Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

Authors: Gregor Auf, Arnaud Jabouille, Maylis Delugin, Sylvaine Guérit, Raphael Pineau, Sophie North, Natalia Platonova, Marlène Maitre, Alexandre Favereaux, Peter Vajkoczy, Masaharu Seno, Andreas Bikfalvi, Dmitri Minchenko, Oleksandr Minchenko, Michel Moenner

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma.

Methods

Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown.

Results

EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α.

Conclusion

EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the growth factor through ErbB1.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY: Primary brain tumours in adults. Lancet. 2012, 379 (9830): 1984-1996. 10.1016/S0140-6736(11)61346-9.CrossRefPubMed Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY: Primary brain tumours in adults. Lancet. 2012, 379 (9830): 1984-1996. 10.1016/S0140-6736(11)61346-9.CrossRefPubMed
2.
go back to reference Citri A, Yarden Y: EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006, 7 (7): 505-516. 10.1038/nrm1962.CrossRefPubMed Citri A, Yarden Y: EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006, 7 (7): 505-516. 10.1038/nrm1962.CrossRefPubMed
3.
go back to reference Kleihues P, Burger PC, Aldape KD, Brat DJ, Biernat W, Bigner DD, Nakazato Y, Plate KH, Giangaspero F, von Deimling A, et al: WHO Classification of Tumours of the Central Nervous System. 2007, Lyon: IARC, 4 Kleihues P, Burger PC, Aldape KD, Brat DJ, Biernat W, Bigner DD, Nakazato Y, Plate KH, Giangaspero F, von Deimling A, et al: WHO Classification of Tumours of the Central Nervous System. 2007, Lyon: IARC, 4
4.
go back to reference Huang PH, Xu AM, White FM: Oncogenic EGFR signaling networks in glioma. Sci Signal. 2009, 2 (87): re6-CrossRefPubMed Huang PH, Xu AM, White FM: Oncogenic EGFR signaling networks in glioma. Sci Signal. 2009, 2 (87): re6-CrossRefPubMed
5.
go back to reference Torp SH, Gulati S, Johannessen E, Dalen A: Coexpression of c-erbB 1–4 receptor proteins in human glioblastomas. An immunohistochemical study. J Exp Clin Cancer Res. 2007, 26 (3): 353-359.PubMed Torp SH, Gulati S, Johannessen E, Dalen A: Coexpression of c-erbB 1–4 receptor proteins in human glioblastomas. An immunohistochemical study. J Exp Clin Cancer Res. 2007, 26 (3): 353-359.PubMed
6.
go back to reference Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, et al: Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007, 318 (5848): 287-290. 10.1126/science.1142946.CrossRefPubMed Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, et al: Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007, 318 (5848): 287-290. 10.1126/science.1142946.CrossRefPubMed
7.
go back to reference Andersson U, Guo D, Malmer B, Bergenheim AT, Brannstrom T, Hedman H, Henriksson R: Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas. Acta Neuropathol. 2004, 108 (2): 135-142.CrossRefPubMed Andersson U, Guo D, Malmer B, Bergenheim AT, Brannstrom T, Hedman H, Henriksson R: Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas. Acta Neuropathol. 2004, 108 (2): 135-142.CrossRefPubMed
8.
go back to reference Bhowmick DA, Zhuang Z, Wait SD, Weil RJ: A Functional Polymorphism in the EGF Gene Is Found with Increased Frequency in Glioblastoma Multiforme Patients and Is Associated with More Aggressive Disease. Cancer Res. 2004, 64: 1220-1223. 10.1158/0008-5472.CAN-03-3137.CrossRefPubMed Bhowmick DA, Zhuang Z, Wait SD, Weil RJ: A Functional Polymorphism in the EGF Gene Is Found with Increased Frequency in Glioblastoma Multiforme Patients and Is Associated with More Aggressive Disease. Cancer Res. 2004, 64: 1220-1223. 10.1158/0008-5472.CAN-03-3137.CrossRefPubMed
9.
go back to reference Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP: Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 1991, 51 (8): 2164-2172.PubMed Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP: Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 1991, 51 (8): 2164-2172.PubMed
10.
go back to reference Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N, Kitanaka C, Kirino T, Kuchino Y: Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol. 1998, 96 (4): 322-328. 10.1007/s004010050901.CrossRefPubMed Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N, Kitanaka C, Kirino T, Kuchino Y: Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol. 1998, 96 (4): 322-328. 10.1007/s004010050901.CrossRefPubMed
11.
go back to reference Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H, Libermann TA, Raisanen JM, Ashfaq R, Wong ET, et al: Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res. 2006, 66 (2): 867-874. 10.1158/0008-5472.CAN-05-2753.CrossRefPubMed Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H, Libermann TA, Raisanen JM, Ashfaq R, Wong ET, et al: Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res. 2006, 66 (2): 867-874. 10.1158/0008-5472.CAN-05-2753.CrossRefPubMed
12.
go back to reference Toyoda H, Komurasaki T, Uchida D, Morimoto S: Distribution of mRNA for human epiregulin, a differentially expressed member of the epidermal growth factor family. Biochem J. 1997, 326 (Pt 1): 69-75.CrossRefPubMedPubMedCentral Toyoda H, Komurasaki T, Uchida D, Morimoto S: Distribution of mRNA for human epiregulin, a differentially expressed member of the epidermal growth factor family. Biochem J. 1997, 326 (Pt 1): 69-75.CrossRefPubMedPubMedCentral
13.
go back to reference Shelly M, Pinkas-Kramarski R, Guarino BC, Waterman H, Wang LM, Lyass L, Alimandi M, Kuo A, Bacus SS, Pierce JH, et al: Epiregulin is a potent pan-ErbB ligand that preferentially activates heterodimeric receptor complexes. J Biol Chem. 1998, 273 (17): 10496-10505. 10.1074/jbc.273.17.10496.CrossRefPubMed Shelly M, Pinkas-Kramarski R, Guarino BC, Waterman H, Wang LM, Lyass L, Alimandi M, Kuo A, Bacus SS, Pierce JH, et al: Epiregulin is a potent pan-ErbB ligand that preferentially activates heterodimeric receptor complexes. J Biol Chem. 1998, 273 (17): 10496-10505. 10.1074/jbc.273.17.10496.CrossRefPubMed
14.
go back to reference Komurasaki T, Toyoda H, Uchida D, Morimoto S: Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene. 1997, 15 (23): 2841-2848. 10.1038/sj.onc.1201458.CrossRefPubMed Komurasaki T, Toyoda H, Uchida D, Morimoto S: Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene. 1997, 15 (23): 2841-2848. 10.1038/sj.onc.1201458.CrossRefPubMed
15.
go back to reference Toyoda H, Komurasaki T, Uchida D, Takayama Y, Isobe T, Okuyama T, Hanada K: Epiregulin. A novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem. 1995, 270 (13): 7495-7500. 10.1074/jbc.270.13.7495.CrossRefPubMed Toyoda H, Komurasaki T, Uchida D, Takayama Y, Isobe T, Okuyama T, Hanada K: Epiregulin. A novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem. 1995, 270 (13): 7495-7500. 10.1074/jbc.270.13.7495.CrossRefPubMed
16.
go back to reference Revillion F, Lhotellier V, Hornez L, Bonneterre J, Peyrat JP: ErbB/HER ligands in human breast cancer, and relationships with their receptors, the bio-pathological features and prognosis. Ann Oncol. 2008, 19 (1): 73-80.CrossRefPubMed Revillion F, Lhotellier V, Hornez L, Bonneterre J, Peyrat JP: ErbB/HER ligands in human breast cancer, and relationships with their receptors, the bio-pathological features and prognosis. Ann Oncol. 2008, 19 (1): 73-80.CrossRefPubMed
17.
go back to reference Zhu Z, Kleeff J, Friess H, Wang L, Zimmermann A, Yarden Y, Buchler MW, Korc M: Epiregulin is Up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem Biophys Res Commun. 2000, 273 (3): 1019-1024. 10.1006/bbrc.2000.3033.CrossRefPubMed Zhu Z, Kleeff J, Friess H, Wang L, Zimmermann A, Yarden Y, Buchler MW, Korc M: Epiregulin is Up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem Biophys Res Commun. 2000, 273 (3): 1019-1024. 10.1006/bbrc.2000.3033.CrossRefPubMed
18.
go back to reference Thogersen VB, Sorensen BS, Poulsen SS, Orntoft TF, Wolf H, Nexo E: A subclass of HER1 ligands are prognostic markers for survival in bladder cancer patients. Cancer Res. 2001, 61 (16): 6227-6233.PubMed Thogersen VB, Sorensen BS, Poulsen SS, Orntoft TF, Wolf H, Nexo E: A subclass of HER1 ligands are prognostic markers for survival in bladder cancer patients. Cancer Res. 2001, 61 (16): 6227-6233.PubMed
19.
go back to reference Watanabe T, Kobunai T, Yamamoto Y, Kanazawa T, Konishi T, Tanaka T, Matsuda K, Ishihara S, Nozawa K, Eshima K, et al: Prediction of liver metastasis after colorectal cancer using reverse transcription-polymerase chain reaction analysis of 10 genes. Eur J Cancer. 2010, 46 (11): 2119-2126. 10.1016/j.ejca.2010.04.019.CrossRefPubMed Watanabe T, Kobunai T, Yamamoto Y, Kanazawa T, Konishi T, Tanaka T, Matsuda K, Ishihara S, Nozawa K, Eshima K, et al: Prediction of liver metastasis after colorectal cancer using reverse transcription-polymerase chain reaction analysis of 10 genes. Eur J Cancer. 2010, 46 (11): 2119-2126. 10.1016/j.ejca.2010.04.019.CrossRefPubMed
20.
go back to reference Nicholson BE, Frierson HF, Conaway MR, Seraj JM, Harding MA, Hampton GM, Theodorescu D: Profiling the evolution of human metastatic bladder cancer. Cancer Res. 2004, 64 (21): 7813-7821. 10.1158/0008-5472.CAN-04-0826.CrossRefPubMed Nicholson BE, Frierson HF, Conaway MR, Seraj JM, Harding MA, Hampton GM, Theodorescu D: Profiling the evolution of human metastatic bladder cancer. Cancer Res. 2004, 64 (21): 7813-7821. 10.1158/0008-5472.CAN-04-0826.CrossRefPubMed
21.
go back to reference Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu JI, Kondo T: Combination of a Ptgs2 inhibitor and an EGFR-signaling inhibitor prevents tumorigenesis of oligodendrocyte-lineage derived glioma-initiating cells. Stem Cells. 2011, 29 (4): 590-599. 10.1002/stem.618.CrossRefPubMed Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu JI, Kondo T: Combination of a Ptgs2 inhibitor and an EGFR-signaling inhibitor prevents tumorigenesis of oligodendrocyte-lineage derived glioma-initiating cells. Stem Cells. 2011, 29 (4): 590-599. 10.1002/stem.618.CrossRefPubMed
22.
go back to reference Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, et al: Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A. 2010, 107 (35): 15553-15558. 10.1073/pnas.0914072107.CrossRefPubMedPubMedCentral Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, et al: Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A. 2010, 107 (35): 15553-15558. 10.1073/pnas.0914072107.CrossRefPubMedPubMedCentral
23.
go back to reference Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, Massague J: Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007, 446 (7137): 765-770. 10.1038/nature05760.CrossRefPubMed Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, Massague J: Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007, 446 (7137): 765-770. 10.1038/nature05760.CrossRefPubMed
24.
go back to reference Sasai K, Akagi T, Aoyanagi E, Tabu K, Kaneko S, Tanaka S: O6-methylguanine-DNA methyltransferase is downregulated in transformed astrocyte cells: implications for anti-glioma therapies. Mol Cancer. 2007, 6: 36-10.1186/1476-4598-6-36.CrossRefPubMedPubMedCentral Sasai K, Akagi T, Aoyanagi E, Tabu K, Kaneko S, Tanaka S: O6-methylguanine-DNA methyltransferase is downregulated in transformed astrocyte cells: implications for anti-glioma therapies. Mol Cancer. 2007, 6: 36-10.1186/1476-4598-6-36.CrossRefPubMedPubMedCentral
25.
go back to reference Drogat B, Bouchecareilh M, North S, Petibois C, Deleris G, Chevet E, Bikfalvi A, Moenner M: Acute L-glutamine deprivation compromises VEGF-a upregulation in A549/8 human carcinoma cells. J Cell Physiol. 2007, 212 (2): 463-472. 10.1002/jcp.21044.CrossRefPubMed Drogat B, Bouchecareilh M, North S, Petibois C, Deleris G, Chevet E, Bikfalvi A, Moenner M: Acute L-glutamine deprivation compromises VEGF-a upregulation in A549/8 human carcinoma cells. J Cell Physiol. 2007, 212 (2): 463-472. 10.1002/jcp.21044.CrossRefPubMed
26.
go back to reference Lammering G, Valerie K, Lin PS, Mikkelsen RB, Contessa JN, Feden JP, Farnsworth J, Dent P, Schmidt-Ullrich RK: Radiosensitization of malignant glioma cells through overexpression of dominant-negative epidermal growth factor receptor. Clin Cancer Res. 2001, 7 (3): 682-690.PubMed Lammering G, Valerie K, Lin PS, Mikkelsen RB, Contessa JN, Feden JP, Farnsworth J, Dent P, Schmidt-Ullrich RK: Radiosensitization of malignant glioma cells through overexpression of dominant-negative epidermal growth factor receptor. Clin Cancer Res. 2001, 7 (3): 682-690.PubMed
27.
go back to reference Mishima K, Johns TG, Luwor RB, Scott AM, Stockert E, Jungbluth AA, Ji XD, Suvarna P, Voland JR, Old LJ, et al: Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res. 2001, 61 (14): 5349-5354.PubMed Mishima K, Johns TG, Luwor RB, Scott AM, Stockert E, Jungbluth AA, Ji XD, Suvarna P, Voland JR, Old LJ, et al: Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res. 2001, 61 (14): 5349-5354.PubMed
28.
go back to reference Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A, Bikfalvi A: Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci U S A. 2005, 102 (5): 1643-1648. 10.1073/pnas.0408622102.CrossRefPubMedPubMedCentral Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A, Bikfalvi A: Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci U S A. 2005, 102 (5): 1643-1648. 10.1073/pnas.0408622102.CrossRefPubMedPubMedCentral
29.
go back to reference Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007, 27 (1): 53-66. 10.1016/j.molcel.2007.06.011.CrossRefPubMed Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007, 27 (1): 53-66. 10.1016/j.molcel.2007.06.011.CrossRefPubMed
30.
go back to reference Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000, 287 (5453): 664-666. 10.1126/science.287.5453.664.CrossRefPubMed Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000, 287 (5453): 664-666. 10.1126/science.287.5453.664.CrossRefPubMed
31.
go back to reference Shirakata Y, Komurasaki T, Toyoda H, Hanakawa Y, Yamasaki K, Tokumaru S, Sayama K, Hashimoto K: Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes. J Biol Chem. 2000, 275 (8): 5748-5753. 10.1074/jbc.275.8.5748.CrossRefPubMed Shirakata Y, Komurasaki T, Toyoda H, Hanakawa Y, Yamasaki K, Tokumaru S, Sayama K, Hashimoto K: Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes. J Biol Chem. 2000, 275 (8): 5748-5753. 10.1074/jbc.275.8.5748.CrossRefPubMed
32.
go back to reference Taylor DS, Cheng X, Pawlowski JE, Wallace AR, Ferrer P, Molloy CJ: Epiregulin is a potent vascular smooth muscle cell-derived mitogen induced by angiotensin II, endothelin-1, and thrombin. Proc Natl Acad Sci U S A. 1999, 96 (4): 1633-1638. 10.1073/pnas.96.4.1633.CrossRefPubMedPubMedCentral Taylor DS, Cheng X, Pawlowski JE, Wallace AR, Ferrer P, Molloy CJ: Epiregulin is a potent vascular smooth muscle cell-derived mitogen induced by angiotensin II, endothelin-1, and thrombin. Proc Natl Acad Sci U S A. 1999, 96 (4): 1633-1638. 10.1073/pnas.96.4.1633.CrossRefPubMedPubMedCentral
33.
go back to reference Lee D, Pearsall RS, Das S, Dey SK, Godfrey VL, Threadgill DW: Epiregulin is not essential for development of intestinal tumors but is required for protection from intestinal damage. Mol Cell Biol. 2004, 24 (20): 8907-8916. 10.1128/MCB.24.20.8907-8916.2004.CrossRefPubMedPubMedCentral Lee D, Pearsall RS, Das S, Dey SK, Godfrey VL, Threadgill DW: Epiregulin is not essential for development of intestinal tumors but is required for protection from intestinal damage. Mol Cell Biol. 2004, 24 (20): 8907-8916. 10.1128/MCB.24.20.8907-8916.2004.CrossRefPubMedPubMedCentral
34.
go back to reference Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, Lee DC, Threadgill DW, Conti M: Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol. 2007, 27 (5): 1914-1924. 10.1128/MCB.01919-06.CrossRefPubMed Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, Lee DC, Threadgill DW, Conti M: Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol. 2007, 27 (5): 1914-1924. 10.1128/MCB.01919-06.CrossRefPubMed
35.
go back to reference Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, Richards JS: MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009, 324 (5929): 938-941. 10.1126/science.1171396.CrossRefPubMedPubMedCentral Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, Richards JS: MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009, 324 (5929): 938-941. 10.1126/science.1171396.CrossRefPubMedPubMedCentral
36.
go back to reference Shirasawa S, Sugiyama S, Baba I, Inokuchi J, Sekine S, Ogino K, Kawamura Y, Dohi T, Fujimoto M, Sasazuki T: Dermatitis due to epiregulin deficiency and a critical role of epiregulin in immune-related responses of keratinocyte and macrophage. Proc Natl Acad Sci U S A. 2004, 101 (38): 13921-13926. 10.1073/pnas.0404217101.CrossRefPubMedPubMedCentral Shirasawa S, Sugiyama S, Baba I, Inokuchi J, Sekine S, Ogino K, Kawamura Y, Dohi T, Fujimoto M, Sasazuki T: Dermatitis due to epiregulin deficiency and a critical role of epiregulin in immune-related responses of keratinocyte and macrophage. Proc Natl Acad Sci U S A. 2004, 101 (38): 13921-13926. 10.1073/pnas.0404217101.CrossRefPubMedPubMedCentral
37.
go back to reference Regales L, Gong Y, Shen R, de Stanchina E, Vivanco I, Goel A, Koutcher JA, Spassova M, Ouerfelli O, Mellinghoff IK, et al: Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest. 2009, 119 (10): 3000-3010.PubMedPubMedCentral Regales L, Gong Y, Shen R, de Stanchina E, Vivanco I, Goel A, Koutcher JA, Spassova M, Ouerfelli O, Mellinghoff IK, et al: Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest. 2009, 119 (10): 3000-3010.PubMedPubMedCentral
38.
go back to reference Sauer L, Gitenay D, Vo C, Baron VT: Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells. Oncogene. 2010, 29 (18): 2628-2637. 10.1038/onc.2010.24.CrossRefPubMedPubMedCentral Sauer L, Gitenay D, Vo C, Baron VT: Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells. Oncogene. 2010, 29 (18): 2628-2637. 10.1038/onc.2010.24.CrossRefPubMedPubMedCentral
39.
go back to reference Cho MC, Choi HS, Lee S, Kim BY, Jung M, Park SN, Yoon DY: Epiregulin expression by Ets-1 and ERK signaling pathway in Ki-ras-transformed cells. Biochem Biophys Res Commun. 2008, 377 (3): 832-837. 10.1016/j.bbrc.2008.10.053.CrossRefPubMed Cho MC, Choi HS, Lee S, Kim BY, Jung M, Park SN, Yoon DY: Epiregulin expression by Ets-1 and ERK signaling pathway in Ki-ras-transformed cells. Biochem Biophys Res Commun. 2008, 377 (3): 832-837. 10.1016/j.bbrc.2008.10.053.CrossRefPubMed
40.
go back to reference Kim HS, Kim MS, Hancock AL, Harper JC, Park JY, Poy G, Perantoni AO, Cam M, Malik K, Lee SB: Identification of novel Wilms' tumor suppressor gene target genes implicated in kidney development. J Biol Chem. 2007, 282 (22): 16278-16287. 10.1074/jbc.M700215200.CrossRefPubMed Kim HS, Kim MS, Hancock AL, Harper JC, Park JY, Poy G, Perantoni AO, Cam M, Malik K, Lee SB: Identification of novel Wilms' tumor suppressor gene target genes implicated in kidney development. J Biol Chem. 2007, 282 (22): 16278-16287. 10.1074/jbc.M700215200.CrossRefPubMed
41.
go back to reference Hayashida T, Takahashi F, Chiba N, Brachtel E, Takahashi M, Godin-Heymann N, Gross KW, Vivanco MM, Wijendran V, Shioda T, et al: HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis. Proc Natl Acad Sci U S A. 2010, 107 (3): 1100-1105. 10.1073/pnas.0912710107.CrossRefPubMed Hayashida T, Takahashi F, Chiba N, Brachtel E, Takahashi M, Godin-Heymann N, Gross KW, Vivanco MM, Wijendran V, Shioda T, et al: HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis. Proc Natl Acad Sci U S A. 2010, 107 (3): 1100-1105. 10.1073/pnas.0912710107.CrossRefPubMed
42.
go back to reference Orso F, Penna E, Cimino D, Astanina E, Maione F, Valdembri D, Giraudo E, Serini G, Sismondi P, De Bortoli M, et al: AP-2alpha and AP-2gamma regulate tumor progression via specific genetic programs. FASEB J. 2008, 22 (8): 2702-2714. 10.1096/fj.08-106492.CrossRefPubMed Orso F, Penna E, Cimino D, Astanina E, Maione F, Valdembri D, Giraudo E, Serini G, Sismondi P, De Bortoli M, et al: AP-2alpha and AP-2gamma regulate tumor progression via specific genetic programs. FASEB J. 2008, 22 (8): 2702-2714. 10.1096/fj.08-106492.CrossRefPubMed
43.
go back to reference Li X, Massa PE, Hanidu A, Peet GW, Aro P, Savitt A, Mische S, Li J, Marcu KB: IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program. J Biol Chem. 2002, 277 (47): 45129-45140. 10.1074/jbc.M205165200.CrossRefPubMedPubMedCentral Li X, Massa PE, Hanidu A, Peet GW, Aro P, Savitt A, Mische S, Li J, Marcu KB: IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program. J Biol Chem. 2002, 277 (47): 45129-45140. 10.1074/jbc.M205165200.CrossRefPubMedPubMedCentral
44.
go back to reference Charalambous CT, Hannigan A, Tsimbouri P, McPhee GM, Wilson JB: Latent membrane protein 1-induced EGFR signalling is negatively regulated by TGF alpha prior to neoplasia. Carcinogenesis. 2007, 28 (8): 1839-1848. 10.1093/carcin/bgm055.CrossRefPubMed Charalambous CT, Hannigan A, Tsimbouri P, McPhee GM, Wilson JB: Latent membrane protein 1-induced EGFR signalling is negatively regulated by TGF alpha prior to neoplasia. Carcinogenesis. 2007, 28 (8): 1839-1848. 10.1093/carcin/bgm055.CrossRefPubMed
45.
go back to reference Pereira ER, Liao N, Neale GA, Hendershot LM: Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One. 2010, 5 (9): e12521-10.1371/journal.pone.0012521.CrossRefPubMedPubMedCentral Pereira ER, Liao N, Neale GA, Hendershot LM: Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One. 2010, 5 (9): e12521-10.1371/journal.pone.0012521.CrossRefPubMedPubMedCentral
46.
go back to reference Sloss CM, Wang F, Palladino MA, Cusack JC: Activation of EGFR by proteasome inhibition requires HB-EGF in pancreatic cancer cells. Oncogene. 2010, 29 (21): 3146-3152. 10.1038/onc.2010.52.CrossRefPubMedPubMedCentral Sloss CM, Wang F, Palladino MA, Cusack JC: Activation of EGFR by proteasome inhibition requires HB-EGF in pancreatic cancer cells. Oncogene. 2010, 29 (21): 3146-3152. 10.1038/onc.2010.52.CrossRefPubMedPubMedCentral
47.
go back to reference Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM: Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol. 2007, 171 (2): 513-524. 10.2353/ajpath.2007.070188.CrossRefPubMedPubMedCentral Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM: Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol. 2007, 171 (2): 513-524. 10.2353/ajpath.2007.070188.CrossRefPubMedPubMedCentral
48.
go back to reference Kato H, Nakajima S, Saito Y, Takahashi S, Katoh R, Kitamura M: mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ. 2012, 19 (2): 310-320. 10.1038/cdd.2011.98.CrossRefPubMed Kato H, Nakajima S, Saito Y, Takahashi S, Katoh R, Kitamura M: mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ. 2012, 19 (2): 310-320. 10.1038/cdd.2011.98.CrossRefPubMed
49.
go back to reference Hoffmann E, Ashouri J, Wolter S, Doerrie A, Dittrich-Breiholz O, Schneider H, Wagner EF, Troppmair J, Mackman N, Kracht M: Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem. 2008, 283 (18): 12120-12128. 10.1074/jbc.M800583200.CrossRefPubMed Hoffmann E, Ashouri J, Wolter S, Doerrie A, Dittrich-Breiholz O, Schneider H, Wagner EF, Troppmair J, Mackman N, Kracht M: Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem. 2008, 283 (18): 12120-12128. 10.1074/jbc.M800583200.CrossRefPubMed
50.
go back to reference Menu P, Mayor A, Zhou R, Tardivel A, Ichijo H, Mori K, Tschopp J: ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 2012, 3: e261-10.1038/cddis.2011.132.CrossRefPubMedPubMedCentral Menu P, Mayor A, Zhou R, Tardivel A, Ichijo H, Mori K, Tschopp J: ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 2012, 3: e261-10.1038/cddis.2011.132.CrossRefPubMedPubMedCentral
51.
go back to reference Smith GM, Strunz C: Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia. 2005, 52 (3): 209-218. 10.1002/glia.20236.CrossRefPubMed Smith GM, Strunz C: Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia. 2005, 52 (3): 209-218. 10.1002/glia.20236.CrossRefPubMed
Metadata
Title
High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor
Authors
Gregor Auf
Arnaud Jabouille
Maylis Delugin
Sylvaine Guérit
Raphael Pineau
Sophie North
Natalia Platonova
Marlène Maitre
Alexandre Favereaux
Peter Vajkoczy
Masaharu Seno
Andreas Bikfalvi
Dmitri Minchenko
Oleksandr Minchenko
Michel Moenner
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-597

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine