Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma

Authors: Li Cui, Hua Zhou, Hu Zhao, Yaojun Zhou, Renfang Xu, Xianlin Xu, Lu Zheng, Zhong Xue, Wei Xia, Bo Zhang, Tao Ding, Yunjie Cao, Zinong Tian, Qianqian Shi, Xiaozhou He

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

A growing body of evidence suggests that microRNAs (miRNAs) play an important role in cancer diagnosis and therapy. MicroRNA-99a (miR-99a), a potential tumor suppressor, is downregulated in several human malignancies. The expression and function of miR-99a, however, have not been investigated in human renal cell carcinoma (RCC) so far. We therefore examined the expression of miR-99a in RCC cell lines and tissues, and assessed the impact of miR-99a on the tumorigenesis of RCC.

Methods

MiR-99a levels in 40 pairs of RCC and matched adjacent non-tumor tissues were assessed by real-time quantitative Reverse Transcription PCR (qRT-PCR). The RCC cell lines 786-O and OS-RC-2 were transfected with miR-99a mimics to restore the expression of miR-99a. The effects of miR-99a were then assessed by cell proliferation, cell cycle, transwell, and colony formation assay. A murine xenograft model of RCC was used to confirm the effect of miR-99a on tumorigenicity in vivo. Potential target genes were identified by western blotting and luciferase reporter assay.

Results

We found that miR-99a was remarkably downregulated in RCC and low expression level of miR-99a was correlated with poor survival of RCC patients. Restoration of miR-99a dramatically suppressed RCC cells growth, clonability, migration and invasion as well as induced G1-phase cell cycle arrest in vitro. Moreover, intratumoral delivery of miR-99a could inhibit tumor growth in murine xenograft models of human RCC. In addition, we also fond that mammalian target of rapamycin (mTOR) was a direct target of miR-99a in RCC cells. Furthermore, siRNA-mediated knockdown of mTOR partially phenocopied the effect of miR-99a overexpression, suggesting that the tumor suppressive role of miR-99a may be mediated primarily through mTOR regulation.

Conclusions

Collectively, these results demonstrate for the first time, to our knowledge, that deregulation of miR-99a is involved in the etiology of RCC partially via direct targeting mTOR pathway, which suggests that miR-99a may offer an attractive new target for diagnostic and therapeutic intervention in RCC.
Appendix
Available only for authorised users
Literature
2.
go back to reference van Spronsen DJ, de Weijer KJ, Mulders PF, De Mulder PH: Novel treatment strategies in clear-cell metastatic renal cell carcinoma. Anticancer Drugs. 2005, 16 (7): 709-717. 10.1097/01.cad.0000167901.58877.a3.CrossRefPubMed van Spronsen DJ, de Weijer KJ, Mulders PF, De Mulder PH: Novel treatment strategies in clear-cell metastatic renal cell carcinoma. Anticancer Drugs. 2005, 16 (7): 709-717. 10.1097/01.cad.0000167901.58877.a3.CrossRefPubMed
4.
go back to reference Reeves DJ, Liu CY: Treatment of metastatic renal cell carcinoma. Cancer Chemother Pharmacol. 2009, 64 (1): 11-25. 10.1007/s00280-009-0983-z.CrossRefPubMed Reeves DJ, Liu CY: Treatment of metastatic renal cell carcinoma. Cancer Chemother Pharmacol. 2009, 64 (1): 11-25. 10.1007/s00280-009-0983-z.CrossRefPubMed
5.
go back to reference Janzen NK, Kim HL, Figlin RA, Belldegrun AS: Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am. 2003, 30 (4): 843-852. 10.1016/S0094-0143(03)00056-9.CrossRefPubMed Janzen NK, Kim HL, Figlin RA, Belldegrun AS: Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am. 2003, 30 (4): 843-852. 10.1016/S0094-0143(03)00056-9.CrossRefPubMed
6.
go back to reference Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, Pace KT, Yousef GM: Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem. 2010, 43 (1–2): 150-158.CrossRefPubMed Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, Pace KT, Yousef GM: Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem. 2010, 43 (1–2): 150-158.CrossRefPubMed
7.
go back to reference Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, Wang H, Sun H, Volinia S, Alder H, et al: MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007, 26 (28): 4148-4157. 10.1038/sj.onc.1210186.CrossRefPubMed Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, Wang H, Sun H, Volinia S, Alder H, et al: MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007, 26 (28): 4148-4157. 10.1038/sj.onc.1210186.CrossRefPubMed
8.
go back to reference Schickel R, Boyerinas B, Park SM, Peter ME: MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008, 27 (45): 5959-5974. 10.1038/onc.2008.274.CrossRefPubMed Schickel R, Boyerinas B, Park SM, Peter ME: MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008, 27 (45): 5959-5974. 10.1038/onc.2008.274.CrossRefPubMed
9.
go back to reference Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 2006, 6 (11): 857-866. 10.1038/nrc1997.CrossRefPubMed Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 2006, 6 (11): 857-866. 10.1038/nrc1997.CrossRefPubMed
10.
go back to reference Huang Y, Dai Y, Yang J, Chen T, Yin Y, Tang M, Hu C, Zhang L: Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol. 2009, 35 (10): 1119-1123. 10.1016/j.ejso.2009.04.010.CrossRefPubMed Huang Y, Dai Y, Yang J, Chen T, Yin Y, Tang M, Hu C, Zhang L: Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol. 2009, 35 (10): 1119-1123. 10.1016/j.ejso.2009.04.010.CrossRefPubMed
11.
go back to reference Shenouda SK, Alahari SK: MicroRNA function in cancer: oncogene or a tumor suppressor?. Cancer Metastasis Rev. 2009, 28 (3–4): 369-378.CrossRefPubMed Shenouda SK, Alahari SK: MicroRNA function in cancer: oncogene or a tumor suppressor?. Cancer Metastasis Rev. 2009, 28 (3–4): 369-378.CrossRefPubMed
12.
13.
go back to reference Nagayama K, Kohno T, Sato M, Arai Y, Minna JD, Yokota J: Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer. 2007, 46 (11): 1000-1010. 10.1002/gcc.20485.CrossRefPubMed Nagayama K, Kohno T, Sato M, Arai Y, Minna JD, Yokota J: Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer. 2007, 46 (11): 1000-1010. 10.1002/gcc.20485.CrossRefPubMed
14.
go back to reference Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S: MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008, 14 (9): 2690-2695. 10.1158/1078-0432.CCR-07-1731.CrossRefPubMed Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S: MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008, 14 (9): 2690-2695. 10.1158/1078-0432.CCR-07-1731.CrossRefPubMed
15.
go back to reference Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI: Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008, 14 (9): 2588-2592. 10.1158/1078-0432.CCR-07-0666.CrossRefPubMed Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI: Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008, 14 (9): 2588-2592. 10.1158/1078-0432.CCR-07-0666.CrossRefPubMed
16.
go back to reference Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y: MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol. 2011, 137 (4): 557-566. 10.1007/s00432-010-0918-4.CrossRefPubMed Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y: MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol. 2011, 137 (4): 557-566. 10.1007/s00432-010-0918-4.CrossRefPubMed
17.
go back to reference Li D, Liu X, Lin L, Hou J, Li N, Wang C, Wang P, Zhang Q, Zhang P, Zhou W, et al: MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem. 2011, 286 (42): 36677-36685. 10.1074/jbc.M111.270561.CrossRefPubMedPubMedCentral Li D, Liu X, Lin L, Hou J, Li N, Wang C, Wang P, Zhang Q, Zhang P, Zhou W, et al: MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem. 2011, 286 (42): 36677-36685. 10.1074/jbc.M111.270561.CrossRefPubMedPubMedCentral
18.
go back to reference Catto JW, Miah S, Owen HC, Bryant H, Myers K, Dudziec E, Larre S, Milo M, Rehman I, Rosario DJ, et al: Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 2009, 69 (21): 8472-8481. 10.1158/0008-5472.CAN-09-0744.CrossRefPubMedPubMedCentral Catto JW, Miah S, Owen HC, Bryant H, Myers K, Dudziec E, Larre S, Milo M, Rehman I, Rosario DJ, et al: Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 2009, 69 (21): 8472-8481. 10.1158/0008-5472.CAN-09-0744.CrossRefPubMedPubMedCentral
19.
go back to reference Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, Jensen RV, Moskaluk CA, Dutta A: miR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011, 71 (4): 1313-1324. 10.1158/0008-5472.CAN-10-1031.CrossRefPubMedPubMedCentral Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, Jensen RV, Moskaluk CA, Dutta A: miR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011, 71 (4): 1313-1324. 10.1158/0008-5472.CAN-10-1031.CrossRefPubMedPubMedCentral
20.
go back to reference Doghman M, El WA, Cardinaud B, Thomas E, Wang J, Zhao W, Peralta-Del VM, Figueiredo BC, Zambetti GP, Lalli E: Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res. 2010, 70 (11): 4666-4675. 10.1158/0008-5472.CAN-09-3970.CrossRefPubMedPubMedCentral Doghman M, El WA, Cardinaud B, Thomas E, Wang J, Zhao W, Peralta-Del VM, Figueiredo BC, Zambetti GP, Lalli E: Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res. 2010, 70 (11): 4666-4675. 10.1158/0008-5472.CAN-09-3970.CrossRefPubMedPubMedCentral
21.
go back to reference Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004, 24 (1): 200-216. 10.1128/MCB.24.1.200-216.2004.CrossRefPubMedPubMedCentral Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004, 24 (1): 200-216. 10.1128/MCB.24.1.200-216.2004.CrossRefPubMedPubMedCentral
22.
go back to reference Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T: Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 1999, 59 (15): 3581-3587.PubMed Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T: Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 1999, 59 (15): 3581-3587.PubMed
23.
go back to reference Oneyama C, Ikeda J, Okuzaki D, Suzuki K, Kanou T, Shintani Y, Morii E, Okumura M, Aozasa K, Okada M: MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene. 2011, 30 (32): 3489-3501. 10.1038/onc.2011.63.CrossRefPubMed Oneyama C, Ikeda J, Okuzaki D, Suzuki K, Kanou T, Shintani Y, Morii E, Okumura M, Aozasa K, Okada M: MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene. 2011, 30 (32): 3489-3501. 10.1038/onc.2011.63.CrossRefPubMed
24.
go back to reference Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N: mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer. 2007, 96 (Suppl): R11-R15.PubMed Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N: mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer. 2007, 96 (Suppl): R11-R15.PubMed
25.
go back to reference Guertin DA, Sabatini DM: Defining the role of mTOR in cancer. Cancer Cell. 2007, 12 (1): 9-22. 10.1016/j.ccr.2007.05.008.CrossRefPubMed Guertin DA, Sabatini DM: Defining the role of mTOR in cancer. Cancer Cell. 2007, 12 (1): 9-22. 10.1016/j.ccr.2007.05.008.CrossRefPubMed
26.
go back to reference Vignot S, Faivre S, Aguirre D, Raymond E: mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005, 16 (4): 525-537. 10.1093/annonc/mdi113.CrossRefPubMed Vignot S, Faivre S, Aguirre D, Raymond E: mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005, 16 (4): 525-537. 10.1093/annonc/mdi113.CrossRefPubMed
29.
go back to reference Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, Olokpa E, Itamochi H, Ueno NT, Hawkins SM, et al: A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010, 24 (2): 447-463. 10.1210/me.2009-0295.CrossRefPubMedPubMedCentral Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, Olokpa E, Itamochi H, Ueno NT, Hawkins SM, et al: A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010, 24 (2): 447-463. 10.1210/me.2009-0295.CrossRefPubMedPubMedCentral
30.
go back to reference Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, Pollutri D, Croce CM, Bolondi L, Gramantieri L: MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010, 70 (12): 5184-5193. 10.1158/0008-5472.CAN-10-0145.CrossRefPubMed Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, Pollutri D, Croce CM, Bolondi L, Gramantieri L: MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010, 70 (12): 5184-5193. 10.1158/0008-5472.CAN-10-0145.CrossRefPubMed
31.
go back to reference Hummel R, Hussey DJ, Haier J: MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010, 46 (2): 298-311. 10.1016/j.ejca.2009.10.027.CrossRefPubMed Hummel R, Hussey DJ, Haier J: MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010, 46 (2): 298-311. 10.1016/j.ejca.2009.10.027.CrossRefPubMed
32.
go back to reference Yamada H, Yanagisawa K, Tokumaru S, Taguchi A, Nimura Y, Osada H, Nagino M, Takahashi T: Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes Cancer. 2008, 47 (9): 810-818. 10.1002/gcc.20582.CrossRefPubMed Yamada H, Yanagisawa K, Tokumaru S, Taguchi A, Nimura Y, Osada H, Nagino M, Takahashi T: Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes Cancer. 2008, 47 (9): 810-818. 10.1002/gcc.20582.CrossRefPubMed
Metadata
Title
MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma
Authors
Li Cui
Hua Zhou
Hu Zhao
Yaojun Zhou
Renfang Xu
Xianlin Xu
Lu Zheng
Zhong Xue
Wei Xia
Bo Zhang
Tao Ding
Yunjie Cao
Zinong Tian
Qianqian Shi
Xiaozhou He
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-546

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine