Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Dual tracer evaluation of dynamic changes in intratumoral hypoxic and proliferative states after radiotherapy of human head and neck cancer xenografts using radiolabeled FMISO and FLT

Authors: Chowdhury Nusrat Fatema, Songji Zhao, Yan Zhao, Wenwen Yu, Ken-ichi Nishijima, Koichi Yasuda, Yoshimasa Kitagawa, Nagara Tamaki, Yuji Kuge

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Radiotherapy is an important treatment strategy for head and neck cancers. Tumor hypoxia and repopulation adversely affect the radiotherapy outcome. Accordingly, fractionated radiotherapy with dose escalation or altered fractionation schedule is used to prevent hypoxia and repopulation. 18F-fluoromisonidazole (FMISO) and 18F-fluorothymidine (FLT) are noninvasive markers for assessing tumor hypoxia and proliferation, respectively. Thus, we evaluated the dynamic changes in intratumoral hypoxic and proliferative states following radiotherapy using the dual tracers of 18F-FMISO and 3H-FLT, and further verified the results by immunohistochemical staining of pimonidazole (a hypoxia marker) and Ki-67 (a proliferation marker) in human head and neck cancer xenografts (FaDu).

Methods

FaDu xenografts were established in nude mice and assigned to the non-radiation-treated control and two radiation-treated groups (10- and 20-Gy). Tumor volume was measured daily. Mice were sacrificed 6, 24, and 48 hrs and 7 days after radiotherapy. 18F-FMISO, and 3H-FLT and pimonidazole were injected intravenously 4 and 2 hrs before sacrifice, respectively. Intratumoral 18F-FMISO and 3H-FLT levels were assessed by autoradiography. Pimonidazole and Ki-67 immunohistochemistries were performed.

Results

In radiation-treated mice, tumor growth was significantly suppressed compared with the control group, but the tumor volume in these mice gradually increased with time. Visual inspection showed that intratumoral 18F-FMISO and 3H-FLT distribution patterns were markedly different. Intratumoral 18F-FMISO level did not show significant changes after radiotherapy among the non-radiation-treated control and radiation-treated groups, whereas 3H-FLT level markedly decreased to 59 and 45% of the non-radiation-treated control at 6 hrs (p < 0.0001) and then gradually increased with time in the 10- and 20-Gy-radiation-treated groups. The pimonidazole-positive hypoxic areas were visually similar in both the non-radiation-treated control and radiation-treated groups. No significant differences were observed in the percentage of pimonidazole-positive cells and Ki-67 index.

Conclusion

Intratumoral 18F-FMISO level did not change until 7 days, whereas 3H-FLT level markedly decreased at 6 hrs and then gradually increased with time after a single dose of radiotherapy. The concomitant monitoring of dynamic changes in tumor hypoxia and proliferation may provide important information for a better understanding of tumor biology after radiotherapy and for radiotherapy planning, including dose escalation and altered fractionation schedules.
Appendix
Available only for authorised users
Literature
1.
go back to reference Argiris A, Karamouzis MV, Raben D, Ferris RL: Head and neck cancer. Lancet. 2008, 371: 1695-1709. 10.1016/S0140-6736(08)60728-X.CrossRefPubMed Argiris A, Karamouzis MV, Raben D, Ferris RL: Head and neck cancer. Lancet. 2008, 371: 1695-1709. 10.1016/S0140-6736(08)60728-X.CrossRefPubMed
2.
go back to reference Corry J, Rischin D: Strategies to overcome accelerated repopulation and hypoxia–what have we learned from clinical trials?. Semin Oncol. 2004, 31: 802-808. 10.1053/j.seminoncol.2004.09.005.CrossRefPubMed Corry J, Rischin D: Strategies to overcome accelerated repopulation and hypoxia–what have we learned from clinical trials?. Semin Oncol. 2004, 31: 802-808. 10.1053/j.seminoncol.2004.09.005.CrossRefPubMed
3.
go back to reference Ljungkvist AS, Bussink J, Kaanders JH, Wiedenmann NE, Vlasman R, van der Kogel AJ: Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumor model. Radiat Res. 2006, 165: 326-336. 10.1667/RR3515.1.CrossRefPubMed Ljungkvist AS, Bussink J, Kaanders JH, Wiedenmann NE, Vlasman R, van der Kogel AJ: Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumor model. Radiat Res. 2006, 165: 326-336. 10.1667/RR3515.1.CrossRefPubMed
4.
go back to reference Isa AY, Ward TH, West CM, Slevin NJ, Homer JJ: Hypoxia in head and neck cancer. Br J Radiol. 2006, 79: 791-798. 10.1259/bjr/17904358.CrossRefPubMed Isa AY, Ward TH, West CM, Slevin NJ, Homer JJ: Hypoxia in head and neck cancer. Br J Radiol. 2006, 79: 791-798. 10.1259/bjr/17904358.CrossRefPubMed
5.
go back to reference Withers HR, Taylor JM, Maciejewski B: The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988, 27: 131-146. 10.3109/02841868809090333.CrossRefPubMed Withers HR, Taylor JM, Maciejewski B: The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988, 27: 131-146. 10.3109/02841868809090333.CrossRefPubMed
6.
go back to reference Rajendran JG, Schwartz DL, O’Sullivan J, Peterson LM, Ng P, Scharnhorst J, Grierson JR, Krohn KA: Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res. 2006, 12: 5435-5441. 10.1158/1078-0432.CCR-05-1773.CrossRefPubMedPubMedCentral Rajendran JG, Schwartz DL, O’Sullivan J, Peterson LM, Ng P, Scharnhorst J, Grierson JR, Krohn KA: Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res. 2006, 12: 5435-5441. 10.1158/1078-0432.CCR-05-1773.CrossRefPubMedPubMedCentral
7.
go back to reference Nagane M, Yasui H, Yamamori T, Zhao S, Kuge Y, Tamaki N, Kameya H, Nakamura H, Fujii H, Inanami O: Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model. Biochem Biophys Res Commun. 2013, 437: 420-425. 10.1016/j.bbrc.2013.06.093.CrossRefPubMed Nagane M, Yasui H, Yamamori T, Zhao S, Kuge Y, Tamaki N, Kameya H, Nakamura H, Fujii H, Inanami O: Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model. Biochem Biophys Res Commun. 2013, 437: 420-425. 10.1016/j.bbrc.2013.06.093.CrossRefPubMed
8.
go back to reference Narita T, Aoyama H, Hirata K, Onodera S, Shiga T, Kobayashi H, Murata J, Terasaka S, Tanaka S, Houkin K: Reoxygenation of glioblastoma multiforme treated with fractionated radiotherapy concomitant with temozolomide: changes defined by 18F-fluoromisonidazole positron emission tomography: two case reports. Jpn J Clin Oncol. 2012, 42: 120-123. 10.1093/jjco/hyr181.CrossRefPubMed Narita T, Aoyama H, Hirata K, Onodera S, Shiga T, Kobayashi H, Murata J, Terasaka S, Tanaka S, Houkin K: Reoxygenation of glioblastoma multiforme treated with fractionated radiotherapy concomitant with temozolomide: changes defined by 18F-fluoromisonidazole positron emission tomography: two case reports. Jpn J Clin Oncol. 2012, 42: 120-123. 10.1093/jjco/hyr181.CrossRefPubMed
9.
go back to reference Yasuda K, Onimaru R, Okamoto S, Shiga T, Katoh N, Tsuchiya K, Suzuki R, Takeuchi W, Kuge Y, Tamaki N, Shirato H: [18F] fluoromisonidazole and a new PET system with semiconductor detectors and a depth of interaction system for intensity modulated radiation therapy for nasopharyngeal cancer. Int J Radiat Oncol Biol Phys. 2013, 85: 142-147. 10.1016/j.ijrobp.2012.03.029.CrossRefPubMed Yasuda K, Onimaru R, Okamoto S, Shiga T, Katoh N, Tsuchiya K, Suzuki R, Takeuchi W, Kuge Y, Tamaki N, Shirato H: [18F] fluoromisonidazole and a new PET system with semiconductor detectors and a depth of interaction system for intensity modulated radiation therapy for nasopharyngeal cancer. Int J Radiat Oncol Biol Phys. 2013, 85: 142-147. 10.1016/j.ijrobp.2012.03.029.CrossRefPubMed
10.
go back to reference Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, Kuge Y, Shirato H, Tamaki N: High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med. 2013, 54: 201-207. 10.2967/jnumed.112.109330.CrossRefPubMed Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, Kuge Y, Shirato H, Tamaki N: High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med. 2013, 54: 201-207. 10.2967/jnumed.112.109330.CrossRefPubMed
11.
go back to reference Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, Lee SW, Cho KJ, Cheon GJ, Moon DH: Use of 3′-deoxy-3′- [18F] fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging. 2006, 33: 412-419. 10.1007/s00259-005-0011-4.CrossRefPubMed Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, Lee SW, Cho KJ, Cheon GJ, Moon DH: Use of 3′-deoxy-3′- [18F] fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging. 2006, 33: 412-419. 10.1007/s00259-005-0011-4.CrossRefPubMed
12.
go back to reference Fatema CN, Zhao S, Zhao Y, Murakami M, Yu W, Nishijima K, Tamaki N, Kitagawa Y, Kuge Y: Monitoring tumor proliferative response to radiotherapy using 18F-fluorothymidine in human head and neck cancer xenograft in comparison with Ki-67. Ann Nucl Med. 2013, 27: 355-362. 10.1007/s12149-013-0693-9.CrossRefPubMed Fatema CN, Zhao S, Zhao Y, Murakami M, Yu W, Nishijima K, Tamaki N, Kitagawa Y, Kuge Y: Monitoring tumor proliferative response to radiotherapy using 18F-fluorothymidine in human head and neck cancer xenograft in comparison with Ki-67. Ann Nucl Med. 2013, 27: 355-362. 10.1007/s12149-013-0693-9.CrossRefPubMed
13.
go back to reference Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi T, Hirano T, Kohno E, Tsukada H: Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med. 2004, 45: 1754-1758.PubMed Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi T, Hirano T, Kohno E, Tsukada H: Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med. 2004, 45: 1754-1758.PubMed
14.
go back to reference He Q, Skog S, Welander I, Tribukait B: X-irradiation effects on thymidine kinase (TK): I. TK1 and 2 in normal and malignant cells. Cell Prolif. 2002, 35: 69-81. 10.1046/j.1365-2184.2002.00226.x.CrossRefPubMed He Q, Skog S, Welander I, Tribukait B: X-irradiation effects on thymidine kinase (TK): I. TK1 and 2 in normal and malignant cells. Cell Prolif. 2002, 35: 69-81. 10.1046/j.1365-2184.2002.00226.x.CrossRefPubMed
15.
go back to reference Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA: Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 30- deoxy-30 fluorothymidine uptake. Nucl Med Biol. 2004, 31: 419-423. 10.1016/j.nucmedbio.2004.01.002.CrossRefPubMed Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA: Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 30- deoxy-30 fluorothymidine uptake. Nucl Med Biol. 2004, 31: 419-423. 10.1016/j.nucmedbio.2004.01.002.CrossRefPubMed
16.
go back to reference Tang G, Wang M, Tang X, Gan M, Luo L: Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol. 2005, 32: 553-558. 10.1016/j.nucmedbio.2005.03.010.CrossRefPubMed Tang G, Wang M, Tang X, Gan M, Luo L: Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol. 2005, 32: 553-558. 10.1016/j.nucmedbio.2005.03.010.CrossRefPubMed
17.
go back to reference Hatano T, Zhao S, Zhao Y, Nishijima K, Kuno N, Hanzawa H, Sakamoto T, Tamaki N, Kuge Y: Biological characteristics of intratumoral [F-18] fluoromisonidazole distribution in a rodent model of glioma. Int J Oncol. 2013, 42: 823-830.PubMedPubMedCentral Hatano T, Zhao S, Zhao Y, Nishijima K, Kuno N, Hanzawa H, Sakamoto T, Tamaki N, Kuge Y: Biological characteristics of intratumoral [F-18] fluoromisonidazole distribution in a rodent model of glioma. Int J Oncol. 2013, 42: 823-830.PubMedPubMedCentral
18.
go back to reference Murakami M, Zhao S, Zhao Y, Chowdhury NF, Yu W, Nishijima K, Takiguchi M, Tamaki N, Kuge Y: Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. Int J Oncol. 2012, 41: 1593-1600.PubMedPubMedCentral Murakami M, Zhao S, Zhao Y, Chowdhury NF, Yu W, Nishijima K, Takiguchi M, Tamaki N, Kuge Y: Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. Int J Oncol. 2012, 41: 1593-1600.PubMedPubMedCentral
19.
go back to reference Kasprzak KS, Dencker L, Larsson BS: Isotopic and nuclear analytical techniques in biological systems: a critical survey. Pure Appl Chem. 1991, 63: 1269-1306.CrossRef Kasprzak KS, Dencker L, Larsson BS: Isotopic and nuclear analytical techniques in biological systems: a critical survey. Pure Appl Chem. 1991, 63: 1269-1306.CrossRef
20.
go back to reference Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL: Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma. I. Are inflammatory cells important?. J Nucl Med. 1995, 36: 1854-1861.PubMed Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL: Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma. I. Are inflammatory cells important?. J Nucl Med. 1995, 36: 1854-1861.PubMed
21.
go back to reference Zhao S, Kuge Y, Mochizuki T, Takahashi T, Nakada K, Sato M, Takei T, Tamaki N: Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med. 2005, 46: 675-682.PubMed Zhao S, Kuge Y, Mochizuki T, Takahashi T, Nakada K, Sato M, Takei T, Tamaki N: Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med. 2005, 46: 675-682.PubMed
22.
go back to reference Wong CS: Experimental radiotherapy. The Basic Science Of Oncology. Edited by: Tannock IF, Hill RP. 1998, New York, NY: McGraw-Hill, 322-34926. Wong CS: Experimental radiotherapy. The Basic Science Of Oncology. Edited by: Tannock IF, Hill RP. 1998, New York, NY: McGraw-Hill, 322-34926.
23.
go back to reference Wither HR: Radiation biology and treatment option in radiation oncology. Cancer Res. 1999, 59 (Suppl): 1676p-1684p. Wither HR: Radiation biology and treatment option in radiation oncology. Cancer Res. 1999, 59 (Suppl): 1676p-1684p.
24.
go back to reference Bussink J, Kaanders JH, Rijken PF, Raleigh JA, van der Kogel AJ: Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiat Res. 2000, 153: 398-404. 10.1667/0033-7587(2000)153[0398:CIBPAH]2.0.CO;2.CrossRefPubMed Bussink J, Kaanders JH, Rijken PF, Raleigh JA, van der Kogel AJ: Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiat Res. 2000, 153: 398-404. 10.1667/0033-7587(2000)153[0398:CIBPAH]2.0.CO;2.CrossRefPubMed
25.
go back to reference Crokart N, Jordan BF, Baudelet C, Ansiaux R, Sonveaux P, Grégoire V, Beghein N, DeWever J, Bouzin C, Feron O, Gallez B: Early reoxygenation in tumors after irradiation: determining factors and consequences for radiotherapy regimens using daily multiple fractions. Int J Radiat Oncol Biol Phys. 2005, 63: 901-910. 10.1016/j.ijrobp.2005.02.038.CrossRefPubMed Crokart N, Jordan BF, Baudelet C, Ansiaux R, Sonveaux P, Grégoire V, Beghein N, DeWever J, Bouzin C, Feron O, Gallez B: Early reoxygenation in tumors after irradiation: determining factors and consequences for radiotherapy regimens using daily multiple fractions. Int J Radiat Oncol Biol Phys. 2005, 63: 901-910. 10.1016/j.ijrobp.2005.02.038.CrossRefPubMed
26.
go back to reference Suit HD, Zietman A, Tomkinson K, Ramsay J, Gerweck L, Sedlacek R: Radiation response of xenografts of a human squamous cell carcinoma and a glioblastoma multiforme: a progress report. Int J Radiat Oncol Biol Phys. 1990, 18: 365-373. 10.1016/0360-3016(90)90102-P.CrossRefPubMed Suit HD, Zietman A, Tomkinson K, Ramsay J, Gerweck L, Sedlacek R: Radiation response of xenografts of a human squamous cell carcinoma and a glioblastoma multiforme: a progress report. Int J Radiat Oncol Biol Phys. 1990, 18: 365-373. 10.1016/0360-3016(90)90102-P.CrossRefPubMed
27.
go back to reference Toulany M, Dittmann K, Krüger M, Baumann M, Rodemann HP: Radioresistance of K-Ras mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-AKT pathway. Radiother Oncol. 2005, 76: 143-150. 10.1016/j.radonc.2005.06.024.CrossRefPubMed Toulany M, Dittmann K, Krüger M, Baumann M, Rodemann HP: Radioresistance of K-Ras mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-AKT pathway. Radiother Oncol. 2005, 76: 143-150. 10.1016/j.radonc.2005.06.024.CrossRefPubMed
28.
go back to reference Kasten-Pisula U, Menegakis A, Brammer I, Borgmann K, Mansour WY, Degenhardt S, Krause M, Schreiber A, Dahm-Daphi J, Petersen C, Dikomey E, Baumann M: The extreme radiosensitivity of the squamous cell carcinoma SKX is due to a defect in double-strand break repair. Radiother Oncol. 2009, 90: 257-264. 10.1016/j.radonc.2008.10.019.CrossRefPubMed Kasten-Pisula U, Menegakis A, Brammer I, Borgmann K, Mansour WY, Degenhardt S, Krause M, Schreiber A, Dahm-Daphi J, Petersen C, Dikomey E, Baumann M: The extreme radiosensitivity of the squamous cell carcinoma SKX is due to a defect in double-strand break repair. Radiother Oncol. 2009, 90: 257-264. 10.1016/j.radonc.2008.10.019.CrossRefPubMed
29.
go back to reference Petersen C, Eicheler W, Frömmel A, Krause M, Balschukat S, Zips D, Baumann M: Proliferation and micromilieu during fractionated irradiation of human FaDu squamous cell carcinoma in nude mice. Int J Radiat Biol. 2003, 79: 469-477. 10.1080/09553000310001609224.CrossRefPubMed Petersen C, Eicheler W, Frömmel A, Krause M, Balschukat S, Zips D, Baumann M: Proliferation and micromilieu during fractionated irradiation of human FaDu squamous cell carcinoma in nude mice. Int J Radiat Biol. 2003, 79: 469-477. 10.1080/09553000310001609224.CrossRefPubMed
30.
go back to reference Harriss W, Bezak E, Yeoh E, Hermans M: Measurement of reoxygenation during fractionated radiotherapy in head and neck squamous cell carcinoma xenografts. Australas Phys Eng Sci Med. 2010, 33: 251-263. 10.1007/s13246-010-0032-6.CrossRefPubMed Harriss W, Bezak E, Yeoh E, Hermans M: Measurement of reoxygenation during fractionated radiotherapy in head and neck squamous cell carcinoma xenografts. Australas Phys Eng Sci Med. 2010, 33: 251-263. 10.1007/s13246-010-0032-6.CrossRefPubMed
31.
go back to reference Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J: Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2002, 54: 215-228.CrossRefPubMed Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J: Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2002, 54: 215-228.CrossRefPubMed
Metadata
Title
Dual tracer evaluation of dynamic changes in intratumoral hypoxic and proliferative states after radiotherapy of human head and neck cancer xenografts using radiolabeled FMISO and FLT
Authors
Chowdhury Nusrat Fatema
Songji Zhao
Yan Zhao
Wenwen Yu
Ken-ichi Nishijima
Koichi Yasuda
Yoshimasa Kitagawa
Nagara Tamaki
Yuji Kuge
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-692

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine