Skip to main content
Top
Published in: BMC Cancer 1/2005

Open Access 01-12-2005 | Research article

Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer

Authors: Katherine L Meyer-Siegler, Kenneth A Iczkowski, Pedro L Vera

Published in: BMC Cancer | Issue 1/2005

Login to get access

Abstract

Background

Macrophage migration inhibitory factor (MIF) is a cytokine associated with prostate cancer, based on histologic evidence and circulating (serum) levels.
Recent studies from another laboratory failed to document these results. This study's aims were to extend and confirm our previous data, as well as to define possible mechanisms for the discrepant results. Additional aims were to examine MIF expression, as well as the location of MIF's receptor, CD74, in human prostatic adenocarcinoma compared to matched benign prostate.

Methods

MIF amounts were determined in random serum samples remaining following routine PSA screening by ELISA. Native, denaturing and reducing polyacrylamide gels and Western blot analyses determined the MIF form in serum. Prostate tissue arrays were processed for MIF in situ hybridization and immunohistochemistry for MIF and CD74. MIF released into culture medium from normal epithelial, LNCaP and PC-3 cells was detected by Western blot analysis.

Results

Median serum MIF amounts were significantly elevated in prostate cancer patients (5.87 ± 3.91 ng/ml; ± interquartile range; n = 115) compared with patients with no documented diagnosis of prostate cancer (2.19 ± 2.65 ng/ml; n = 158). ELISA diluent reagents that included bovine serum albumin (BSA) significantly reduced MIF serum detection (p < 0.01). MIF mRNA was localized to prostatic epithelium in all samples, but cancer showed statistically greater MIF expression. MIF and its receptor (CD74) were localized to prostatic epithelium. Increased secreted MIF was detected in culture medium from prostate cancer cell lines (LNCaP and PC-3).

Conclusion

Increased serum MIF was associated with prostate cancer. Diluent reagents that included BSA resulted in MIF serum immunoassay interference. In addition, significant amounts of complexed MIF (180 kDa under denaturing conditions by Western blot) found in the serum do not bind to the MIF capture antibody. Increased MIF mRNA expression was observed in prostatic adenocarcinoma compared to benign tissue from matched samples, supporting our earlier finding of increased MIF gene expression in prostate cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bloom BR, Bennett B: Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966, 153: 80-82.CrossRefPubMed Bloom BR, Bennett B: Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966, 153: 80-82.CrossRefPubMed
2.
go back to reference David JR: Delayed hypersensitivity in vitro : its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A. 1966, 56: 72-77.CrossRefPubMedPubMedCentral David JR: Delayed hypersensitivity in vitro : its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A. 1966, 56: 72-77.CrossRefPubMedPubMedCentral
3.
go back to reference Baugh JA, Bucala R: Macrophage migration inhibitory factor. Crit Care Med. 2002, 30: S27-35. 10.1097/00003246-200201001-00004.CrossRef Baugh JA, Bucala R: Macrophage migration inhibitory factor. Crit Care Med. 2002, 30: S27-35. 10.1097/00003246-200201001-00004.CrossRef
4.
go back to reference Metz CN, Bucala R: Role of macrophage migration inhibitory factor in the regulation of the immune response MIF. Adv Immunol. 1997, 66: 197-123.CrossRefPubMed Metz CN, Bucala R: Role of macrophage migration inhibitory factor in the regulation of the immune response MIF. Adv Immunol. 1997, 66: 197-123.CrossRefPubMed
5.
go back to reference Kamimura A, Kamachi M, Nishihira J, Ogura S, Isobe H, Dosaka-Akita H: Intracellular distribution of macrophage migration inhibitory factor predicts the prognosis of patients with adenocarcinoma of the lung. Cancer. 2000, 89: 334-341. 10.1002/1097-0142(20000715)89:2<334::AID-CNCR18>3.0.CO;2-N.CrossRefPubMed Kamimura A, Kamachi M, Nishihira J, Ogura S, Isobe H, Dosaka-Akita H: Intracellular distribution of macrophage migration inhibitory factor predicts the prognosis of patients with adenocarcinoma of the lung. Cancer. 2000, 89: 334-341. 10.1002/1097-0142(20000715)89:2<334::AID-CNCR18>3.0.CO;2-N.CrossRefPubMed
6.
go back to reference Bini L, Magi B, Marzocchi B, Arcuri F, Tripodi S, Cintorino M: Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis. 1997, 18: 2832-2841. 10.1002/elps.1150181519.CrossRefPubMed Bini L, Magi B, Marzocchi B, Arcuri F, Tripodi S, Cintorino M: Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis. 1997, 18: 2832-2841. 10.1002/elps.1150181519.CrossRefPubMed
7.
go back to reference Meyer-Siegler K, Hudson PB: Enhanced expression of macrophage migration inhibitory factor in prostatic adenocarcinoma metastases. Urology. 1996, 48: 448-452. 10.1016/S0090-4295(96)00207-5.CrossRefPubMed Meyer-Siegler K, Hudson PB: Enhanced expression of macrophage migration inhibitory factor in prostatic adenocarcinoma metastases. Urology. 1996, 48: 448-452. 10.1016/S0090-4295(96)00207-5.CrossRefPubMed
8.
go back to reference Nishihira J: Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J Interferon Cytokine Res. 2000, 20: 751-762. 10.1089/10799900050151012.CrossRefPubMed Nishihira J: Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J Interferon Cytokine Res. 2000, 20: 751-762. 10.1089/10799900050151012.CrossRefPubMed
9.
go back to reference Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R: An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med. 1999, 5: 181-191.PubMedPubMedCentral Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R: An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med. 1999, 5: 181-191.PubMedPubMedCentral
10.
go back to reference Meyer-Siegler KL, Erica Leifheit C, Vera PL: Inhibition of Macrophage Migration Inhibitory Factor Decreases Proliferation and Cytokine Expression in Bladder Cancer Cells. BMC Cancer. 2004, 4: 34-10.1186/1471-2407-4-34.CrossRefPubMedPubMedCentral Meyer-Siegler KL, Erica Leifheit C, Vera PL: Inhibition of Macrophage Migration Inhibitory Factor Decreases Proliferation and Cytokine Expression in Bladder Cancer Cells. BMC Cancer. 2004, 4: 34-10.1186/1471-2407-4-34.CrossRefPubMedPubMedCentral
11.
go back to reference Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J: MIF signal transduction initiated by binding to CD74. J Exp Med. 2003, 197: 1467-1476. 10.1084/jem.20030286.CrossRefPubMedPubMedCentral Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J: MIF signal transduction initiated by binding to CD74. J Exp Med. 2003, 197: 1467-1476. 10.1084/jem.20030286.CrossRefPubMedPubMedCentral
12.
go back to reference Meyer-Siegler K, Fattor RA, Hudson PB: Expression of macrophage migration inhibitory factor in the human prostate. Diagn Mol Pathol. 1998, 7: 44-50. 10.1097/00019606-199802000-00008.CrossRefPubMed Meyer-Siegler K, Fattor RA, Hudson PB: Expression of macrophage migration inhibitory factor in the human prostate. Diagn Mol Pathol. 1998, 7: 44-50. 10.1097/00019606-199802000-00008.CrossRefPubMed
13.
go back to reference Meyer-Siegler KL, Bellino MA, Tannenbaum M: Macrophage migration inhibitory factor evaluation compared with prostate specific antigen as a biomarker in patients with prostate carcinoma. Cancer. 2002, 94: 1449-1456. 10.1002/cncr.10354.CrossRefPubMed Meyer-Siegler KL, Bellino MA, Tannenbaum M: Macrophage migration inhibitory factor evaluation compared with prostate specific antigen as a biomarker in patients with prostate carcinoma. Cancer. 2002, 94: 1449-1456. 10.1002/cncr.10354.CrossRefPubMed
14.
go back to reference Michael A, Stephan C, Kristiansen G, Burckhardt M, Loening SA, Schnorr D: Diagnostic validity of macrophage migration inhibitory factor in serum of patients with prostate cancer: A re-evaluation. Prostate. 2005, 62: 34-39. 10.1002/pros.20104.CrossRefPubMed Michael A, Stephan C, Kristiansen G, Burckhardt M, Loening SA, Schnorr D: Diagnostic validity of macrophage migration inhibitory factor in serum of patients with prostate cancer: A re-evaluation. Prostate. 2005, 62: 34-39. 10.1002/pros.20104.CrossRefPubMed
15.
go back to reference Meyer-Siegler KL, Vera PL: Substance P induced changes in CD74 and CD44 in the rat bladder. J Urol. 2005, 173: 615-620. 10.1097/01.ju.0000143188.02802.f3.CrossRefPubMed Meyer-Siegler KL, Vera PL: Substance P induced changes in CD74 and CD44 in the rat bladder. J Urol. 2005, 173: 615-620. 10.1097/01.ju.0000143188.02802.f3.CrossRefPubMed
16.
go back to reference Meyer-Siegler KL: Increased stability of macrophage migration inhibitory factor (MIF) in DU-145 prostate cancer cells. J Interferon Cytokine Res. 2000, 20: 769-778. 10.1089/10799900050151030.CrossRefPubMed Meyer-Siegler KL: Increased stability of macrophage migration inhibitory factor (MIF) in DU-145 prostate cancer cells. J Interferon Cytokine Res. 2000, 20: 769-778. 10.1089/10799900050151030.CrossRefPubMed
17.
go back to reference Zeng FY, Kratzin H, Gabius HJ: Migration inhibitory factor-binding sarcolectin from human placenta is indistinguishable from a subfraction of human serum albumin. Biol Chem Hoppe Seyler. 1994, 375: 393-399.CrossRefPubMed Zeng FY, Kratzin H, Gabius HJ: Migration inhibitory factor-binding sarcolectin from human placenta is indistinguishable from a subfraction of human serum albumin. Biol Chem Hoppe Seyler. 1994, 375: 393-399.CrossRefPubMed
18.
go back to reference De Marzo AM, DeWeese TL, Platz EA, Meeker AK, Nakayama M, Epstein JI: Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment. J Cell Biochem. 2004, 91: 459-477. 10.1002/jcb.10747.CrossRefPubMed De Marzo AM, DeWeese TL, Platz EA, Meeker AK, Nakayama M, Epstein JI: Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment. J Cell Biochem. 2004, 91: 459-477. 10.1002/jcb.10747.CrossRefPubMed
19.
go back to reference Karan D, Kelly DL, Rizzino A, Lin MF, Batra SK: Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis. 2002, 23: 967-975. 10.1093/carcin/23.6.967.CrossRefPubMed Karan D, Kelly DL, Rizzino A, Lin MF, Batra SK: Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells. Carcinogenesis. 2002, 23: 967-975. 10.1093/carcin/23.6.967.CrossRefPubMed
20.
go back to reference Lin JC, Chang SY, Hsieh DS, Lee CF, Yu DS: The association of Id-1, MIF and GSTpi with acquired drug resistance in hormone independent prostate cancer cells. Oncol Rep. 2005, 13: 983-988.PubMed Lin JC, Chang SY, Hsieh DS, Lee CF, Yu DS: The association of Id-1, MIF and GSTpi with acquired drug resistance in hormone independent prostate cancer cells. Oncol Rep. 2005, 13: 983-988.PubMed
22.
go back to reference Link RE, Shariat SF, Nguyen CV, Farr A, Weinberg AD, Morton RA: Variation in prostate specific antigen results from 2 different assay platforms: clinical impact on 2304 patients undergoing prostate cancer screening. J Urol. 2004, 171: 2234-2238. 10.1097/01.ju.0000127736.86597.e7.CrossRefPubMed Link RE, Shariat SF, Nguyen CV, Farr A, Weinberg AD, Morton RA: Variation in prostate specific antigen results from 2 different assay platforms: clinical impact on 2304 patients undergoing prostate cancer screening. J Urol. 2004, 171: 2234-2238. 10.1097/01.ju.0000127736.86597.e7.CrossRefPubMed
23.
go back to reference Kioukia-Fougia N, Christofidis I, Strantzalis N: Physicochemical conditions affecting the formation/stability of serum complexes and the determination of prostate-specific antigen (PSA). Anticancer Res. 1999, 19: 3315-3320.PubMed Kioukia-Fougia N, Christofidis I, Strantzalis N: Physicochemical conditions affecting the formation/stability of serum complexes and the determination of prostate-specific antigen (PSA). Anticancer Res. 1999, 19: 3315-3320.PubMed
24.
go back to reference Sun HW, Bernhagen J, Bucala R, Lolis E: Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A. 1996, 93: 5191-5196. 10.1073/pnas.93.11.5191.CrossRefPubMedPubMedCentral Sun HW, Bernhagen J, Bucala R, Lolis E: Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A. 1996, 93: 5191-5196. 10.1073/pnas.93.11.5191.CrossRefPubMedPubMedCentral
25.
go back to reference Philo JS, Yang TH, LaBarre M: Re-examining the oligomerization state of macrophage migration inhibitory factor (MIF) in solution. Biophys Chem. 2004, 108: 77-87. 10.1016/j.bpc.2003.10.010.CrossRefPubMed Philo JS, Yang TH, LaBarre M: Re-examining the oligomerization state of macrophage migration inhibitory factor (MIF) in solution. Biophys Chem. 2004, 108: 77-87. 10.1016/j.bpc.2003.10.010.CrossRefPubMed
26.
go back to reference Potolicchio I, Santambrogio L, Strominger JL: Molecular interaction and enzymatic activity of macrophage migration inhibitory factor with immunorelevant peptides. J Biol Chem. 2003, 278: 30889-30895. 10.1074/jbc.M302854200.CrossRefPubMed Potolicchio I, Santambrogio L, Strominger JL: Molecular interaction and enzymatic activity of macrophage migration inhibitory factor with immunorelevant peptides. J Biol Chem. 2003, 278: 30889-30895. 10.1074/jbc.M302854200.CrossRefPubMed
27.
go back to reference Vera PL, Iczkowski KA, Leng L, Bucala R, Meyer-Siegler KL: Macrophage migration inhibitory factor is released as a complex with α-1-inhibitor-3 in the intraluminal fluid during bladder inflammation in the rat. J Urol. 2005, 174: 338-343. 10.1097/01.ju.0000161606.15696.79.CrossRefPubMed Vera PL, Iczkowski KA, Leng L, Bucala R, Meyer-Siegler KL: Macrophage migration inhibitory factor is released as a complex with α-1-inhibitor-3 in the intraluminal fluid during bladder inflammation in the rat. J Urol. 2005, 174: 338-343. 10.1097/01.ju.0000161606.15696.79.CrossRefPubMed
28.
go back to reference Wassler M, Esnard F, Fries E: Posttranslational folding of alpha 1-inhibitor 3. Evidence for a compaction process. J Biol Chem. 1995, 270: 24598-24603. 10.1074/jbc.270.41.24598.CrossRefPubMed Wassler M, Esnard F, Fries E: Posttranslational folding of alpha 1-inhibitor 3. Evidence for a compaction process. J Biol Chem. 1995, 270: 24598-24603. 10.1074/jbc.270.41.24598.CrossRefPubMed
29.
go back to reference Gonias SL, Carmichael A, Mettenburg JM, Roadcap DW, Irvin WP, Webb DJ: Identical or overlapping sequences in the primary structure of human alpha(2)-macroglobulin are responsible for the binding of nerve growth factor-beta, platelet-derived growth factor-BB, and transforming growth factor-beta. J Biol Chem. 2000, 275: 5826-5831. 10.1074/jbc.275.8.5826.CrossRefPubMed Gonias SL, Carmichael A, Mettenburg JM, Roadcap DW, Irvin WP, Webb DJ: Identical or overlapping sequences in the primary structure of human alpha(2)-macroglobulin are responsible for the binding of nerve growth factor-beta, platelet-derived growth factor-BB, and transforming growth factor-beta. J Biol Chem. 2000, 275: 5826-5831. 10.1074/jbc.275.8.5826.CrossRefPubMed
30.
go back to reference Liu Q, Ling TY, Shieh HS, Johnson FE, Huang JS, Huang SS: Identification of the high affinity binding site in transforming growth factor-beta involved in complex formation with alpha 2-macroglobulin. Implications regarding the molecular mechanisms of complex formation between alpha 2-macroglobulin and growth factors, cytokines, and hormones. J Biol Chem. 2001, 276: 46212-46218. 10.1074/jbc.M105177200.CrossRefPubMed Liu Q, Ling TY, Shieh HS, Johnson FE, Huang JS, Huang SS: Identification of the high affinity binding site in transforming growth factor-beta involved in complex formation with alpha 2-macroglobulin. Implications regarding the molecular mechanisms of complex formation between alpha 2-macroglobulin and growth factors, cytokines, and hormones. J Biol Chem. 2001, 276: 46212-46218. 10.1074/jbc.M105177200.CrossRefPubMed
31.
go back to reference del Vecchio MT, Tripodi SA, Arcuri F, Pergola L, Hako L, Vatti R: Macrophage migration inhibitory factor in prostatic adenocarcinoma: correlation with tumor grading and combination endocrine treatment- related changes. Prostate. 2000, 45: 51-57. 10.1002/1097-0045(20000915)45:1<51::AID-PROS6>3.0.CO;2-9.CrossRefPubMed del Vecchio MT, Tripodi SA, Arcuri F, Pergola L, Hako L, Vatti R: Macrophage migration inhibitory factor in prostatic adenocarcinoma: correlation with tumor grading and combination endocrine treatment- related changes. Prostate. 2000, 45: 51-57. 10.1002/1097-0045(20000915)45:1<51::AID-PROS6>3.0.CO;2-9.CrossRefPubMed
32.
go back to reference Arcuri F, del Vecchio MT, de Santi MM, Lalinga AV, Pallini V, Bini L: Macrophage migration inhibitory factor in the human prostate: identification and immunocytochemical localization. Prostate. 1999, 39: 159-165. 10.1002/(SICI)1097-0045(19990515)39:3<159::AID-PROS3>3.0.CO;2-M.CrossRefPubMed Arcuri F, del Vecchio MT, de Santi MM, Lalinga AV, Pallini V, Bini L: Macrophage migration inhibitory factor in the human prostate: identification and immunocytochemical localization. Prostate. 1999, 39: 159-165. 10.1002/(SICI)1097-0045(19990515)39:3<159::AID-PROS3>3.0.CO;2-M.CrossRefPubMed
33.
go back to reference Weir EG, Partin AW, Epstein JI: Correlation of serum prostate specific antigen and quantitative immunohistochemistry. J Urol. 2000, 163: 1739-1742. 10.1097/00005392-200006000-00024.CrossRefPubMed Weir EG, Partin AW, Epstein JI: Correlation of serum prostate specific antigen and quantitative immunohistochemistry. J Urol. 2000, 163: 1739-1742. 10.1097/00005392-200006000-00024.CrossRefPubMed
34.
go back to reference Stenman U-H, Leinonen J, Zhang W-M, Finne P: Prostate-specific antigen. Semin Cancer Biology. 1999, 9: 83-93. 10.1006/scbi.1998.0086.CrossRef Stenman U-H, Leinonen J, Zhang W-M, Finne P: Prostate-specific antigen. Semin Cancer Biology. 1999, 9: 83-93. 10.1006/scbi.1998.0086.CrossRef
35.
go back to reference Wraight CJ, van Endert P, Moller P, Lipp J, Ling NR, MacLennan IC: Human major histocompatibility complex class II invariant chain is expressed on the cell surface. J Biol Chem. 1990, 265: 5787-5792.PubMed Wraight CJ, van Endert P, Moller P, Lipp J, Ling NR, MacLennan IC: Human major histocompatibility complex class II invariant chain is expressed on the cell surface. J Biol Chem. 1990, 265: 5787-5792.PubMed
36.
go back to reference Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ: Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology. 1999, 98: 296-302. 10.1046/j.1365-2567.1999.00868.x.CrossRefPubMedPubMedCentral Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ: Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology. 1999, 98: 296-302. 10.1046/j.1365-2567.1999.00868.x.CrossRefPubMedPubMedCentral
Metadata
Title
Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer
Authors
Katherine L Meyer-Siegler
Kenneth A Iczkowski
Pedro L Vera
Publication date
01-12-2005
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2005
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-5-73

Other articles of this Issue 1/2005

BMC Cancer 1/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine