Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Nrf2 is required to maintain the self-renewal of glioma stem cells

Authors: Jianhong Zhu, Handong Wang, Qing Sun, Xiangjun Ji, Lin Zhu, Zixiang Cong, Yuan Zhou, Huandong Liu, Mengliang Zhou

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs.

Methods

Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice.

Results

Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle.

Conclusions

Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bartek JJ, Ng K, Bartek J, Fischer W, Carter B, Chen CC: Key concepts in glioblastoma therapy. J Neurol Neurosurg Psychiatr. 2012, 83 (7): 753-760. 10.1136/jnnp-2011-300709.CrossRefPubMed Bartek JJ, Ng K, Bartek J, Fischer W, Carter B, Chen CC: Key concepts in glioblastoma therapy. J Neurol Neurosurg Psychiatr. 2012, 83 (7): 753-760. 10.1136/jnnp-2011-300709.CrossRefPubMed
2.
go back to reference Johannessen TC, Bjerkvig R, Tysnes BB: DNA repair and cancer stem-like cells–potential partners in glioma drug resistance. Canc Treat Rev. 2008, 34 (6): 558-567. 10.1016/j.ctrv.2008.03.125.CrossRef Johannessen TC, Bjerkvig R, Tysnes BB: DNA repair and cancer stem-like cells–potential partners in glioma drug resistance. Canc Treat Rev. 2008, 34 (6): 558-567. 10.1016/j.ctrv.2008.03.125.CrossRef
3.
go back to reference Das S, Srikanth M, Kessler JA: Cancer stem cells and glioma. Nat Clin Pract Neurol. 2008, 4 (8): 427-435.CrossRefPubMed Das S, Srikanth M, Kessler JA: Cancer stem cells and glioma. Nat Clin Pract Neurol. 2008, 4 (8): 427-435.CrossRefPubMed
4.
go back to reference Stiles CD, Rowitch DH: Glioma stem cells: a midterm exam. Neuron. 2008, 58 (6): 832-846. 10.1016/j.neuron.2008.05.031.CrossRefPubMed Stiles CD, Rowitch DH: Glioma stem cells: a midterm exam. Neuron. 2008, 58 (6): 832-846. 10.1016/j.neuron.2008.05.031.CrossRefPubMed
5.
go back to reference Qiu B, Zhang D, Tao J, Tie X, Wu A, Wang Y: Human brain glioma stem cells are more invasive than their differentiated progeny cells in vitro. J Clin Neurosci. 2012, 19 (1): 130-134. 10.1016/j.jocn.2011.06.014.CrossRefPubMed Qiu B, Zhang D, Tao J, Tie X, Wu A, Wang Y: Human brain glioma stem cells are more invasive than their differentiated progeny cells in vitro. J Clin Neurosci. 2012, 19 (1): 130-134. 10.1016/j.jocn.2011.06.014.CrossRefPubMed
6.
go back to reference Shmelkov SV, St CR, Lyden D, Rafii S: AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 2005, 37 (4): 715-719. 10.1016/j.biocel.2004.08.010.CrossRefPubMed Shmelkov SV, St CR, Lyden D, Rafii S: AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 2005, 37 (4): 715-719. 10.1016/j.biocel.2004.08.010.CrossRefPubMed
7.
go back to reference Fan X, Salford LG, Widegren B: Glioma stem cells: evidence and limitation. Semin Canc Biol. 2007, 17 (3): 214-218. 10.1016/j.semcancer.2006.04.002.CrossRef Fan X, Salford LG, Widegren B: Glioma stem cells: evidence and limitation. Semin Canc Biol. 2007, 17 (3): 214-218. 10.1016/j.semcancer.2006.04.002.CrossRef
8.
go back to reference Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP: CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Canc Res. 2007, 67 (9): 4010-4015. 10.1158/0008-5472.CAN-06-4180.CrossRef Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP: CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Canc Res. 2007, 67 (9): 4010-4015. 10.1158/0008-5472.CAN-06-4180.CrossRef
9.
go back to reference Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC: Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Canc Res. 2008, 14 (1): 123-129. 10.1158/1078-0432.CCR-07-0932.CrossRef Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC: Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Canc Res. 2008, 14 (1): 123-129. 10.1158/1078-0432.CCR-07-0932.CrossRef
10.
go back to reference Binello E, Germano IM: Targeting glioma stem cells: a novel framework for brain tumors. Canc Sci. 2011, 102 (11): 1958-1966. 10.1111/j.1349-7006.2011.02064.x.CrossRef Binello E, Germano IM: Targeting glioma stem cells: a novel framework for brain tumors. Canc Sci. 2011, 102 (11): 1958-1966. 10.1111/j.1349-7006.2011.02064.x.CrossRef
11.
go back to reference Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA: Notch promotes radioresistance of glioma stem cells. Stem Cells. 2010, 28 (1): 17-28.PubMedPubMedCentral Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA: Notch promotes radioresistance of glioma stem cells. Stem Cells. 2010, 28 (1): 17-28.PubMedPubMedCentral
12.
go back to reference Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Canc. 2005, 5 (4): 275-284. 10.1038/nrc1590.CrossRef Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Canc. 2005, 5 (4): 275-284. 10.1038/nrc1590.CrossRef
13.
go back to reference Alam J, Stewart D: Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999, 274 (37): 26071-26078. 10.1074/jbc.274.37.26071.CrossRefPubMed Alam J, Stewart D: Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999, 274 (37): 26071-26078. 10.1074/jbc.274.37.26071.CrossRefPubMed
14.
go back to reference Kensler TW, Wakabayashi N, Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007, 47: 89-116. 10.1146/annurev.pharmtox.46.120604.141046.CrossRefPubMed Kensler TW, Wakabayashi N, Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007, 47: 89-116. 10.1146/annurev.pharmtox.46.120604.141046.CrossRefPubMed
15.
go back to reference Motohashi H, Yamamoto M: Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004, 10 (11): 549-557. 10.1016/j.molmed.2004.09.003.CrossRefPubMed Motohashi H, Yamamoto M: Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004, 10 (11): 549-557. 10.1016/j.molmed.2004.09.003.CrossRefPubMed
16.
go back to reference Zhao F, Wu T, Lau A, Jiang T, Huang Z, Wang XJ, Chen W, Wong PK, Zhang DD: Nrf2 promotes neuronal cell differentiation. Free Radic Biol Med. 2009, 47 (6): 867-879. 10.1016/j.freeradbiomed.2009.06.029.CrossRefPubMedPubMedCentral Zhao F, Wu T, Lau A, Jiang T, Huang Z, Wang XJ, Chen W, Wong PK, Zhang DD: Nrf2 promotes neuronal cell differentiation. Free Radic Biol Med. 2009, 47 (6): 867-879. 10.1016/j.freeradbiomed.2009.06.029.CrossRefPubMedPubMedCentral
17.
go back to reference Zhou Y, Wang HD, Zhu L, Cong ZX, Li N, Ji XJ, Pan H, Wang JW, Li WC: Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line. Oncol Rep. 2013, 29 (1): 394-400.PubMed Zhou Y, Wang HD, Zhu L, Cong ZX, Li N, Ji XJ, Pan H, Wang JW, Li WC: Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line. Oncol Rep. 2013, 29 (1): 394-400.PubMed
18.
go back to reference Pan H, Wang H, Zhu L, Wang X, Cong Z, Sun K, Fan Y: The involvement of Nrf2?ARE pathway in regulation of apoptosis in human glioblastoma cell U251. Neurol Res. 2013, 35 (1): 71-78. 10.1179/1743132812Y.0000000094.CrossRefPubMed Pan H, Wang H, Zhu L, Wang X, Cong Z, Sun K, Fan Y: The involvement of Nrf2?ARE pathway in regulation of apoptosis in human glioblastoma cell U251. Neurol Res. 2013, 35 (1): 71-78. 10.1179/1743132812Y.0000000094.CrossRefPubMed
19.
go back to reference Velpula KK, Rehman AA, Chelluboina B, Dasari VR, Gondi CS, Rao JS, Veeravalli KK: Glioma stem cell invasion through regulation of the interconnected ERK, integrin alpha6 and N-cadherin signaling pathway. Cell Signal. 2012, 24 (11): 2076-2084. 10.1016/j.cellsig.2012.07.002.CrossRefPubMed Velpula KK, Rehman AA, Chelluboina B, Dasari VR, Gondi CS, Rao JS, Veeravalli KK: Glioma stem cell invasion through regulation of the interconnected ERK, integrin alpha6 and N-cadherin signaling pathway. Cell Signal. 2012, 24 (11): 2076-2084. 10.1016/j.cellsig.2012.07.002.CrossRefPubMed
20.
go back to reference Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, Liu L, Eyler CE, Heddleston JM, Wu Q, et al: Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis. 2011, 2: e200-10.1038/cddis.2011.80.CrossRefPubMedPubMedCentral Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, Liu L, Eyler CE, Heddleston JM, Wu Q, et al: Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis. 2011, 2: e200-10.1038/cddis.2011.80.CrossRefPubMedPubMedCentral
21.
go back to reference Mao XG, Yan M, Xue XY, Zhang X, Ren HG, Guo G, Wang P, Zhang W, Huo JL: Overexpression of ZNF217 in glioblastoma contributes to the maintenance of glioma stem cells regulated by hypoxia-inducible factors. Lab Invest. 2011, 91 (7): 1068-1078. 10.1038/labinvest.2011.56.CrossRefPubMed Mao XG, Yan M, Xue XY, Zhang X, Ren HG, Guo G, Wang P, Zhang W, Huo JL: Overexpression of ZNF217 in glioblastoma contributes to the maintenance of glioma stem cells regulated by hypoxia-inducible factors. Lab Invest. 2011, 91 (7): 1068-1078. 10.1038/labinvest.2011.56.CrossRefPubMed
22.
go back to reference Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR: Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol. 2008, 9 (1): 65-89. 10.1007/s10162-007-0106-7.CrossRefPubMed Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR: Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol. 2008, 9 (1): 65-89. 10.1007/s10162-007-0106-7.CrossRefPubMed
23.
go back to reference Episkopou V: SOX2 functions in adult neural stem cells. Trends Neurosci. 2005, 28 (5): 219-221. 10.1016/j.tins.2005.03.003.CrossRefPubMed Episkopou V: SOX2 functions in adult neural stem cells. Trends Neurosci. 2005, 28 (5): 219-221. 10.1016/j.tins.2005.03.003.CrossRefPubMed
24.
go back to reference He J, Shan Z, Li L, Liu F, Liu Z, Song M, Zhu H: Expression of glioma stem cell marker CD133 and O6-methylguanine-DNA methyltransferase is associated with resistance to radiotherapy in gliomas. Oncol Rep. 2011, 26 (5): 1305-1313.PubMed He J, Shan Z, Li L, Liu F, Liu Z, Song M, Zhu H: Expression of glioma stem cell marker CD133 and O6-methylguanine-DNA methyltransferase is associated with resistance to radiotherapy in gliomas. Oncol Rep. 2011, 26 (5): 1305-1313.PubMed
25.
go back to reference Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS: Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Canc Res. 2007, 67 (8): 3560-3564. 10.1158/0008-5472.CAN-06-4238.CrossRef Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS: Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Canc Res. 2007, 67 (8): 3560-3564. 10.1158/0008-5472.CAN-06-4238.CrossRef
26.
go back to reference Park DM, Rich JN: Biology of glioma cancer stem cells. Mol Cells. 2009, 28 (1): 7-12. 10.1007/s10059-009-0111-2.CrossRefPubMed Park DM, Rich JN: Biology of glioma cancer stem cells. Mol Cells. 2009, 28 (1): 7-12. 10.1007/s10059-009-0111-2.CrossRefPubMed
27.
go back to reference Yang L, Lin C, Wang L, Guo H, Wang X: Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res. 2012, 318 (19): 2417-2426. 10.1016/j.yexcr.2012.07.017.CrossRefPubMed Yang L, Lin C, Wang L, Guo H, Wang X: Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res. 2012, 318 (19): 2417-2426. 10.1016/j.yexcr.2012.07.017.CrossRefPubMed
28.
go back to reference Heddleston JM, Wu Q, Rivera M, Minhas S, Lathia JD, Sloan AE, Iliopoulos O, Hjelmeland AB, Rich JN: Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ. 2012, 19 (3): 428-439. 10.1038/cdd.2011.109.CrossRefPubMed Heddleston JM, Wu Q, Rivera M, Minhas S, Lathia JD, Sloan AE, Iliopoulos O, Hjelmeland AB, Rich JN: Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ. 2012, 19 (3): 428-439. 10.1038/cdd.2011.109.CrossRefPubMed
29.
go back to reference Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, et al: Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 2009, 28 (45): 3949-3959. 10.1038/onc.2009.252.CrossRefPubMed Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, et al: Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 2009, 28 (45): 3949-3959. 10.1038/onc.2009.252.CrossRefPubMed
30.
go back to reference Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, et al: Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Canc Cell. 2009, 15 (6): 501-513. 10.1016/j.ccr.2009.03.018.CrossRef Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, et al: Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Canc Cell. 2009, 15 (6): 501-513. 10.1016/j.ccr.2009.03.018.CrossRef
31.
go back to reference Reddy NM, Kleeberger SR, Cho HY, Yamamoto M, Kensler TW, Biswal S, Reddy SP: Deficiency in Nrf2-GSH signaling impairs type II cell growth and enhances sensitivity to oxidants. Am J Respir Cell Mol Biol. 2007, 37 (1): 3-8. 10.1165/rcmb.2007-0004RC.CrossRefPubMedPubMedCentral Reddy NM, Kleeberger SR, Cho HY, Yamamoto M, Kensler TW, Biswal S, Reddy SP: Deficiency in Nrf2-GSH signaling impairs type II cell growth and enhances sensitivity to oxidants. Am J Respir Cell Mol Biol. 2007, 37 (1): 3-8. 10.1165/rcmb.2007-0004RC.CrossRefPubMedPubMedCentral
32.
go back to reference Santos DM, Santos MM, Moreira R, Sola S, Rodrigues CM: Synthetic condensed 1,4-naphthoquinone derivative shifts neural stem cell differentiation by regulating redox state. Mol Neurobiol. 2013, 47 (1): 313-324. 10.1007/s12035-012-8353-y.CrossRefPubMed Santos DM, Santos MM, Moreira R, Sola S, Rodrigues CM: Synthetic condensed 1,4-naphthoquinone derivative shifts neural stem cell differentiation by regulating redox state. Mol Neurobiol. 2013, 47 (1): 313-324. 10.1007/s12035-012-8353-y.CrossRefPubMed
33.
go back to reference Tsai JJ, Dudakov JA, Takahashi K, Shieh JH, Velardi E, Holland AM, Singer NV, West ML, Smith OM, Young LF, et al: Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol. 2013, 15 (3): 309-316. 10.1038/ncb2699.CrossRefPubMedPubMedCentral Tsai JJ, Dudakov JA, Takahashi K, Shieh JH, Velardi E, Holland AM, Singer NV, West ML, Smith OM, Young LF, et al: Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol. 2013, 15 (3): 309-316. 10.1038/ncb2699.CrossRefPubMedPubMedCentral
34.
go back to reference Merchant AA, Singh A, Matsui W, Biswal S: The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival independently of ROS levels. Blood. 2011, 118 (25): 6572-6579. 10.1182/blood-2011-05-355362.CrossRefPubMedPubMedCentral Merchant AA, Singh A, Matsui W, Biswal S: The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival independently of ROS levels. Blood. 2011, 118 (25): 6572-6579. 10.1182/blood-2011-05-355362.CrossRefPubMedPubMedCentral
35.
go back to reference Kato K, Takahashi K, Monzen S, Yamamoto H, Maruyama A, Itoh K, Kashiwakura I: Relationship between radiosensitivity and Nrf2 target gene expression in human hematopoietic stem cells. Radiat Res. 2010, 174 (2): 177-184. 10.1667/RR2146.1.CrossRefPubMed Kato K, Takahashi K, Monzen S, Yamamoto H, Maruyama A, Itoh K, Kashiwakura I: Relationship between radiosensitivity and Nrf2 target gene expression in human hematopoietic stem cells. Radiat Res. 2010, 174 (2): 177-184. 10.1667/RR2146.1.CrossRefPubMed
36.
go back to reference Wang Y, Guan Y, Wang F, Huang A, Wang S, Zhang YA: Bmi-1 regulates self-renewal, proliferation and senescence of human fetal neural stem cells in vitro. Neurosci Lett. 2010, 476 (2): 74-78. 10.1016/j.neulet.2010.04.006.CrossRefPubMed Wang Y, Guan Y, Wang F, Huang A, Wang S, Zhang YA: Bmi-1 regulates self-renewal, proliferation and senescence of human fetal neural stem cells in vitro. Neurosci Lett. 2010, 476 (2): 74-78. 10.1016/j.neulet.2010.04.006.CrossRefPubMed
37.
go back to reference Cox JL, Mallanna SK, Ormsbee BD, Desler M, Wiebe MS, Rizzino A: Banf1 is required to maintain the self-renewal of both mouse and human embryonic stem cells. J Cell Sci. 2011, 124 (Pt 15): 2654-2665.CrossRefPubMedPubMedCentral Cox JL, Mallanna SK, Ormsbee BD, Desler M, Wiebe MS, Rizzino A: Banf1 is required to maintain the self-renewal of both mouse and human embryonic stem cells. J Cell Sci. 2011, 124 (Pt 15): 2654-2665.CrossRefPubMedPubMedCentral
38.
go back to reference Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, et al: The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Canc Res. 2010, 70 (2): 719-729. 10.1158/0008-5472.CAN-09-1820.CrossRef Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, et al: The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Canc Res. 2010, 70 (2): 719-729. 10.1158/0008-5472.CAN-09-1820.CrossRef
39.
go back to reference Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH, Ha KS, et al: Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010, 28 (12): 2162-2171. 10.1002/stem.541.CrossRefPubMed Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH, Ha KS, et al: Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010, 28 (12): 2162-2171. 10.1002/stem.541.CrossRefPubMed
40.
go back to reference Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D: Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol. 1999, 208 (1): 166-188. 10.1006/dbio.1998.9192.CrossRefPubMed Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D: Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol. 1999, 208 (1): 166-188. 10.1006/dbio.1998.9192.CrossRefPubMed
41.
go back to reference Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Canc Res. 2006, 66 (16): 7843-7848. 10.1158/0008-5472.CAN-06-1010.CrossRef Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Canc Res. 2006, 66 (16): 7843-7848. 10.1158/0008-5472.CAN-06-1010.CrossRef
42.
go back to reference Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, Hjelmeland AB, Rich JN: Targeting cancer stem cells through L1CAM suppresses glioma growth. Canc Res. 2008, 68 (15): 6043-6048. 10.1158/0008-5472.CAN-08-1079.CrossRef Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, Hjelmeland AB, Rich JN: Targeting cancer stem cells through L1CAM suppresses glioma growth. Canc Res. 2008, 68 (15): 6043-6048. 10.1158/0008-5472.CAN-08-1079.CrossRef
43.
go back to reference Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, et al: Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells. 2012, 30 (2): 108-120. 10.1002/stem.1685.CrossRefPubMed Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, et al: Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells. 2012, 30 (2): 108-120. 10.1002/stem.1685.CrossRefPubMed
44.
go back to reference Aguado T, Carracedo A, Julien B, Velasco G, Milman G, Mechoulam R, Alvarez L, Guzman M, Galve-Roperh I: Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J Biol Chem. 2007, 282 (9): 6854-6862.CrossRefPubMed Aguado T, Carracedo A, Julien B, Velasco G, Milman G, Mechoulam R, Alvarez L, Guzman M, Galve-Roperh I: Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J Biol Chem. 2007, 282 (9): 6854-6862.CrossRefPubMed
45.
go back to reference Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, Hjelmeland AB, Rich JN: c-Myc is required for maintenance of glioma cancer stem cells. PLoS One. 2008, 3 (11): e3769-10.1371/journal.pone.0003769.CrossRefPubMedPubMedCentral Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, Hjelmeland AB, Rich JN: c-Myc is required for maintenance of glioma cancer stem cells. PLoS One. 2008, 3 (11): e3769-10.1371/journal.pone.0003769.CrossRefPubMedPubMedCentral
46.
go back to reference Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz IAA: HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007, 17 (2): 165-172. 10.1016/j.cub.2006.11.033.CrossRefPubMed Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz IAA: HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007, 17 (2): 165-172. 10.1016/j.cub.2006.11.033.CrossRefPubMed
47.
go back to reference Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, Zheng QJ, Liang L, Zhang SZ, et al: Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem. 2008, 307 (1–2): 101-108.PubMed Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, Zheng QJ, Liang L, Zhang SZ, et al: Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem. 2008, 307 (1–2): 101-108.PubMed
48.
go back to reference Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003, 23 (20): 7198-7209. 10.1128/MCB.23.20.7198-7209.2003.CrossRefPubMedPubMedCentral Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA: Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003, 23 (20): 7198-7209. 10.1128/MCB.23.20.7198-7209.2003.CrossRefPubMedPubMedCentral
Metadata
Title
Nrf2 is required to maintain the self-renewal of glioma stem cells
Authors
Jianhong Zhu
Handong Wang
Qing Sun
Xiangjun Ji
Lin Zhu
Zixiang Cong
Yuan Zhou
Huandong Liu
Mengliang Zhou
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-380

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine