Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients

Authors: Liesbeth Hameetman, Suzan Commandeur, Jan Nico Bouwes Bavinck, Hermina C Wisgerhof, Frank R de Gruijl, Rein Willemze, Leon Mullenders, Cornelis P Tensen, Harry Vrieling

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

The risk of developing cutaneous squamous cell carcinoma (SCC) is markedly increased in organ transplant recipients (OTRs) compared to the normal population. Next to sun exposure, the immunosuppressive regimen is an important risk factor for the development of SCC in OTRs. Various gene mutations (e.g. TP53) and genetic alterations (e.g. loss of CDKN2A, amplification of RAS) have been found in SCCs. The aim of this genome-wide study was to identify pathways and genomic alterations that are consistently involved in the formation of SCCs and their precursor lesions, actinic keratoses (AKs).

Methods

To perform the analysis in an isogenic background, RNA and DNA were isolated from SCC, AK and normal (unexposed) epidermis (NS) from each of 13 OTRs. Samples were subjected to genome-wide expression analysis and genome SNP analysis using Illumina’s HumanWG-6 BeadChips and Infinium II HumanHap550 Genotyping BeadChips, respectively. mRNA expression results were verified by quantitative PCR.

Results

Hierarchical cluster analysis of mRNA expression profiles showed SCC, AK and NS samples to separate into three distinct groups. Several thousand genes were differentially expressed between epidermis, AK and SCC; most upregulated in SCCs were hyperproliferation related genes and stress markers, such as keratin 6 (KRT6), KRT16 and KRT17. Matching to oncogenic pathways revealed activation of downstream targets of RAS and cMYC in SCCs and of NFκB and TNF already in AKs. In contrast to what has been reported previously, genome-wide SNP analysis showed very few copy number variations in AKs and SCCs, and these variations had no apparent relationship with observed changes in mRNA expression profiles.

Conclusion

Vast differences in gene expression profiles exist between SCC, AK and NS from immunosuppressed OTRs. Moreover, several pathways activated in SCCs were already activated in AKs, confirming the assumption that AKs are the precursor lesions of SCCs. Since the drastic changes in gene expression appeared unlinked to specific genomic gains or losses, the causal events driving SCC development require further investigation. Other molecular mechanisms, such as DNA methylation or miRNA alterations, may affect gene expression in SCCs of OTRs. Further study is required to identify the mechanisms of early activation of NFκB and TNF, and to establish whether these pathways offer a feasible target for preventive intervention among OTRs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bouwes Bavinck JN, Hardie DR, Green A, Cutmore S, MacNaught A, O’Sullivan B, Siskind V, van ver Woude FJ, Hardie IR: The risk of skin cancer in renal transplant recipients in Queensland, Australia. A follow-up study. Transplantation. 1996, 61: 715-721. 10.1097/00007890-199603150-00008.CrossRefPubMed Bouwes Bavinck JN, Hardie DR, Green A, Cutmore S, MacNaught A, O’Sullivan B, Siskind V, van ver Woude FJ, Hardie IR: The risk of skin cancer in renal transplant recipients in Queensland, Australia. A follow-up study. Transplantation. 1996, 61: 715-721. 10.1097/00007890-199603150-00008.CrossRefPubMed
2.
go back to reference Bordea C, Wojnarowska F, Millard PR, Doll H, Welsh K, Morris PJ: Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation. 2004, 77: 574-579. 10.1097/01.TP.0000108491.62935.DF.CrossRefPubMed Bordea C, Wojnarowska F, Millard PR, Doll H, Welsh K, Morris PJ: Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation. 2004, 77: 574-579. 10.1097/01.TP.0000108491.62935.DF.CrossRefPubMed
3.
go back to reference Fortina AB, Piaserico S, Caforio AL, Abeni D, Alaibac M, Angelini A, Iliceto S, Peserico A: Immunosuppressive level and other risk factors for basal cell carcinoma and squamous cell carcinoma in heart transplant recipients. Arch Dermatol. 2004, 140: 1079-1085. 10.1001/archderm.140.9.1079.CrossRefPubMed Fortina AB, Piaserico S, Caforio AL, Abeni D, Alaibac M, Angelini A, Iliceto S, Peserico A: Immunosuppressive level and other risk factors for basal cell carcinoma and squamous cell carcinoma in heart transplant recipients. Arch Dermatol. 2004, 140: 1079-1085. 10.1001/archderm.140.9.1079.CrossRefPubMed
4.
go back to reference Glover MT, Deeks JJ, Raftery MJ, Cunningham J, Leigh IM: Immunosuppression and risk of non-melanoma skin cancer in renal transplant recipients. Lancet. 1997, 349: 398-CrossRefPubMed Glover MT, Deeks JJ, Raftery MJ, Cunningham J, Leigh IM: Immunosuppression and risk of non-melanoma skin cancer in renal transplant recipients. Lancet. 1997, 349: 398-CrossRefPubMed
5.
go back to reference Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J: A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA. 1991, 88: 10124-10128. 10.1073/pnas.88.22.10124.CrossRefPubMedPubMedCentral Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J: A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA. 1991, 88: 10124-10128. 10.1073/pnas.88.22.10124.CrossRefPubMedPubMedCentral
6.
go back to reference Ullrich SE: Mechanisms underlying UV-induced immune suppression. Mutat Res. 2005, 571: 185-205. 10.1016/j.mrfmmm.2004.06.059.CrossRefPubMed Ullrich SE: Mechanisms underlying UV-induced immune suppression. Mutat Res. 2005, 571: 185-205. 10.1016/j.mrfmmm.2004.06.059.CrossRefPubMed
7.
go back to reference Proby CM, Harwood CA, Neale RE, Green AC, Euvrard S, Naldi L, Tessari G, Feltkamp MC, de Koning MN, Quint WG, et al: A case–control study of betapapillomavirus infection and cutaneous squamous cell carcinoma in organ transplant recipients. Am J Transplant. 2011, 11: 1498-1508. 10.1111/j.1600-6143.2011.03589.x.CrossRefPubMed Proby CM, Harwood CA, Neale RE, Green AC, Euvrard S, Naldi L, Tessari G, Feltkamp MC, de Koning MN, Quint WG, et al: A case–control study of betapapillomavirus infection and cutaneous squamous cell carcinoma in organ transplant recipients. Am J Transplant. 2011, 11: 1498-1508. 10.1111/j.1600-6143.2011.03589.x.CrossRefPubMed
8.
go back to reference Nindl I, Gottschling M, Stockfleth E: Human papillomaviruses and non-melanoma skin cancer: Basic virology and clinical manifestations. Dis Markers. 2007, 23: 247-259.CrossRefPubMedPubMedCentral Nindl I, Gottschling M, Stockfleth E: Human papillomaviruses and non-melanoma skin cancer: Basic virology and clinical manifestations. Dis Markers. 2007, 23: 247-259.CrossRefPubMedPubMedCentral
9.
go back to reference Arron ST, Ruby JG, Dybbro E, Ganem D, Derisi JL: Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma. J Invest Dermatol. 2011, 131: 1745-1753. 10.1038/jid.2011.91.CrossRefPubMedPubMedCentral Arron ST, Ruby JG, Dybbro E, Ganem D, Derisi JL: Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma. J Invest Dermatol. 2011, 131: 1745-1753. 10.1038/jid.2011.91.CrossRefPubMedPubMedCentral
10.
go back to reference Ko CJ: Actinic keratosis: facts and controversies. Clin Dermatol. 2010, 28: 249-253. 10.1016/j.clindermatol.2009.06.009.CrossRefPubMed Ko CJ: Actinic keratosis: facts and controversies. Clin Dermatol. 2010, 28: 249-253. 10.1016/j.clindermatol.2009.06.009.CrossRefPubMed
11.
go back to reference McGregor JM, Berkhout RJ, Rozycka M, ter Schegget J, Rozycka M, Bouwes Bavinck JN, Crook T: p53 mutations implicate sunlight in post-transplant skin cancer irrespective of human papillomavirus status. Oncogene. 1997, 15: 1737-1740. 10.1038/sj.onc.1201339.CrossRefPubMed McGregor JM, Berkhout RJ, Rozycka M, ter Schegget J, Rozycka M, Bouwes Bavinck JN, Crook T: p53 mutations implicate sunlight in post-transplant skin cancer irrespective of human papillomavirus status. Oncogene. 1997, 15: 1737-1740. 10.1038/sj.onc.1201339.CrossRefPubMed
12.
go back to reference Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA, Leffell DJ, Tarone RE, Brash DE: Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA. 1996, 93: 14025-14029. 10.1073/pnas.93.24.14025.CrossRefPubMedPubMedCentral Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA, Leffell DJ, Tarone RE, Brash DE: Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA. 1996, 93: 14025-14029. 10.1073/pnas.93.24.14025.CrossRefPubMedPubMedCentral
13.
go back to reference Rebel H, Mosnier LO, Berg RJ, Westerman-de Vries A, van Steeg H, van Kranen HJ, de de Gruijl HJ: Early p53-positive foci as indicators of tumor risk in ultraviolet-exposed hairless mice: kinetics of induction, effects of DNA repair deficiency, and p53 heterozygosity. Cancer Res. 2001, 61: 977-983.PubMed Rebel H, Mosnier LO, Berg RJ, Westerman-de Vries A, van Steeg H, van Kranen HJ, de de Gruijl HJ: Early p53-positive foci as indicators of tumor risk in ultraviolet-exposed hairless mice: kinetics of induction, effects of DNA repair deficiency, and p53 heterozygosity. Cancer Res. 2001, 61: 977-983.PubMed
14.
go back to reference de Graaf YG, Rebel H, Elghalbzouri A, Cramers P, Nellen RG, Willemze R, Bouwes Bavinck JN, de Gruijl FR: More epidermal p53 patches adjacent to skin carcinomas in renal transplant recipients than in immunocompetent patients: the role of azathioprine. Exp Dermatol. 2008, 17: 349-355. 10.1111/j.1600-0625.2007.00651.x.CrossRefPubMed de Graaf YG, Rebel H, Elghalbzouri A, Cramers P, Nellen RG, Willemze R, Bouwes Bavinck JN, de Gruijl FR: More epidermal p53 patches adjacent to skin carcinomas in renal transplant recipients than in immunocompetent patients: the role of azathioprine. Exp Dermatol. 2008, 17: 349-355. 10.1111/j.1600-0625.2007.00651.x.CrossRefPubMed
15.
go back to reference Boukamp P: Non-melanoma skin cancer: what drives tumor development and progression?. Carcinogenesis. 2005, 26: 1657-1667. 10.1093/carcin/bgi123.CrossRefPubMed Boukamp P: Non-melanoma skin cancer: what drives tumor development and progression?. Carcinogenesis. 2005, 26: 1657-1667. 10.1093/carcin/bgi123.CrossRefPubMed
16.
go back to reference Tsang DK, Crowe DL: The mitogen activated protein kinase pathway is required for proliferation but not invasion of human squamous cell carcinoma lines. Int J Oncol. 1999, 15: 519-523.PubMed Tsang DK, Crowe DL: The mitogen activated protein kinase pathway is required for proliferation but not invasion of human squamous cell carcinoma lines. Int J Oncol. 1999, 15: 519-523.PubMed
17.
go back to reference Ashton KJ, Weinstein SR, Maguire DJ, Griffiths LR: Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. Arch Dermatol. 2003, 139: 876-882. 10.1001/archderm.139.7.876.CrossRefPubMed Ashton KJ, Weinstein SR, Maguire DJ, Griffiths LR: Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. Arch Dermatol. 2003, 139: 876-882. 10.1001/archderm.139.7.876.CrossRefPubMed
18.
go back to reference Purdie KJ, Lambert SR, Teh MT, Chaplin T, Molloy G, Raghavan M, Kelsell DP, Leigh IM, Harwood CA, Proby CM, et al: Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes Chromosomes Cancer. 2007, 46: 661-669. 10.1002/gcc.20447.CrossRefPubMedPubMedCentral Purdie KJ, Lambert SR, Teh MT, Chaplin T, Molloy G, Raghavan M, Kelsell DP, Leigh IM, Harwood CA, Proby CM, et al: Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes Chromosomes Cancer. 2007, 46: 661-669. 10.1002/gcc.20447.CrossRefPubMedPubMedCentral
19.
go back to reference Purdie KJ, Harwood CA, Gulati A, Chaplin T, Lambert SR, Cerio R, Kelly GP, Cazier JB, Young BD, Leigh IM, et al: Single nucleotide polymorphism array analysis defines a specific genetic fingerprint for well-differentiated cutaneous SCCs. J Invest Dermatol. 2009, 129: 1562-1568. 10.1038/jid.2008.408.CrossRefPubMedPubMedCentral Purdie KJ, Harwood CA, Gulati A, Chaplin T, Lambert SR, Cerio R, Kelly GP, Cazier JB, Young BD, Leigh IM, et al: Single nucleotide polymorphism array analysis defines a specific genetic fingerprint for well-differentiated cutaneous SCCs. J Invest Dermatol. 2009, 129: 1562-1568. 10.1038/jid.2008.408.CrossRefPubMedPubMedCentral
20.
go back to reference Rehman I, Takata M, Wu YY, Rees JL: Genetic change in actinic keratoses. Oncogene. 1996, 12: 2483-2490.PubMed Rehman I, Takata M, Wu YY, Rees JL: Genetic change in actinic keratoses. Oncogene. 1996, 12: 2483-2490.PubMed
21.
go back to reference van Haren R, Feldman D, Sinha AA: Systematic comparison of nonmelanoma skin cancer microarray datasets reveals lack of consensus genes. Br J Dermatol. 2009, 161: 1278-1287. 10.1111/j.1365-2133.2009.09338.x.CrossRefPubMed van Haren R, Feldman D, Sinha AA: Systematic comparison of nonmelanoma skin cancer microarray datasets reveals lack of consensus genes. Br J Dermatol. 2009, 161: 1278-1287. 10.1111/j.1365-2133.2009.09338.x.CrossRefPubMed
22.
go back to reference Hudson LG, Gale JM, Padilla RS, Pickett G, Alexander BE, Wang J, Kusewitt DF: Microarray analysis of cutaneous squamous cell carcinomas reveals enhanced expression of epidermal differentiation complex genes. Mol Carcinog. 2010, 49: 619-629. 10.1002/mc.20636.CrossRefPubMedPubMedCentral Hudson LG, Gale JM, Padilla RS, Pickett G, Alexander BE, Wang J, Kusewitt DF: Microarray analysis of cutaneous squamous cell carcinomas reveals enhanced expression of epidermal differentiation complex genes. Mol Carcinog. 2010, 49: 619-629. 10.1002/mc.20636.CrossRefPubMedPubMedCentral
23.
go back to reference Padilla RS, Sebastian S, Jiang Z, Nindl I, Larson R: Gene expression patterns of normal human skin, actinic keratosis, and squamous cell carcinoma: a spectrum of disease progression. Arch Dermatol. 2010, 146: 288-293. 10.1001/archdermatol.2009.378.CrossRefPubMed Padilla RS, Sebastian S, Jiang Z, Nindl I, Larson R: Gene expression patterns of normal human skin, actinic keratosis, and squamous cell carcinoma: a spectrum of disease progression. Arch Dermatol. 2010, 146: 288-293. 10.1001/archdermatol.2009.378.CrossRefPubMed
24.
go back to reference Ra SH, Li X, Binder S: Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod Pathol. 2011, 24: 963-973.PubMed Ra SH, Li X, Binder S: Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod Pathol. 2011, 24: 963-973.PubMed
25.
go back to reference Hofbauer GF, Bouwes Bavinck JN, Euvrard S: Organ transplantation and skin cancer: basic problems and new perspectives. Exp Dermatol. 2010, 19: 473-482. 10.1111/j.1600-0625.2010.01086.x.CrossRefPubMed Hofbauer GF, Bouwes Bavinck JN, Euvrard S: Organ transplantation and skin cancer: basic problems and new perspectives. Exp Dermatol. 2010, 19: 473-482. 10.1111/j.1600-0625.2010.01086.x.CrossRefPubMed
26.
go back to reference Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH: A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003, 63: 1727-1730.PubMed Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH: A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003, 63: 1727-1730.PubMed
28.
go back to reference Furge KA, Chen J, Koeman J, Swiatek P, Dykema K, Lucin K, Kahnoski R, Yang XJ, Teh BT: Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res. 2007, 67: 3171-3176. 10.1158/0008-5472.CAN-06-4571.CrossRefPubMed Furge KA, Chen J, Koeman J, Swiatek P, Dykema K, Lucin K, Kahnoski R, Yang XJ, Teh BT: Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res. 2007, 67: 3171-3176. 10.1158/0008-5472.CAN-06-4571.CrossRefPubMed
29.
go back to reference Gugasyan R, Voss A, Varigos G, Thomas T, Grumont RJ, Kaur P, Grigoriadis G, Gerondakis S: The transcription factors c-rel and RelA control epidermal development and homeostasis in embryonic and adult skin via distinct mechanisms. Mol Cell Biol. 2004, 24: 5733-5745. 10.1128/MCB.24.13.5733-5745.2004.CrossRefPubMedPubMedCentral Gugasyan R, Voss A, Varigos G, Thomas T, Grumont RJ, Kaur P, Grigoriadis G, Gerondakis S: The transcription factors c-rel and RelA control epidermal development and homeostasis in embryonic and adult skin via distinct mechanisms. Mol Cell Biol. 2004, 24: 5733-5745. 10.1128/MCB.24.13.5733-5745.2004.CrossRefPubMedPubMedCentral
30.
go back to reference Loercher A, Lee TL, Ricker JL, Howard A, Geoghegen J, Chen Z, Sunwoo JB, Sitcheran R, Chuang EY, Mitchell JB, et al: Nuclear factor-kappaB is an important modulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma. Cancer Res. 2004, 64: 6511-6523. 10.1158/0008-5472.CAN-04-0852.CrossRefPubMed Loercher A, Lee TL, Ricker JL, Howard A, Geoghegen J, Chen Z, Sunwoo JB, Sitcheran R, Chuang EY, Mitchell JB, et al: Nuclear factor-kappaB is an important modulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma. Cancer Res. 2004, 64: 6511-6523. 10.1158/0008-5472.CAN-04-0852.CrossRefPubMed
31.
go back to reference Rittie L, Kansra S, Stoll SW, Li Y, Gudjonsson JE, Shao Y, Michael LE, Fisher GJ, Johnson TM, Elder JT: Differential ErbB1 signaling in squamous cell versus basal cell carcinoma of the skin. Am J Pathol. 2007, 170: 2089-2099. 10.2353/ajpath.2007.060537.CrossRefPubMedPubMedCentral Rittie L, Kansra S, Stoll SW, Li Y, Gudjonsson JE, Shao Y, Michael LE, Fisher GJ, Johnson TM, Elder JT: Differential ErbB1 signaling in squamous cell versus basal cell carcinoma of the skin. Am J Pathol. 2007, 170: 2089-2099. 10.2353/ajpath.2007.060537.CrossRefPubMedPubMedCentral
32.
go back to reference Commandeur S, van Drongelen V, de Gruijl FR, Ghalbzouri AE: Epidermal growth factor receptor activation and inhibition in 3D in vitro models of normal skin and human cutaneous squamous cell carcinoma. Cancer Sci. 2012, 103: 2120-2126. 10.1111/cas.12026.CrossRefPubMed Commandeur S, van Drongelen V, de Gruijl FR, Ghalbzouri AE: Epidermal growth factor receptor activation and inhibition in 3D in vitro models of normal skin and human cutaneous squamous cell carcinoma. Cancer Sci. 2012, 103: 2120-2126. 10.1111/cas.12026.CrossRefPubMed
33.
go back to reference Pivarcsi A, Muller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, Kubitza R, Pippirs U, Meller S, et al: Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci USA. 2007, 104: 19055-19060. 10.1073/pnas.0705673104.CrossRefPubMedPubMedCentral Pivarcsi A, Muller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, Kubitza R, Pippirs U, Meller S, et al: Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci USA. 2007, 104: 19055-19060. 10.1073/pnas.0705673104.CrossRefPubMedPubMedCentral
34.
go back to reference Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, Orozco R, Copeland NG, Jenkins NA, McEvoy LM, et al: CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA. 1999, 96: 14470-14475. 10.1073/pnas.96.25.14470.CrossRefPubMedPubMedCentral Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, Orozco R, Copeland NG, Jenkins NA, McEvoy LM, et al: CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA. 1999, 96: 14470-14475. 10.1073/pnas.96.25.14470.CrossRefPubMedPubMedCentral
35.
go back to reference Commandeur S, de Gruijl FR, Willemze R, Tensen CP, El Ghalbzouri A: An in vitro three-dimensional model of primary human cutaneous squamous cell carcinoma. Exp Dermatol. 2009, 18: 849-856. 10.1111/j.1600-0625.2009.00856.x.CrossRefPubMed Commandeur S, de Gruijl FR, Willemze R, Tensen CP, El Ghalbzouri A: An in vitro three-dimensional model of primary human cutaneous squamous cell carcinoma. Exp Dermatol. 2009, 18: 849-856. 10.1111/j.1600-0625.2009.00856.x.CrossRefPubMed
36.
go back to reference Son KD, Kim TJ, Lee YS, Park GS, Han KT, Lim JS, Kang CS: Comparative analysis of immunohistochemical markers with invasiveness and histologic differentiation in squamous cell carcinoma and basal cell carcinoma of the skin. J Surg Oncol. 2008, 97: 615-620. 10.1002/jso.21006.CrossRefPubMed Son KD, Kim TJ, Lee YS, Park GS, Han KT, Lim JS, Kang CS: Comparative analysis of immunohistochemical markers with invasiveness and histologic differentiation in squamous cell carcinoma and basal cell carcinoma of the skin. J Surg Oncol. 2008, 97: 615-620. 10.1002/jso.21006.CrossRefPubMed
37.
go back to reference Tsukifuji R, Tagawa K, Hatamochi A, Shinkai H: Expression of matrix metalloproteinase-1, -2 and −3 in squamous cell carcinoma and actinic keratosis. Br J Cancer. 1999, 80: 1087-1091. 10.1038/sj.bjc.6690468.CrossRefPubMedPubMedCentral Tsukifuji R, Tagawa K, Hatamochi A, Shinkai H: Expression of matrix metalloproteinase-1, -2 and −3 in squamous cell carcinoma and actinic keratosis. Br J Cancer. 1999, 80: 1087-1091. 10.1038/sj.bjc.6690468.CrossRefPubMedPubMedCentral
38.
go back to reference Chebassier N, Leroy S, Tenaud I, Knol AC, Dreno B: Overexpression of MMP-2 and MMP-9 in squamous cell carcinomas of immunosuppressed patients. Arch Dermatol Res. 2002, 294: 124-126. 10.1007/s00403-002-0299-x.CrossRefPubMed Chebassier N, Leroy S, Tenaud I, Knol AC, Dreno B: Overexpression of MMP-2 and MMP-9 in squamous cell carcinomas of immunosuppressed patients. Arch Dermatol Res. 2002, 294: 124-126. 10.1007/s00403-002-0299-x.CrossRefPubMed
39.
go back to reference Ahmed ST, Darnell JE: Serpin B3/B4, activated by STAT3, promote survival of squamous carcinoma cells. Biochem Biophys Res Commun. 2009, 378: 821-825. 10.1016/j.bbrc.2008.11.147.CrossRefPubMed Ahmed ST, Darnell JE: Serpin B3/B4, activated by STAT3, promote survival of squamous carcinoma cells. Biochem Biophys Res Commun. 2009, 378: 821-825. 10.1016/j.bbrc.2008.11.147.CrossRefPubMed
40.
go back to reference Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA, Belmont J, et al: High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 2006, 16: 1136-1148. 10.1101/gr.5402306.CrossRefPubMedPubMedCentral Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA, Belmont J, et al: High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 2006, 16: 1136-1148. 10.1101/gr.5402306.CrossRefPubMedPubMedCentral
41.
go back to reference Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, et al: Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010, 467: 1114-1117. 10.1038/nature09515.CrossRefPubMedPubMedCentral Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, et al: Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010, 467: 1114-1117. 10.1038/nature09515.CrossRefPubMedPubMedCentral
42.
go back to reference Ashton KJ, Carless MA, Griffiths LR: Cytogenetic alterations in nonmelanoma skin cancer: a review. Genes Chromosomes Cancer. 2005, 43: 239-248. 10.1002/gcc.20183.CrossRefPubMed Ashton KJ, Carless MA, Griffiths LR: Cytogenetic alterations in nonmelanoma skin cancer: a review. Genes Chromosomes Cancer. 2005, 43: 239-248. 10.1002/gcc.20183.CrossRefPubMed
43.
go back to reference Rehman I, Quinn AG, Takata M, Taylor AE, Rees JL: Low frequency of allelic loss in skin tumours from immunosuppressed individuals. Br J Cancer. 1997, 76: 757-759. 10.1038/bjc.1997.457.CrossRefPubMedPubMedCentral Rehman I, Quinn AG, Takata M, Taylor AE, Rees JL: Low frequency of allelic loss in skin tumours from immunosuppressed individuals. Br J Cancer. 1997, 76: 757-759. 10.1038/bjc.1997.457.CrossRefPubMedPubMedCentral
44.
go back to reference O’Donovan P, Perrett CM, Zhang X, Montaner B, Xu YZ, Harwood CA, McGregor JM, Walker SL, Hanaoka F, Karran P: Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005, 309: 1871-1874. 10.1126/science.1114233.CrossRefPubMedPubMedCentral O’Donovan P, Perrett CM, Zhang X, Montaner B, Xu YZ, Harwood CA, McGregor JM, Walker SL, Hanaoka F, Karran P: Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005, 309: 1871-1874. 10.1126/science.1114233.CrossRefPubMedPubMedCentral
45.
go back to reference Wisgerhof HC, van der Geest LG, de Fijter JW, Haasnoot GW, Claas FH, le Cessie S, Willemze R, Bouwes Bavinck JN: Incidence of cancer in kidney-transplant recipients: a long-term cohort study in a single center. Cancer Epidemiol. 2011, 35: 105-111. 10.1016/j.canep.2010.07.002.CrossRefPubMed Wisgerhof HC, van der Geest LG, de Fijter JW, Haasnoot GW, Claas FH, le Cessie S, Willemze R, Bouwes Bavinck JN: Incidence of cancer in kidney-transplant recipients: a long-term cohort study in a single center. Cancer Epidemiol. 2011, 35: 105-111. 10.1016/j.canep.2010.07.002.CrossRefPubMed
46.
go back to reference Breuninger H, Black B, Rassner G: Microstaging of squamous cell carcinomas. Am J Clin Pathol. 1990, 94: 624-627.CrossRefPubMed Breuninger H, Black B, Rassner G: Microstaging of squamous cell carcinomas. Am J Clin Pathol. 1990, 94: 624-627.CrossRefPubMed
47.
go back to reference Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16: 1215-10.1093/nar/16.3.1215.CrossRefPubMedPubMedCentral Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16: 1215-10.1093/nar/16.3.1215.CrossRefPubMedPubMedCentral
48.
go back to reference Du P, Kibbe WA, Lin SM: lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008, 24: 1547-1548. 10.1093/bioinformatics/btn224.CrossRefPubMed Du P, Kibbe WA, Lin SM: lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008, 24: 1547-1548. 10.1093/bioinformatics/btn224.CrossRefPubMed
49.
50.
go back to reference Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3: Article3-PubMed Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3: Article3-PubMed
51.
go back to reference Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57.CrossRef Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57.CrossRef
52.
go back to reference Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP, Wasserman WW: oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res. 2005, 33: 3154-3164. 10.1093/nar/gki624.CrossRefPubMedPubMedCentral Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP, Wasserman WW: oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res. 2005, 33: 3154-3164. 10.1093/nar/gki624.CrossRefPubMedPubMedCentral
53.
go back to reference Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.CrossRefPubMedPubMedCentral Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.CrossRefPubMedPubMedCentral
54.
go back to reference Vandesompele J, de Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: RESEARCH0034-CrossRefPubMedPubMedCentral Vandesompele J, de Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: RESEARCH0034-CrossRefPubMedPubMedCentral
55.
go back to reference Hellemans J, Mortier G, de Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8: R19-10.1186/gb-2007-8-2-r19.CrossRefPubMedPubMedCentral Hellemans J, Mortier G, de Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8: R19-10.1186/gb-2007-8-2-r19.CrossRefPubMedPubMedCentral
Metadata
Title
Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients
Authors
Liesbeth Hameetman
Suzan Commandeur
Jan Nico Bouwes Bavinck
Hermina C Wisgerhof
Frank R de Gruijl
Rein Willemze
Leon Mullenders
Cornelis P Tensen
Harry Vrieling
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-58

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine