F, Margot A, Grollman AP, Sarasin A, Gentil A: Mutagenicity of a unique 8-oxoguanine in a human Ha-ras sequence in mammalian cells. Carcinogenesis. 1995, 16 (11): 2779-2784.CrossRefPubMed
28.
go back to reference Singh KK, Sigala B, Sikder HA, Schwimmer C: Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res. 2001, 29 (6): 1381-1388. 10.1093/nar/29.6.1381.CrossRefPubMedPubMedCentral Singh KK, Sigala B, Sikder HA, Schwimmer C: Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res. 2001, 29 (6): 1381-1388. 10.1093/nar/29.6.1381.CrossRefPubMedPubMedCentral
29.
go back to reference Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL: Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem. 2000, 275 (48): 37518-37523. 10.1074/jbc.M000831200.CrossRefPubMed Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL: Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem. 2000, 275 (48): 37518-37523. 10.1074/jbc.M000831200.CrossRefPubMed
30.
go back to reference Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL: Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem. 2002, 277 (47): 44932-44937. 10.1074/jbc.M208770200.CrossRefPubMed Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL: Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem. 2002, 277 (47): 44932-44937. 10.1074/jbc.M208770200.CrossRefPubMed
31.
go back to reference Audebert M, Radicella JP, Dizdaroglu M: Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res. 2000, 28 (14): 2672-2678. 10.1093/nar/28.14.2672.CrossRefPubMedPubMedCentral Audebert M, Radicella JP, Dizdaroglu M: Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res. 2000, 28 (14): 2672-2678. 10.1093/nar/28.14.2672.CrossRefPubMedPubMedCentral
32.
go back to reference Chevillard S, Radicella JP, Levalois C, Lebeau J, Poupon MF, Oudard S, Dutrillaux B, Boiteux S: Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene. 1998, 16 (23): 3083-3086. 10.1038/sj.onc.1202096.CrossRefPubMed Chevillard S, Radicella JP, Levalois C, Lebeau J, Poupon MF, Oudard S, Dutrillaux B, Boiteux S: Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene. 1998, 16 (23): 3083-3086. 10.1038/sj.onc.1202096.CrossRefPubMed
33.
go back to reference Hyun JW, Choi JY, Zeng HH, Lee YS, Kim HS, Yoon SH, Chung MH: Leukemic cell line, KG-1 has a functional loss of hOGG1 enzyme due to a point mutation and 8-hydroxydeoxyguanosine can kill KG-1. Oncogene. 2000, 19 (39): 4476-4479. 10.1038/sj.onc.1203787.CrossRefPubMed Hyun JW, Choi JY, Zeng HH, Lee YS, Kim HS, Yoon SH, Chung MH: Leukemic cell line, KG-1 has a functional loss of hOGG1 enzyme due to a point mutation and 8-hydroxydeoxyguanosine can kill KG-1. Oncogene. 2000, 19 (39): 4476-4479. 10.1038/sj.onc.1203787.CrossRefPubMed
34.
go back to reference Donnelly ET, McClure N, Lewis SE: The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999, 14 (5): 505-512. 10.1093/mutage/14.5.505.CrossRefPubMed Donnelly ET, McClure N, Lewis SE: The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999, 14 (5): 505-512. 10.1093/mutage/14.5.505.CrossRefPubMed
35.
go back to reference Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W: A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod. 1996, 2 (8): 613-619.CrossRefPubMed Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W: A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod. 1996, 2 (8): 613-619.CrossRefPubMed
36.
go back to reference Thomas DC, Morton AG, Bohr VA, Sancar A: General method for quantifying base adducts in specific mammalian genes. Proc Natl Acad Sci U S A. 1988, 85 (11): 3723-3727. 10.1073/pnas.85.11.3723.CrossRefPubMedPubMedCentral Thomas DC, Morton AG, Bohr VA, Sancar A: General method for quantifying base adducts in specific mammalian genes. Proc Natl Acad Sci U S A. 1988, 85 (11): 3723-3727. 10.1073/pnas.85.11.3723.CrossRefPubMedPubMedCentral
37.
go back to reference Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D: Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci U S A. 2003, 100 (4): 1838-1843. 10.1073/pnas.0437910100.CrossRefPubMedPubMedCentral Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D: Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci U S A. 2003, 100 (4): 1838-1843. 10.1073/pnas.0437910100.CrossRefPubMedPubMedCentral
38.
go back to reference Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B: Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods. 2000, 22 (2): 135-147. 10.1006/meth.2000.1054.CrossRefPubMed Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B: Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods. 2000, 22 (2): 135-147. 10.1006/meth.2000.1054.CrossRefPubMed
39.
go back to reference Yakes FM, Van Houten B: Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997, 94 (2): 514-519. 10.1073/pnas.94.2.514.CrossRefPubMedPubMedCentral Yakes FM, Van Houten B: Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997, 94 (2): 514-519. 10.1073/pnas.94.2.514.CrossRefPubMedPubMedCentral
40.
go back to reference Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR: Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988, 48 (3): 589-601.PubMed Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR: Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988, 48 (3): 589-601.PubMed
41.
go back to reference Santos JH, Meyer JN, Mandavilli BS, Van Houten B: Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol. 2006, 314: 183-199.CrossRefPubMed Santos JH, Meyer JN, Mandavilli BS, Van Houten B: Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol. 2006, 314: 183-199.CrossRefPubMed
42.
go back to reference Ames BN, Shigenaga MK, Hagen TM: Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993, 90 (17): 7915-7922. 10.1073/pnas.90.17.7915.CrossRefPubMedPubMedCentral Ames BN, Shigenaga MK, Hagen TM: Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993, 90 (17): 7915-7922. 10.1073/pnas.90.17.7915.CrossRefPubMedPubMedCentral
43.
go back to reference Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D: Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000, 287 (5460): 2017-2019. 10.1126/science.287.5460.2017.CrossRefPubMed Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D: Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000, 287 (5460): 2017-2019. 10.1126/science.287.5460.2017.CrossRefPubMed
44.
go back to reference Malins DC, Holmes EH, Polissar NL, Gunselman SJ: The etiology of breast cancer. Characteristic alteration in hydroxyl radical-induced DNA base lesions during oncogenesis with potential for evaluating incidence risk. Cancer. 1993, 71 (10): 3036-3043. 10.1002/1097-0142(19930515)71:10<3036::AID-CNCR2820711025>3.0.CO;2-P.CrossRefPubMed Malins DC, Holmes EH, Polissar NL, Gunselman SJ: The etiology of breast cancer. Characteristic alteration in hydroxyl radical-induced DNA base lesions during oncogenesis with potential for evaluating incidence risk. Cancer. 1993, 71 (10): 3036-3043. 10.1002/1097-0142(19930515)71:10<3036::AID-CNCR2820711025>3.0.CO;2-P.CrossRefPubMed
45.
go back to reference Audebert M, Chevillard S, Levalois C, Gyapay G, Vieillefond A, Klijanienko J, Vielh P, El Naggar AK, Oudard S, Boiteux S, Radicella JP: Alterations of the DNA repair gene OGG1 in human clear cell carcinomas of the kidney. Cancer Res. 2000, 60 (17): 4740-4744.PubMed Audebert M, Chevillard S, Levalois C, Gyapay G, Vieillefond A, Klijanienko J, Vielh P, El Naggar AK, Oudard S, Boiteux S, Radicella JP: Alterations of the DNA repair gene OGG1 in human clear cell carcinomas of the kidney. Cancer Res. 2000, 60 (17): 4740-4744.PubMed
46.
go back to reference Jaruga P, Dizdaroglu M: Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res. 1996, 24 (8): 1389-1394. 10.1093/nar/24.8.1389.CrossRefPubMedPubMedCentral Jaruga P, Dizdaroglu M: Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res. 1996, 24 (8): 1389-1394. 10.1093/nar/24.8.1389.CrossRefPubMedPubMedCentral
47.
go back to reference Peng T, Shen HM, Liu ZM, Yan LN, Peng MH, Li LQ, Liang RX, Wei ZL, Halliwell B, Ong CN: Oxidative DNA damage in peripheral leukocytes and its association with expression and polymorphisms of hOGG1: a study of adolescents in a high risk region for hepatocellular carcinoma in China. World J Gastroenterol. 2003, 9 (10): 2186-2193.CrossRefPubMedPubMedCentral Peng T, Shen HM, Liu ZM, Yan LN, Peng MH, Li LQ, Liang RX, Wei ZL, Halliwell B, Ong CN: Oxidative DNA damage in peripheral leukocytes and its association with expression and polymorphisms of hOGG1: a study of adolescents in a high risk region for hepatocellular carcinoma in China. World J Gastroenterol. 2003, 9 (10): 2186-2193.CrossRefPubMedPubMedCentral
48.
go back to reference Shimoda R, Nagashima M, Sakamoto M, Yamaguchi N, Hirohashi S, Yokota J, Kasai H: Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res. 1994, 54 (12): 3171-3172.PubMed Shimoda R, Nagashima M, Sakamoto M, Yamaguchi N, Hirohashi S, Yokota J, Kasai H: Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res. 1994, 54 (12): 3171-3172.PubMed
49.
go back to reference Tokiwa H, Sera N, Nakanishi Y, Sagai M: 8-Hydroxyguanosine formed in human lung tissues and the association with diesel exhaust particles. Free Radic Biol Med. 1999, 27 (11-12): 1251-1258. 10.1016/S0891-5849(99)00156-2.CrossRefPubMed Tokiwa H, Sera N, Nakanishi Y, Sagai M: 8-Hydroxyguanosine formed in human lung tissues and the association with diesel exhaust particles. Free Radic Biol Med. 1999, 27 (11-12): 1251-1258. 10.1016/S0891-5849(99)00156-2.CrossRefPubMed
50.
go back to reference Nowak S, Zukiel R, Olsen A, Siboska G, Gawronska I, Barciszewski J: [8-oxoguanosine as a marker of neoplastic process in brain]. Neurol Neurochir Pol. 1999, 33 (6): 1339-1348.PubMed Nowak S, Zukiel R, Olsen A, Siboska G, Gawronska I, Barciszewski J: [8-oxoguanosine as a marker of neoplastic process in brain]. Neurol Neurochir Pol. 1999, 33 (6): 1339-1348.PubMed
51.
go back to reference Gu Y, Desai T, Gutierrez PL, Lu AL: Alteration of DNA base excision repair enzymes hMYH and hOGG1 in hydrogen peroxide resistant transformed human breast cells. Med Sci Monit. 2001, 7 (5): 861-868.PubMed Gu Y, Desai T, Gutierrez PL, Lu AL: Alteration of DNA base excision repair enzymes hMYH and hOGG1 in hydrogen peroxide resistant transformed human breast cells. Med Sci Monit. 2001, 7 (5): 861-868.PubMed
52.
go back to reference Mambo E, Chatterjee A, de Souza-Pinto NC, Mayard S, Hogue BA, Hoque MO, Dizdaroglu M, Bohr VA, Sidransky D: Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene. 2005, 24 (28): 4496-4508. 10.1038/sj.onc.1208669.CrossRefPubMed Mambo E, Chatterjee A, de Souza-Pinto NC, Mayard S, Hogue BA, Hoque MO, Dizdaroglu M, Bohr VA, Sidransky D: Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene. 2005, 24 (28): 4496-4508. 10.1038/sj.onc.1208669.CrossRefPubMed
53.
go back to reference Osterod M, Hollenbach S, Hengstler JG, Barnes DE, Lindahl T, Epe B: Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis. 2001, 22 (9): 1459-1463. 10.1093/carcin/22.9.1459.CrossRefPubMed Osterod M, Hollenbach S, Hengstler JG, Barnes DE, Lindahl T, Epe B: Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis. 2001, 22 (9): 1459-1463. 10.1093/carcin/22.9.1459.CrossRefPubMed
54.
go back to reference Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T, Sekiguchi M, Nakabeppu Y: Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res. 2003, 63 (5): 902-905.PubMed Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T, Sekiguchi M, Nakabeppu Y: Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res. 2003, 63 (5): 902-905.PubMed
55.
go back to reference Winkle SA, Tinoco IJ: Interactions of 4-nitroquinoline 1-oxide with deoxyribodinucleotides. Biochemistry. 1979, 18 (18): 3833-3839. 10.1021/bi00585a001.CrossRefPubMed Winkle SA, Tinoco IJ: Interactions of 4-nitroquinoline 1-oxide with deoxyribodinucleotides. Biochemistry. 1979, 18 (18): 3833-3839. 10.1021/bi00585a001.CrossRefPubMed
56.
go back to reference Fortini P, Parlanti E, Sidorkina OM, Laval J, Dogliotti E: The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem. 1999, 274 (21): 15230-15236. 10.1074/jbc.274.21.15230.CrossRefPubMed Fortini P, Parlanti E, Sidorkina OM, Laval J, Dogliotti E: The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem. 1999, 274 (21): 15230-15236. 10.1074/jbc.274.21.15230.CrossRefPubMed
57.
go back to reference Lu R, Nash HM, Verdine GL: A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr Biol. 1997, 7 (6): 397-407. 10.1016/S0960-9822(06)00187-4.CrossRefPubMed Lu R, Nash HM, Verdine GL: A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr Biol. 1997, 7 (6): 397-407. 10.1016/S0960-9822(06)00187-4.CrossRefPubMed
58.
go back to reference Sawyer DE, Mercer BG, Wiklendt AM, Aitken RJ: Quantitative analysis of gene-specific DNA damage in human spermatozoa. Mutat Res. 2003, 529 (1-2): 21-34.CrossRefPubMed Sawyer DE, Mercer BG, Wiklendt AM, Aitken RJ: Quantitative analysis of gene-specific DNA damage in human spermatozoa. Mutat Res. 2003, 529 (1-2): 21-34.CrossRefPubMed
59.
go back to reference Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S: Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet. 2000, 25 (4): 458-461. 10.1038/78169.CrossRefPubMed Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S: Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet. 2000, 25 (4): 458-461. 10.1038/78169.CrossRefPubMed
60.
go back to reference Viswanathan A, Doetsch PW: Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance. J Biol Chem. 1998, 273 (33): 21276-21281. 10.1074/jbc.273.33.21276.CrossRefPubMed Viswanathan A, Doetsch PW: Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance. J Biol Chem. 1998, 273 (33): 21276-21281. 10.1074/jbc.273.33.21276.CrossRefPubMed
61.
go back to reference Kuraoka I, Endou M, Yamaguchi Y, Wada T, Handa H, Tanaka K: Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J Biol Chem. 2003, 278 (9): 7294-7299. 10.1074/jbc.M208102200.CrossRefPubMed Kuraoka I, Endou M, Yamaguchi Y, Wada T, Handa H, Tanaka K: Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J Biol Chem. 2003, 278 (9): 7294-7299. 10.1074/jbc.M208102200.CrossRefPubMed
Metadata
Title
Targeting of mutant hogg1in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress
Authors
Aditi Chatterjee
Elizabeth Mambo
Yonggang Zhang
Theodore DeWeese
David Sidransky
Publication date
01-12-2006
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2006
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-6-235

Other articles of this Issue 1/2006

BMC Cancer 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine