Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells

Authors: Ingvild J Brusevold, Ingun H Tveteraas, Monica Aasrum, John Ødegård, Dagny L Sandnes, Thoralf Christoffersen

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Oral squamous cell carcinoma is an aggressive neoplasm with serious morbidity and mortality, which typically spreads through local invasive growth. Lysophosphatidic acid (LPA) is involved in a number of biological processes, and may have a role in cancer cell migration and invasiveness. LPA is present in most tissues and can activate cells through six different LPA receptors (LPAR1-6). Although LPA is predominantly promigratory, some of the receptors may have antimigratory effects in certain cells. The signalling mechanisms of LPA are not fully understood, and in oral carcinoma cells the specific receptors and pathways involved in LPA-stimulated migration are unknown.

Methods

The oral carcinoma cell lines E10, SCC-9, and D2 were investigated. Cell migration was studied in a scratch wound assay, and invasion was demonstrated in organotypic three dimensional co-cultures. Protein and mRNA expression of LPA receptors was studied with Western blotting and qRT-PCR. Activation of signalling proteins was examined with Western blotting and isoelectric focusing, and signalling mechanisms were further explored using pharmacological agents and siRNA directed at specific receptors and pathways.

Results

LPA stimulated cell migration in the two oral carcinoma cell lines E10 and SCC-9, but was slightly inhibitory in D2. The receptor expression profile and the effects of specific pharmacological antagonist and agonists indicated that LPA-stimulated cell migration was mediated through LPAR3 in E10 and SCC-9. Furthermore, in both these cell lines, the stimulation by LPA was dependent on PKC activity. However, while LPA induced transactivation of EGFR and the stimulated migration was blocked by EGFR inhibitors in E10 cells, LPA did not induce EGFR transactivation in SCC-9 cells. In D2 cells, LPA induced EGFR transactivation, but this was associated with slowing of a very high inherent migration rate in these cells.

Conclusion

The results demonstrate LPA-stimulated migration in oral carcinoma cells through LPAR3, mediated further by PKC, which acts either in concert with or independently of EGFR transactivation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sano D, Myers J: Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev. 2007, 26 (3): 645-662.CrossRefPubMed Sano D, Myers J: Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev. 2007, 26 (3): 645-662.CrossRefPubMed
2.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107.CrossRefPubMed
3.
go back to reference Ziober AF, Falls EM, Ziober BL: The extracellular matrix in oral squamous cell carcinoma: friend or foe?. Head Neck. 2006, 28 (8): 740-749. 10.1002/hed.20382.CrossRefPubMed Ziober AF, Falls EM, Ziober BL: The extracellular matrix in oral squamous cell carcinoma: friend or foe?. Head Neck. 2006, 28 (8): 740-749. 10.1002/hed.20382.CrossRefPubMed
4.
go back to reference Leemans CR, Braakhuis BJM, Brakenhoff RH: The molecular biology of head and neck cancer. Nat Rev Cancer. 2011, 11 (1): 9-22. 10.1038/nrc2982.CrossRefPubMed Leemans CR, Braakhuis BJM, Brakenhoff RH: The molecular biology of head and neck cancer. Nat Rev Cancer. 2011, 11 (1): 9-22. 10.1038/nrc2982.CrossRefPubMed
5.
go back to reference Allen M, Jones JL: Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol. 2011, 223 (2): 162-176.CrossRefPubMed Allen M, Jones JL: Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol. 2011, 223 (2): 162-176.CrossRefPubMed
6.
go back to reference Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009, 9 (4): 239-252. 10.1038/nrc2618.CrossRefPubMed Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009, 9 (4): 239-252. 10.1038/nrc2618.CrossRefPubMed
9.
go back to reference Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW: Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003, 284 (1): 31-53. 10.1016/S0014-4827(02)00098-8.CrossRefPubMed Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW: Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003, 284 (1): 31-53. 10.1016/S0014-4827(02)00098-8.CrossRefPubMed
10.
go back to reference Kalyankrishna S, Grandis JR: Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006, 24 (17): 2666-2672. 10.1200/JCO.2005.04.8306.CrossRefPubMed Kalyankrishna S, Grandis JR: Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006, 24 (17): 2666-2672. 10.1200/JCO.2005.04.8306.CrossRefPubMed
11.
go back to reference Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003, 4 (12): 915-925. 10.1038/nrm1261.CrossRefPubMed Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003, 4 (12): 915-925. 10.1038/nrm1261.CrossRefPubMed
12.
go back to reference Brusevold IJ, Aasrum M, Bryne M, Christoffersen T: Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro: role of MEK/ERK, p38 and PI-3 kinase/Akt. J Oral Pathol Med. 2012, 41 (7): 547-558.PubMed Brusevold IJ, Aasrum M, Bryne M, Christoffersen T: Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro: role of MEK/ERK, p38 and PI-3 kinase/Akt. J Oral Pathol Med. 2012, 41 (7): 547-558.PubMed
13.
go back to reference Pierce KL, Premont RT, Lefkowitz RJ: Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002, 3 (9): 639-650. 10.1038/nrm908.CrossRefPubMed Pierce KL, Premont RT, Lefkowitz RJ: Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002, 3 (9): 639-650. 10.1038/nrm908.CrossRefPubMed
14.
go back to reference Cotton M, Claing A: G protein-coupled receptors stimulation and the control of cell migration. Cell Signal. 2009, 21 (7): 1045-1053. 10.1016/j.cellsig.2009.02.008.CrossRefPubMed Cotton M, Claing A: G protein-coupled receptors stimulation and the control of cell migration. Cell Signal. 2009, 21 (7): 1045-1053. 10.1016/j.cellsig.2009.02.008.CrossRefPubMed
15.
go back to reference Katritch V, Cherezov V, Stevens RC: Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013, 53: 531-556. 10.1146/annurev-pharmtox-032112-135923.CrossRefPubMed Katritch V, Cherezov V, Stevens RC: Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013, 53: 531-556. 10.1146/annurev-pharmtox-032112-135923.CrossRefPubMed
16.
go back to reference Lappano R, Maggiolini M: G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov. 2011, 10 (1): 47-60. 10.1038/nrd3320.CrossRefPubMed Lappano R, Maggiolini M: G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov. 2011, 10 (1): 47-60. 10.1038/nrd3320.CrossRefPubMed
17.
go back to reference Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A: Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 1997, 16: 7032-7044. 10.1093/emboj/16.23.7032.CrossRefPubMedPubMedCentral Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A: Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 1997, 16: 7032-7044. 10.1093/emboj/16.23.7032.CrossRefPubMedPubMedCentral
18.
go back to reference Pierce KL, Luttrell LM, Lefkowitz RJ: New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene. 2001, 20 (13): 1532-1539. 10.1038/sj.onc.1204184.CrossRefPubMed Pierce KL, Luttrell LM, Lefkowitz RJ: New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene. 2001, 20 (13): 1532-1539. 10.1038/sj.onc.1204184.CrossRefPubMed
19.
go back to reference Dajani OF, Meisdalen K, Guren TK, Aasrum M, Tveteraas IH, Lilleby P, Thoresen GH, Sandnes D, Christoffersen T: Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes. J Cell Physiol. 2008, 214 (2): 371-380. 10.1002/jcp.21205.CrossRefPubMed Dajani OF, Meisdalen K, Guren TK, Aasrum M, Tveteraas IH, Lilleby P, Thoresen GH, Sandnes D, Christoffersen T: Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes. J Cell Physiol. 2008, 214 (2): 371-380. 10.1002/jcp.21205.CrossRefPubMed
20.
go back to reference Muller KM, Tveteraas IH, Aasrum M, Odegard J, Dawood M, Dajani O, Christoffersen T, Sandnes DL: Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer. 2011, 11: 421-10.1186/1471-2407-11-421.CrossRefPubMedPubMedCentral Muller KM, Tveteraas IH, Aasrum M, Odegard J, Dawood M, Dajani O, Christoffersen T, Sandnes DL: Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells. BMC Cancer. 2011, 11: 421-10.1186/1471-2407-11-421.CrossRefPubMedPubMedCentral
21.
go back to reference Tveteraas IH, Muller KM, Aasrum M, Odegard J, Dajani O, Guren T, Sandnes D, Christoffersen T: Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells. J Exp Clin Cancer Res. 2012, 31: 72-10.1186/1756-9966-31-72.CrossRefPubMedPubMedCentral Tveteraas IH, Muller KM, Aasrum M, Odegard J, Dajani O, Guren T, Sandnes D, Christoffersen T: Mechanisms involved in PGE2-induced transactivation of the epidermal growth factor receptor in MH1C1 hepatocarcinoma cells. J Exp Clin Cancer Res. 2012, 31: 72-10.1186/1756-9966-31-72.CrossRefPubMedPubMedCentral
22.
go back to reference Houben AS, Moolenaar W: Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev. 2011, 30 (3–4): 557-565.CrossRefPubMed Houben AS, Moolenaar W: Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev. 2011, 30 (3–4): 557-565.CrossRefPubMed
23.
go back to reference Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J: LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010, 50: 157-186. 10.1146/annurev.pharmtox.010909.105753.CrossRefPubMed Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J: LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010, 50: 157-186. 10.1146/annurev.pharmtox.010909.105753.CrossRefPubMed
24.
go back to reference Okudaira S, Yukiura H, Aoki J: Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie. 2010, 92 (6): 698-706. 10.1016/j.biochi.2010.04.015.CrossRefPubMed Okudaira S, Yukiura H, Aoki J: Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie. 2010, 92 (6): 698-706. 10.1016/j.biochi.2010.04.015.CrossRefPubMed
25.
go back to reference George J, Headen KV, Ogunleye AO, Perry GA, Wilwerding TM, Parrish LC, McVaney TP, Mattson JS, Cerutis DR: Lysophosphatidic acid signals through specific lysophosphatidic acid receptor subtypes to control key regenerative responses of human gingival and periodontal ligament fibroblasts. J Periodontol. 2009, 80 (8): 1338-1347. 10.1902/jop.2009.080624.CrossRefPubMed George J, Headen KV, Ogunleye AO, Perry GA, Wilwerding TM, Parrish LC, McVaney TP, Mattson JS, Cerutis DR: Lysophosphatidic acid signals through specific lysophosphatidic acid receptor subtypes to control key regenerative responses of human gingival and periodontal ligament fibroblasts. J Periodontol. 2009, 80 (8): 1338-1347. 10.1902/jop.2009.080624.CrossRefPubMed
26.
go back to reference Hwang YS, Lee SK, Park K-K, Chung W-Y: Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Oral Oncol. 2012, 48 (1): 40-48. 10.1016/j.oraloncology.2011.08.022.CrossRefPubMed Hwang YS, Lee SK, Park K-K, Chung W-Y: Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Oral Oncol. 2012, 48 (1): 40-48. 10.1016/j.oraloncology.2011.08.022.CrossRefPubMed
27.
go back to reference Gschwind A, Prenzel N, Ullrich A: Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res. 2002, 62 (21): 6329-6336.PubMed Gschwind A, Prenzel N, Ullrich A: Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res. 2002, 62 (21): 6329-6336.PubMed
28.
go back to reference Gotoh M, Fujiwara Y, Yue J, Liu J, Lee S, Fells J, Uchiyama A, Murakami-Murofushi K, Kennel S, Wall J, Patil R, Gupte R, Balasz L, Miller DD, Tigyi GJ: Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans. 2012, 40 (1): 31-36. 10.1042/BST20110608.CrossRefPubMedPubMedCentral Gotoh M, Fujiwara Y, Yue J, Liu J, Lee S, Fells J, Uchiyama A, Murakami-Murofushi K, Kennel S, Wall J, Patil R, Gupte R, Balasz L, Miller DD, Tigyi GJ: Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans. 2012, 40 (1): 31-36. 10.1042/BST20110608.CrossRefPubMedPubMedCentral
29.
go back to reference Jongsma M, Matas-Rico E, Rzadkowski A, Jalink K, Moolenaar WH: LPA Is a Chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS One. 2011, 6 (12): e29260-10.1371/journal.pone.0029260.CrossRefPubMedPubMedCentral Jongsma M, Matas-Rico E, Rzadkowski A, Jalink K, Moolenaar WH: LPA Is a Chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS One. 2011, 6 (12): e29260-10.1371/journal.pone.0029260.CrossRefPubMedPubMedCentral
30.
go back to reference Fischer OM, Hart S, Gschwind A, Ullrich A: EGFR signal transactivation in cancer cells. Biochem Soc Trans. 2003, 31 (Pt 6): 1203-1208.CrossRefPubMed Fischer OM, Hart S, Gschwind A, Ullrich A: EGFR signal transactivation in cancer cells. Biochem Soc Trans. 2003, 31 (Pt 6): 1203-1208.CrossRefPubMed
31.
go back to reference Brusevold IJ, Husvik C, Schreurs O, Schenck K, Bryne M, Soland TM: Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010, 118 (2): 168-176. 10.1111/j.1600-0722.2010.00720.x.CrossRefPubMed Brusevold IJ, Husvik C, Schreurs O, Schenck K, Bryne M, Soland TM: Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010, 118 (2): 168-176. 10.1111/j.1600-0722.2010.00720.x.CrossRefPubMed
32.
go back to reference O'Neill RA, Bhamidipati A, Bi X, Deb-Basu D, Cahill L, Ferrante J, Gentalen E, Glazer M, Gossett J, Hacker K, Kirby C, Knittle J, Loder R, Mastrioeni C, MacLaren M, Mills T, Nguyen U, Parker N, Rice A, Roach D, Suich D, Voehringer D, Voss K, Yang J, Yang T, Horn PBV: Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc Natl Acad Sci U S A. 2006, 103 (44): 16153-16158. 10.1073/pnas.0607973103.CrossRefPubMedPubMedCentral O'Neill RA, Bhamidipati A, Bi X, Deb-Basu D, Cahill L, Ferrante J, Gentalen E, Glazer M, Gossett J, Hacker K, Kirby C, Knittle J, Loder R, Mastrioeni C, MacLaren M, Mills T, Nguyen U, Parker N, Rice A, Roach D, Suich D, Voehringer D, Voss K, Yang J, Yang T, Horn PBV: Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc Natl Acad Sci U S A. 2006, 103 (44): 16153-16158. 10.1073/pnas.0607973103.CrossRefPubMedPubMedCentral
33.
go back to reference Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL: Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012, 13: 134-10.1186/1471-2105-13-134.CrossRefPubMedPubMedCentral Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL: Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012, 13: 134-10.1186/1471-2105-13-134.CrossRefPubMedPubMedCentral
34.
go back to reference Yanagida K, Kurikawa Y, Shimizu T, Ishii S: Current progress in non-Edg family LPA receptor research. Biochim Biophys Acta. 2013, 1831 (1): 33-41. 10.1016/j.bbalip.2012.08.003.CrossRefPubMed Yanagida K, Kurikawa Y, Shimizu T, Ishii S: Current progress in non-Edg family LPA receptor research. Biochim Biophys Acta. 2013, 1831 (1): 33-41. 10.1016/j.bbalip.2012.08.003.CrossRefPubMed
35.
go back to reference Heise CE, Santos WL, Schreihofer AM, Heasley BH, Mukhin YV, Macdonald TL, Lynch KR: Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol Pharmacol. 2001, 60 (6): 1173-1180.PubMed Heise CE, Santos WL, Schreihofer AM, Heasley BH, Mukhin YV, Macdonald TL, Lynch KR: Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol Pharmacol. 2001, 60 (6): 1173-1180.PubMed
36.
go back to reference Griner EM, Kazanietz MG: Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer. 2007, 7 (4): 281-294. 10.1038/nrc2110.CrossRefPubMed Griner EM, Kazanietz MG: Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer. 2007, 7 (4): 281-294. 10.1038/nrc2110.CrossRefPubMed
37.
go back to reference Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY: Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J. 2009, 23 (2): 425-432.CrossRefPubMedPubMedCentral Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY: Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J. 2009, 23 (2): 425-432.CrossRefPubMedPubMedCentral
38.
go back to reference Do T-V, Symowicz JC, Berman DM, Liotta LA, Petricoin EF, Stack MS, Fishman DA: Lysophosphatidic acid down-regulates stress fibers and up-regulates pro–matrix metalloproteinase-2 activation in ovarian cancer cells. Mol Cancer Res. 2007, 5 (2): 121-131. 10.1158/1541-7786.MCR-06-0319.CrossRefPubMed Do T-V, Symowicz JC, Berman DM, Liotta LA, Petricoin EF, Stack MS, Fishman DA: Lysophosphatidic acid down-regulates stress fibers and up-regulates pro–matrix metalloproteinase-2 activation in ovarian cancer cells. Mol Cancer Res. 2007, 5 (2): 121-131. 10.1158/1541-7786.MCR-06-0319.CrossRefPubMed
39.
go back to reference Lin ME, Herr DR, Chun J: Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 2010, 91 (3–4): 130-138.CrossRefPubMed Lin ME, Herr DR, Chun J: Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 2010, 91 (3–4): 130-138.CrossRefPubMed
40.
go back to reference Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, Yagi M, Sato M, Suzuki R, Murooka H, Sakai T, Nishitoba T, Im D-S, Nochi H, Tamoto K, Tomura H, Okajima F: Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol. 2003, 64 (4): 994-1005. 10.1124/mol.64.4.994.CrossRefPubMed Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, Yagi M, Sato M, Suzuki R, Murooka H, Sakai T, Nishitoba T, Im D-S, Nochi H, Tamoto K, Tomura H, Okajima F: Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol. 2003, 64 (4): 994-1005. 10.1124/mol.64.4.994.CrossRefPubMed
41.
go back to reference Snider AJ, Zhang Z, Xie Y, Meier KE: Epidermal growth factor increases lysophosphatidic acid production in human ovarian cancer cells: roles for phospholipase D2 and receptor transactivation. Am J Physiol Cell Physiol. 2010, 298 (1): C163-C170. 10.1152/ajpcell.00001.2009.CrossRefPubMed Snider AJ, Zhang Z, Xie Y, Meier KE: Epidermal growth factor increases lysophosphatidic acid production in human ovarian cancer cells: roles for phospholipase D2 and receptor transactivation. Am J Physiol Cell Physiol. 2010, 298 (1): C163-C170. 10.1152/ajpcell.00001.2009.CrossRefPubMed
42.
go back to reference Hasegawa Y, Erickson JR, Goddard GJ, Yu S, Liu S, Cheng KW, Eder A, Bandoh K, Aoki J, Jarosz R, Schrier AD, Lynch KR, Mills GB, Fang X: Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem. 2003, 278 (14): 11962-11969. 10.1074/jbc.M209168200.CrossRefPubMed Hasegawa Y, Erickson JR, Goddard GJ, Yu S, Liu S, Cheng KW, Eder A, Bandoh K, Aoki J, Jarosz R, Schrier AD, Lynch KR, Mills GB, Fang X: Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem. 2003, 278 (14): 11962-11969. 10.1074/jbc.M209168200.CrossRefPubMed
43.
go back to reference Qian L, Xu Y, Hasegawa Y, Aoki J, Mills GB, Prestwich GD: Enantioselective responses to a phosphorothioate analogue of lysophosphatidic acid with LPA3 receptor-selective agonist activity. J Med Chem. 2003, 46 (26): 5575-5578. 10.1021/jm034207p.CrossRefPubMed Qian L, Xu Y, Hasegawa Y, Aoki J, Mills GB, Prestwich GD: Enantioselective responses to a phosphorothioate analogue of lysophosphatidic acid with LPA3 receptor-selective agonist activity. J Med Chem. 2003, 46 (26): 5575-5578. 10.1021/jm034207p.CrossRefPubMed
44.
go back to reference Anliker B, Chun J: Lysophospholipid G protein-coupled receptors. J Biol Chem. 2004, 279 (20): 20555-20558. 10.1074/jbc.R400013200.CrossRefPubMed Anliker B, Chun J: Lysophospholipid G protein-coupled receptors. J Biol Chem. 2004, 279 (20): 20555-20558. 10.1074/jbc.R400013200.CrossRefPubMed
45.
go back to reference Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J, Stephens C, Fang X, Mills GB: Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst. 2008, 100 (22): 1630-1642. 10.1093/jnci/djn378.CrossRefPubMedPubMedCentral Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J, Stephens C, Fang X, Mills GB: Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst. 2008, 100 (22): 1630-1642. 10.1093/jnci/djn378.CrossRefPubMedPubMedCentral
46.
go back to reference Cai H, Xu Y: The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal. 2013, 11 (1): 31-10.1186/1478-811X-11-31.CrossRefPubMedPubMedCentral Cai H, Xu Y: The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal. 2013, 11 (1): 31-10.1186/1478-811X-11-31.CrossRefPubMedPubMedCentral
47.
go back to reference Fukui R, Tanabe E, Kitayoshi M, Yoshikawa K, Fukushima N, Tsujiuchi T: Negative regulation of cell motile and invasive activities by lysophosphatidic acid receptor-3 in colon cancer HCT116 cells. Tumour Biol. 2012, 33: 1899-1905. 10.1007/s13277-012-0450-z.CrossRefPubMed Fukui R, Tanabe E, Kitayoshi M, Yoshikawa K, Fukushima N, Tsujiuchi T: Negative regulation of cell motile and invasive activities by lysophosphatidic acid receptor-3 in colon cancer HCT116 cells. Tumour Biol. 2012, 33: 1899-1905. 10.1007/s13277-012-0450-z.CrossRefPubMed
48.
go back to reference Kim JH, Adelstein RS: LPA(1) -induced migration requires nonmuscle myosin II light chain phosphorylation in breast cancer cells. J Cell Physiol. 2011, 226 (11): 2881-2893. 10.1002/jcp.22631.CrossRefPubMedPubMedCentral Kim JH, Adelstein RS: LPA(1) -induced migration requires nonmuscle myosin II light chain phosphorylation in breast cancer cells. J Cell Physiol. 2011, 226 (11): 2881-2893. 10.1002/jcp.22631.CrossRefPubMedPubMedCentral
49.
go back to reference Komachi M, Tomura H, Malchinkhuu E, Tobo M, Mogi C, Yamada T, Kimura T, Kuwabara A, Ohta H, Im D-S, Kurose H, Takeyoshi I, Sato K, Okajima F: LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis. 2009, 30 (3): 457-465. 10.1093/carcin/bgp011.CrossRefPubMed Komachi M, Tomura H, Malchinkhuu E, Tobo M, Mogi C, Yamada T, Kimura T, Kuwabara A, Ohta H, Im D-S, Kurose H, Takeyoshi I, Sato K, Okajima F: LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis. 2009, 30 (3): 457-465. 10.1093/carcin/bgp011.CrossRefPubMed
50.
go back to reference Park SY, Jeong KJ, Panupinthu N, Yu S, Lee J, Han JW, Kim JM, Lee JS, Kang J, Park CG, Mills GB, Lee HY: Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene. 2011, 30 (11): 1351-1359. 10.1038/onc.2010.517.CrossRefPubMed Park SY, Jeong KJ, Panupinthu N, Yu S, Lee J, Han JW, Kim JM, Lee JS, Kang J, Park CG, Mills GB, Lee HY: Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene. 2011, 30 (11): 1351-1359. 10.1038/onc.2010.517.CrossRefPubMed
51.
go back to reference Harma V, Knuuttila M, Virtanen J, Mirtti T, Kohonen P, Kovanen P, Happonen A, Kaewphan S, Ahonen I, Kallioniemi O, Grafstrom R, Lotjonen J, Nees M: Lysophosphatidic acid and sphingosine-1-phosphate promote morphogenesis and block invasion of prostate cancer cells in three-dimensional organotypic models. Oncogene. 2012, 31 (16): 2075-2089. 10.1038/onc.2011.396.CrossRefPubMed Harma V, Knuuttila M, Virtanen J, Mirtti T, Kohonen P, Kovanen P, Happonen A, Kaewphan S, Ahonen I, Kallioniemi O, Grafstrom R, Lotjonen J, Nees M: Lysophosphatidic acid and sphingosine-1-phosphate promote morphogenesis and block invasion of prostate cancer cells in three-dimensional organotypic models. Oncogene. 2012, 31 (16): 2075-2089. 10.1038/onc.2011.396.CrossRefPubMed
52.
go back to reference Hope JM, Wang FQ, Whyte JS, Ariztia EV, Abdalla W, Long K, Fishman DA: LPA receptor 2 mediates LPA-induced endometrial cancer invasion. Gynecol Oncol. 2009, 112 (1): 215-223. 10.1016/j.ygyno.2008.09.019.CrossRefPubMed Hope JM, Wang FQ, Whyte JS, Ariztia EV, Abdalla W, Long K, Fishman DA: LPA receptor 2 mediates LPA-induced endometrial cancer invasion. Gynecol Oncol. 2009, 112 (1): 215-223. 10.1016/j.ygyno.2008.09.019.CrossRefPubMed
53.
go back to reference Chen M, Towers LN, O'Connor KL: LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol Cell Physiol. 2007, 292 (5): C1927-C1933.CrossRefPubMed Chen M, Towers LN, O'Connor KL: LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol Cell Physiol. 2007, 292 (5): C1927-C1933.CrossRefPubMed
54.
go back to reference Matayoshi S, Chiba S, Lin Y, Arakaki K, Matsumoto H, Nakanishi T, Suzuki M, Kato S: Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells. Int J Oncol. 2013, 42 (5): 1560-1568.PubMedPubMedCentral Matayoshi S, Chiba S, Lin Y, Arakaki K, Matsumoto H, Nakanishi T, Suzuki M, Kato S: Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells. Int J Oncol. 2013, 42 (5): 1560-1568.PubMedPubMedCentral
55.
go back to reference Lee Z, Cheng C-T, Zhang H, Subler MA, Wu J, Mukherjee A, Windle JJ, Chen C-K, Fang X: Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell. 2008, 19 (12): 5435-5445. 10.1091/mbc.E08-03-0316.CrossRefPubMedPubMedCentral Lee Z, Cheng C-T, Zhang H, Subler MA, Wu J, Mukherjee A, Windle JJ, Chen C-K, Fang X: Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell. 2008, 19 (12): 5435-5445. 10.1091/mbc.E08-03-0316.CrossRefPubMedPubMedCentral
56.
go back to reference Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM: Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: Participation of the cyclic AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Res. 2010, 70 (11): 4634-4643. 10.1158/0008-5472.CAN-09-3813.CrossRefPubMed Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM: Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: Participation of the cyclic AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Res. 2010, 70 (11): 4634-4643. 10.1158/0008-5472.CAN-09-3813.CrossRefPubMed
57.
go back to reference Sokolov E, Eheim AL, Ahrens WA, Walling TL, Swet JH, McMillan MT, Simo KA, Thompson KJ, Sindram D, McKillop IH: Lysophosphatidic acid receptor expression and function in human hepatocellular carcinoma. J Surg Res. 2013, 180 (1): 104-113. 10.1016/j.jss.2012.10.054.CrossRefPubMed Sokolov E, Eheim AL, Ahrens WA, Walling TL, Swet JH, McMillan MT, Simo KA, Thompson KJ, Sindram D, McKillop IH: Lysophosphatidic acid receptor expression and function in human hepatocellular carcinoma. J Surg Res. 2013, 180 (1): 104-113. 10.1016/j.jss.2012.10.054.CrossRefPubMed
Metadata
Title
Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells
Authors
Ingvild J Brusevold
Ingun H Tveteraas
Monica Aasrum
John Ødegård
Dagny L Sandnes
Thoralf Christoffersen
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-432

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine