Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

Plant HDAC inhibitor chrysin arrest cell growth and induce p21 WAF1 by altering chromatin of STAT response element in A375 cells

Authors: Manika Pal-Bhadra, M Janaki Ramaiah, T Lakshminarayan Reddy, Anita Krishnan, SNCVL Pushpavalli, K Suresh Babu, Ashok K Tiwari, J Madhusudana Rao, Jhillu S Yadav, Utpal Bhadra

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

Chrysin and its analogues, belongs to flavonoid family and possess potential anti-tumour activity. The aim of this study is to determine the molecular mechanism by which chrysin controls cell growth and induce apoptosis in A375 cells.

Methods

Effect of chrysin and its analogues on cell viability and cell cycle analysis was determined by MTT assay and flowcytometry. A series of Western blots was performed to determine the effect of chrysin on important cell cycle regulatory proteins (Cdk2, cyclin D1, p53, p21, p27). The fluorimetry and calorimetry based assays was conducted for characterization of chrysin as HDAC inhibitor. The changes in histone tail modification such as acetylation and methylation was studied after chrysin treatment was estimated by immuno-fluorescence and western blot analysis. The expression of Bcl-xL, survivin and caspase-3 was estimated in chrysin treated cells. The effect of chrysin on p21 promoter activity was studied by luciferase and ChIP assays.

Results

Chrysin cause G1 cell cycle arrest and found to inhibit HDAC-2 and HDAC-8. Chrysin treated cells have shown increase in the levels of H3acK14, H4acK12, H4acK16 and decrease in H3me2K9 methylation. The p21 induction by chrysin treatment was found to be independent of p53 status. The chromatin remodelling at p21WAF1 promoter induces p21 activity, increased STAT-1 expression and epigenetic modifications that are responsible for ultimate cell cycle arrest and apoptosis.

Conclusion

Chrysin shows in vitro anti-cancer activity that is correlated with induction of histone hyperacetylation and possible recruitment of STAT-1, 3, 5 proteins at STAT (−692 to −684) region of p21 promoter. Our results also support an unexpected action of chrysin on the chromatin organization of p21 WAF1 promoter through histone methylation and hyper-acetylation. It proposes previously unknown sequence specific chromatin modulations in the STAT responsive elements for regulating cell cycle progression negatively via the induction of the CDK inhibitor p21 WAF1 .
Appendix
Available only for authorised users
Literature
1.
go back to reference Peltonen K, Kiviharju TM, Järvinen PM, Ra R, Laiho M: Melanoma cell lines are susceptible to histone deacetylase inhibitor TSA provoked cell cycle arrest and apoptosis. Pigment Cell Res. 2005, 18: 196-202. 10.1111/j.1600-0749.2005.00225.x.CrossRefPubMed Peltonen K, Kiviharju TM, Järvinen PM, Ra R, Laiho M: Melanoma cell lines are susceptible to histone deacetylase inhibitor TSA provoked cell cycle arrest and apoptosis. Pigment Cell Res. 2005, 18: 196-202. 10.1111/j.1600-0749.2005.00225.x.CrossRefPubMed
2.
go back to reference Boyle GM, Martyn AC, Parsons PG: Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res. 2005, 18: 160-166. 10.1111/j.1600-0749.2005.00228.x.CrossRefPubMed Boyle GM, Martyn AC, Parsons PG: Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res. 2005, 18: 160-166. 10.1111/j.1600-0749.2005.00228.x.CrossRefPubMed
3.
go back to reference Gray SG, Teh BT: Histone acetylation/deacetylation and cancer: an "open" and "shut" case?. Curr Mol Med. 2001, 1: 401-429. 10.2174/1566524013363537.CrossRefPubMed Gray SG, Teh BT: Histone acetylation/deacetylation and cancer: an "open" and "shut" case?. Curr Mol Med. 2001, 1: 401-429. 10.2174/1566524013363537.CrossRefPubMed
4.
go back to reference Gibbons RJ: Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet. 2005, 14: 85-92. 10.1093/hmg/ddi106.CrossRef Gibbons RJ: Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet. 2005, 14: 85-92. 10.1093/hmg/ddi106.CrossRef
5.
go back to reference Espino PS, Drobic B, Dunn KL, Davie JR: Histone modifications as a platform for cancer therapy. J Cell Biochem. 2005, 94: 1088-1102. 10.1002/jcb.20387.CrossRefPubMed Espino PS, Drobic B, Dunn KL, Davie JR: Histone modifications as a platform for cancer therapy. J Cell Biochem. 2005, 94: 1088-1102. 10.1002/jcb.20387.CrossRefPubMed
6.
go back to reference Yang XJ, Seto E: HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007, 26: 5310-5318. 10.1038/sj.onc.1210599.CrossRefPubMed Yang XJ, Seto E: HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007, 26: 5310-5318. 10.1038/sj.onc.1210599.CrossRefPubMed
7.
go back to reference De ruijter A, Van Gennio A, Caron H, Kemp S, Van kuilenburg A: Histone deacetylases: Characterization of the classical HDAC family. Biochem J. 2002, 370: 737-749.CrossRef De ruijter A, Van Gennio A, Caron H, Kemp S, Van kuilenburg A: Histone deacetylases: Characterization of the classical HDAC family. Biochem J. 2002, 370: 737-749.CrossRef
8.
go back to reference Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D: Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001, 11: 162-166. 10.1016/S0959-437X(00)00174-X.CrossRefPubMed Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D: Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001, 11: 162-166. 10.1016/S0959-437X(00)00174-X.CrossRefPubMed
9.
go back to reference Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK: Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001, 1: 194-202. 10.1038/35106079.CrossRefPubMed Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK: Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001, 1: 194-202. 10.1038/35106079.CrossRefPubMed
10.
go back to reference Roth SY, Denu JM, Allis CD: Histone acetyltransferases. Annu Rev Biochem. 2001, 70: 81-120. 10.1146/annurev.biochem.70.1.81.CrossRefPubMed Roth SY, Denu JM, Allis CD: Histone acetyltransferases. Annu Rev Biochem. 2001, 70: 81-120. 10.1146/annurev.biochem.70.1.81.CrossRefPubMed
11.
go back to reference Marks PA, Richon VM, Miller T, Kelly WK: Histone deacetylase inhibitors. Adv Cancer Res. 2004, 91: 137-168.CrossRefPubMed Marks PA, Richon VM, Miller T, Kelly WK: Histone deacetylase inhibitors. Adv Cancer Res. 2004, 91: 137-168.CrossRefPubMed
12.
go back to reference Turner BM: Histone acetylation and an epigenetic code. BioEssays. 2000, 22: 836-845. 10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X.CrossRefPubMed Turner BM: Histone acetylation and an epigenetic code. BioEssays. 2000, 22: 836-845. 10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X.CrossRefPubMed
13.
go back to reference Richon VM, Sandhoff TW, Rifkind RA, Marks PA: Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000, 97: 10014-10019.CrossRefPubMedPubMedCentral Richon VM, Sandhoff TW, Rifkind RA, Marks PA: Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000, 97: 10014-10019.CrossRefPubMedPubMedCentral
14.
go back to reference Gui CY, Ngo L, Xu WS, Richon VM, Marks PA: Histone deacetylase (HDAC) inhibitor activation of p21 WAF1involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA. 2004, 101: 1241-1246. 10.1073/pnas.0307708100.CrossRefPubMedPubMedCentral Gui CY, Ngo L, Xu WS, Richon VM, Marks PA: Histone deacetylase (HDAC) inhibitor activation of p21 WAF1involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA. 2004, 101: 1241-1246. 10.1073/pnas.0307708100.CrossRefPubMedPubMedCentral
15.
go back to reference Gavin DP, Kartan S, Chase K, Jayaraman S, Sharma RP: Histone deacetylase inhibitors and candidate gene expression: An invivo and invitro approach to studying chromatin remodeling in a clinical population. J Psychiatr Res. 2009, 43: 870-876. 10.1016/j.jpsychires.2008.12.006.CrossRefPubMed Gavin DP, Kartan S, Chase K, Jayaraman S, Sharma RP: Histone deacetylase inhibitors and candidate gene expression: An invivo and invitro approach to studying chromatin remodeling in a clinical population. J Psychiatr Res. 2009, 43: 870-876. 10.1016/j.jpsychires.2008.12.006.CrossRefPubMed
16.
go back to reference Jenuwein T, Allis CD: Translating the histone code. Science. 2001, 293: 1074-1080. 10.1126/science.1063127.CrossRefPubMed Jenuwein T, Allis CD: Translating the histone code. Science. 2001, 293: 1074-1080. 10.1126/science.1063127.CrossRefPubMed
17.
go back to reference Agalioti T, Chen G, Thanos D: Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002, 111: 381-392. 10.1016/S0092-8674(02)01077-2.CrossRefPubMed Agalioti T, Chen G, Thanos D: Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002, 111: 381-392. 10.1016/S0092-8674(02)01077-2.CrossRefPubMed
18.
go back to reference Lin YC, Lin JH, Chou CW, Chang YF, Yeh SH, Chen CC: Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC-1/2. Cancer Res. 2008, 68: 2375-2383. 10.1158/0008-5472.CAN-07-5807.CrossRefPubMed Lin YC, Lin JH, Chou CW, Chang YF, Yeh SH, Chen CC: Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC-1/2. Cancer Res. 2008, 68: 2375-2383. 10.1158/0008-5472.CAN-07-5807.CrossRefPubMed
19.
go back to reference Battle TE, Frank DA: The role of STATs in apoptosis. Curr Mol Med. 2002, 2 (4): 381-392. 10.2174/1566524023362456.CrossRefPubMed Battle TE, Frank DA: The role of STATs in apoptosis. Curr Mol Med. 2002, 2 (4): 381-392. 10.2174/1566524023362456.CrossRefPubMed
20.
go back to reference Stephanou A, Latchman DS: Opposing actions of STAT-1 and STAT-3. Growth Factors. 2005, 23 (3): 177-182. 10.1080/08977190500178745.CrossRefPubMed Stephanou A, Latchman DS: Opposing actions of STAT-1 and STAT-3. Growth Factors. 2005, 23 (3): 177-182. 10.1080/08977190500178745.CrossRefPubMed
21.
go back to reference Kim HS, Lee MS: STAT1 as a key modulator of cell death. Cell Signal. 2007, 19 (3): 454-465. 10.1016/j.cellsig.2006.09.003.CrossRefPubMed Kim HS, Lee MS: STAT1 as a key modulator of cell death. Cell Signal. 2007, 19 (3): 454-465. 10.1016/j.cellsig.2006.09.003.CrossRefPubMed
22.
go back to reference Middleton E, Kandaswami C, Theoharides TC: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000, 52 (4): 673-751.PubMed Middleton E, Kandaswami C, Theoharides TC: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000, 52 (4): 673-751.PubMed
23.
go back to reference Chang H, Mi M, Ling W, Zhu J, Zhang Q, Wei N, Zhou Y, Tang Y, Yuan J: Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro. Arch Pharm Res. 2008, 31 (9): 1137-1144. 10.1007/s12272-001-1280-8.CrossRefPubMed Chang H, Mi M, Ling W, Zhu J, Zhang Q, Wei N, Zhou Y, Tang Y, Yuan J: Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro. Arch Pharm Res. 2008, 31 (9): 1137-1144. 10.1007/s12272-001-1280-8.CrossRefPubMed
24.
go back to reference Androutsopoulos VP, Papakyriakou A, Vourloumis D, Spandidos DA: Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg Med Chem. 2011, 19 (9): 2842-2849. 10.1016/j.bmc.2011.03.042.CrossRefPubMed Androutsopoulos VP, Papakyriakou A, Vourloumis D, Spandidos DA: Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg Med Chem. 2011, 19 (9): 2842-2849. 10.1016/j.bmc.2011.03.042.CrossRefPubMed
25.
go back to reference Gan YH, Zhang S: PTEN/ AKT pathway involved in histone deacetylases inhibitor induced cell growth inhibition and apoptosis of oral squamous cell carcinoma cells. Oral Oncol. 2009, 45 (10): e150-e154. 10.1016/j.oraloncology.2009.05.563.CrossRefPubMed Gan YH, Zhang S: PTEN/ AKT pathway involved in histone deacetylases inhibitor induced cell growth inhibition and apoptosis of oral squamous cell carcinoma cells. Oral Oncol. 2009, 45 (10): e150-e154. 10.1016/j.oraloncology.2009.05.563.CrossRefPubMed
26.
go back to reference Huang WJ, Liang YC, Chuang SE, Chi LL, Lee CY, Lin CW, Chen AL, Huang JS, Chiu CJ, Lee CF, Huang CY, Chen CN: NBM-HD-1: A Novel histone deacetylase inhibitor with anti-cancer activity. Evid Based Complement Alternat Med. 2011, 2012: 781417-1155/2012/781417. 2012PubMedPubMedCentral Huang WJ, Liang YC, Chuang SE, Chi LL, Lee CY, Lin CW, Chen AL, Huang JS, Chiu CJ, Lee CF, Huang CY, Chen CN: NBM-HD-1: A Novel histone deacetylase inhibitor with anti-cancer activity. Evid Based Complement Alternat Med. 2011, 2012: 781417-1155/2012/781417. 2012PubMedPubMedCentral
27.
go back to reference Hantz H, Lee K, Bjeldanes L: 3, 3’-Diindolylmethane inhibits activation of Akt through inhibition of hepatocyte growth factor receptor c-Met signaling. Cancer Res. 2009, 69 (24): 6117-10.1158/0008-5472.SABCS-09-6117.CrossRef Hantz H, Lee K, Bjeldanes L: 3, 3’-Diindolylmethane inhibits activation of Akt through inhibition of hepatocyte growth factor receptor c-Met signaling. Cancer Res. 2009, 69 (24): 6117-10.1158/0008-5472.SABCS-09-6117.CrossRef
28.
go back to reference Li Y, Li X, Guo B: Chemopreventive agent 3, 3’-diindolyl methane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res. 2010, 70 (2): 646-54. 10.1158/0008-5472.CAN-09-1924.CrossRefPubMedPubMedCentral Li Y, Li X, Guo B: Chemopreventive agent 3, 3’-diindolyl methane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res. 2010, 70 (2): 646-54. 10.1158/0008-5472.CAN-09-1924.CrossRefPubMedPubMedCentral
29.
go back to reference Woo KJ, Jeong YJ, Park JW, Kwan TK: Chrysin-induced apoptosis is mediated through caspase activation and Akt-inactivation in U937 leukemia cells. Biochem Biophys Res Commun. 2004, 325: 1215-1222. 10.1016/j.bbrc.2004.09.225.CrossRefPubMed Woo KJ, Jeong YJ, Park JW, Kwan TK: Chrysin-induced apoptosis is mediated through caspase activation and Akt-inactivation in U937 leukemia cells. Biochem Biophys Res Commun. 2004, 325: 1215-1222. 10.1016/j.bbrc.2004.09.225.CrossRefPubMed
30.
31.
go back to reference Shen CC, Chang YS, Ho LK: Nuclear magnetic resonance studies of 5,7-Dihydroxyflavonoids. Phytochemistry. 1993, 34: 843-845. 10.1016/0031-9422(93)85370-7.CrossRef Shen CC, Chang YS, Ho LK: Nuclear magnetic resonance studies of 5,7-Dihydroxyflavonoids. Phytochemistry. 1993, 34: 843-845. 10.1016/0031-9422(93)85370-7.CrossRef
32.
go back to reference Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK: Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther. 2003, 2: 151-163. 10.4161/cbt.2.2.349.PubMed Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK: Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther. 2003, 2: 151-163. 10.4161/cbt.2.2.349.PubMed
33.
go back to reference Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S: Plant flavone Apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: Invitro and Invivo study. Mol Carcinog. 2011, 10.1002/mc.20866. Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S: Plant flavone Apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: Invitro and Invivo study. Mol Carcinog. 2011, 10.1002/mc.20866.
34.
go back to reference Kalita A, Maroun C, Bonfils C, Glemon K, Siu LL, Tolcher A, Carducci M, Besterman JM, Reid GK, Li Z: Pharmacodynamic effect of MGCD0103, an oral isotype selective histone deacetylase ( HDAC) inhibitor, on HDAC enzyme inhibition and histone acetylation induction in phase I clinical trials in patients (pts) with advanced solid tumors or non-Hodgkin’s lymphoma ( NHL). J Clin Oncol. 2005, 23: 9631- Kalita A, Maroun C, Bonfils C, Glemon K, Siu LL, Tolcher A, Carducci M, Besterman JM, Reid GK, Li Z: Pharmacodynamic effect of MGCD0103, an oral isotype selective histone deacetylase ( HDAC) inhibitor, on HDAC enzyme inhibition and histone acetylation induction in phase I clinical trials in patients (pts) with advanced solid tumors or non-Hodgkin’s lymphoma ( NHL). J Clin Oncol. 2005, 23: 9631-
35.
go back to reference Cai K, Dynlacht BD: Activity and nature of p21 WAF1 complexes during the cell cycle. Proc Natl Acad Sci USA. 1998, 95: 12254-9. 10.1073/pnas.95.21.12254.CrossRefPubMedPubMedCentral Cai K, Dynlacht BD: Activity and nature of p21 WAF1 complexes during the cell cycle. Proc Natl Acad Sci USA. 1998, 95: 12254-9. 10.1073/pnas.95.21.12254.CrossRefPubMedPubMedCentral
36.
go back to reference Chopin V, Toillon RA, Jouy N, LeBourhis X: P21 WAF1/ CIP1 is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene. 2004, 23: 21-29. 10.1038/sj.onc.1207020.CrossRefPubMed Chopin V, Toillon RA, Jouy N, LeBourhis X: P21 WAF1/ CIP1 is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells. Oncogene. 2004, 23: 21-29. 10.1038/sj.onc.1207020.CrossRefPubMed
37.
go back to reference Jin M, Zhao W, Zhang Y, Kobayashi M, Duan H, Kong D: Anti-proliferative effect of Aaptamine on human chronic myeloid leukemia K562 cells. Int J Mol Sci. 2011, 12: 7352-7359. 10.3390/ijms12117352.CrossRefPubMedPubMedCentral Jin M, Zhao W, Zhang Y, Kobayashi M, Duan H, Kong D: Anti-proliferative effect of Aaptamine on human chronic myeloid leukemia K562 cells. Int J Mol Sci. 2011, 12: 7352-7359. 10.3390/ijms12117352.CrossRefPubMedPubMedCentral
38.
go back to reference Agarwal S, Agarwal ML, Chatterjee-kishore M, Stark GR, Chisolm GM: Stat-1 dependent p53-independent expression of p21 (waf1) modulates oxysterol- induced apoptosis. Mol Cell Biol. 2002, 22 (7): 1981-92. 10.1128/MCB.22.7.1981-1992.2002.CrossRefPubMedPubMedCentral Agarwal S, Agarwal ML, Chatterjee-kishore M, Stark GR, Chisolm GM: Stat-1 dependent p53-independent expression of p21 (waf1) modulates oxysterol- induced apoptosis. Mol Cell Biol. 2002, 22 (7): 1981-92. 10.1128/MCB.22.7.1981-1992.2002.CrossRefPubMedPubMedCentral
39.
go back to reference Gong Y, Yue J, Wu X, Wang X, Wen J, Lu L, Peng X, Qiang B, Yuan J: NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/ Cip1 via the RARE element. Nucleic Acids Res. 2006, 34: 6158-6169. 10.1093/nar/gkl834.CrossRefPubMedPubMedCentral Gong Y, Yue J, Wu X, Wang X, Wen J, Lu L, Peng X, Qiang B, Yuan J: NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/ Cip1 via the RARE element. Nucleic Acids Res. 2006, 34: 6158-6169. 10.1093/nar/gkl834.CrossRefPubMedPubMedCentral
40.
go back to reference Krämer OH, Baus D, Knauer SK, Stein S, Jäger E, Stauber RH, Grez M, Pfitzner E, Heinzel T: Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev. 2006, 20: 473-485. 10.1101/gad.364306.CrossRefPubMedPubMedCentral Krämer OH, Baus D, Knauer SK, Stein S, Jäger E, Stauber RH, Grez M, Pfitzner E, Heinzel T: Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev. 2006, 20: 473-485. 10.1101/gad.364306.CrossRefPubMedPubMedCentral
41.
go back to reference Pines J: Cyclins and cyclin-dependent kinases: take your partners. Trends Biochem Sci. 1993, 18: 195-197. 10.1016/0968-0004(93)90185-P.CrossRefPubMed Pines J: Cyclins and cyclin-dependent kinases: take your partners. Trends Biochem Sci. 1993, 18: 195-197. 10.1016/0968-0004(93)90185-P.CrossRefPubMed
42.
go back to reference Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9: 1149-1163. 10.1101/gad.9.10.1149.CrossRefPubMed Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9: 1149-1163. 10.1101/gad.9.10.1149.CrossRefPubMed
43.
go back to reference Zhou Q, Dalgard CL, Wynder C, Doughty ML: Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells. BMC Neurosci. 2011, 12: 50-10.1186/1471-2202-12-50.CrossRefPubMedPubMedCentral Zhou Q, Dalgard CL, Wynder C, Doughty ML: Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells. BMC Neurosci. 2011, 12: 50-10.1186/1471-2202-12-50.CrossRefPubMedPubMedCentral
44.
go back to reference McLaughlin F, La Thangue NB: Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol. 2004, 68: 1139-1144. 10.1016/j.bcp.2004.05.034.CrossRefPubMed McLaughlin F, La Thangue NB: Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol. 2004, 68: 1139-1144. 10.1016/j.bcp.2004.05.034.CrossRefPubMed
45.
go back to reference Nian H, Delage B, Pinto JT, Dashwood RH: Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21 WAF1 promoter. Carcinogenesis. 2008, 29 (9): 1816-1824. 10.1093/carcin/bgn165.CrossRefPubMedPubMedCentral Nian H, Delage B, Pinto JT, Dashwood RH: Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21 WAF1 promoter. Carcinogenesis. 2008, 29 (9): 1816-1824. 10.1093/carcin/bgn165.CrossRefPubMedPubMedCentral
46.
go back to reference Kitazono M, Bates S, Fok P, Fojo T, Blagosklonny MV: The histone deacetylase inhibitor FR901228 (desipeptide) restores expression and function of pseudo-null p53. Canc Biol Ther. 2002, 1: 665-668.CrossRef Kitazono M, Bates S, Fok P, Fojo T, Blagosklonny MV: The histone deacetylase inhibitor FR901228 (desipeptide) restores expression and function of pseudo-null p53. Canc Biol Ther. 2002, 1: 665-668.CrossRef
47.
go back to reference Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY: Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21WAF1/CIP1 mediated by STAT1. Science. 1996, 272: 719-722. 10.1126/science.272.5262.719.CrossRefPubMed Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY: Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21WAF1/CIP1 mediated by STAT1. Science. 1996, 272: 719-722. 10.1126/science.272.5262.719.CrossRefPubMed
48.
go back to reference Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N, Xu H, Cohen D: Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem. 1999, 274: 34940-34947. 10.1074/jbc.274.49.34940.CrossRefPubMed Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N, Xu H, Cohen D: Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem. 1999, 274: 34940-34947. 10.1074/jbc.274.49.34940.CrossRefPubMed
49.
go back to reference Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T: Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998, 391: 597-601. 10.1038/35404.CrossRefPubMed Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T: Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998, 391: 597-601. 10.1038/35404.CrossRefPubMed
51.
go back to reference Carruthers LM, Hansen JC: The core histone N-termini function independently of linker histones during chromatin condensation. J Biol Chem. 2000, 275: 37285-37290. 10.1074/jbc.M006801200.CrossRefPubMed Carruthers LM, Hansen JC: The core histone N-termini function independently of linker histones during chromatin condensation. J Biol Chem. 2000, 275: 37285-37290. 10.1074/jbc.M006801200.CrossRefPubMed
52.
go back to reference Martin C, Zhang Y: The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005, 6: 838-849. 10.1038/nrm1761.CrossRefPubMed Martin C, Zhang Y: The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005, 6: 838-849. 10.1038/nrm1761.CrossRefPubMed
53.
go back to reference Hansen JC: Conformational Dynamics of the Chromatin Fiber in solution: Determinants, Mechanisms and Functions. Annu Rev Biophys Biomol Struct. 2002, 31: 361-392. 10.1146/annurev.biophys.31.101101.140858.CrossRefPubMed Hansen JC: Conformational Dynamics of the Chromatin Fiber in solution: Determinants, Mechanisms and Functions. Annu Rev Biophys Biomol Struct. 2002, 31: 361-392. 10.1146/annurev.biophys.31.101101.140858.CrossRefPubMed
54.
go back to reference Ruthenburg AJ, Allis CD, Wysocka J: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol cell. 2007, 25: 15-30. 10.1016/j.molcel.2006.12.014.CrossRefPubMed Ruthenburg AJ, Allis CD, Wysocka J: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol cell. 2007, 25: 15-30. 10.1016/j.molcel.2006.12.014.CrossRefPubMed
55.
56.
go back to reference Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, Metzger E, Schüle R: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 2007, 9: 347-353. 10.1038/ncb1546.CrossRefPubMed Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, Metzger E, Schüle R: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 2007, 9: 347-353. 10.1038/ncb1546.CrossRefPubMed
57.
go back to reference Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001, 410: 120-124. 10.1038/35065138.CrossRefPubMed Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001, 410: 120-124. 10.1038/35065138.CrossRefPubMed
58.
go back to reference Fischle W, Wang Y, Allis CD: Binary switches and modification cassettes in histone biology and beyond. Nature. 2003, 425: 475-479. 10.1038/nature02017.CrossRefPubMed Fischle W, Wang Y, Allis CD: Binary switches and modification cassettes in histone biology and beyond. Nature. 2003, 425: 475-479. 10.1038/nature02017.CrossRefPubMed
59.
go back to reference Pray-Grant MG, Daniel JA, Schieltz D, Yates JR, Grant PA: Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature. 2005, 433: 434-438. 10.1038/nature03242.CrossRefPubMed Pray-Grant MG, Daniel JA, Schieltz D, Yates JR, Grant PA: Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature. 2005, 433: 434-438. 10.1038/nature03242.CrossRefPubMed
60.
go back to reference Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD: WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell. 2005, 121: 859-872. 10.1016/j.cell.2005.03.036.CrossRefPubMed Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD: WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell. 2005, 121: 859-872. 10.1016/j.cell.2005.03.036.CrossRefPubMed
61.
go back to reference Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999, 21: 103-107. 10.1038/5047.CrossRefPubMed Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999, 21: 103-107. 10.1038/5047.CrossRefPubMed
62.
go back to reference Huang Y, Shaw PG, Davidson NE: Inhibition of histone deacetylases. Meth Mol Biol. 2011, 791: 297-311. 10.1007/978-1-61779-316-5_22.CrossRef Huang Y, Shaw PG, Davidson NE: Inhibition of histone deacetylases. Meth Mol Biol. 2011, 791: 297-311. 10.1007/978-1-61779-316-5_22.CrossRef
63.
go back to reference Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB: Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science. 1995, 267: 1018-1021. 10.1126/science.7863327.CrossRefPubMed Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB: Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science. 1995, 267: 1018-1021. 10.1126/science.7863327.CrossRefPubMed
64.
go back to reference Coqueret O, Gascan H: Functional interaction of STAT3 transcription factor with the cell cycle inhibitor p21WAF1/CIPI/SDI1. J Biol Chem. 2000, 275: 18794-800. 10.1074/jbc.M001601200.CrossRefPubMed Coqueret O, Gascan H: Functional interaction of STAT3 transcription factor with the cell cycle inhibitor p21WAF1/CIPI/SDI1. J Biol Chem. 2000, 275: 18794-800. 10.1074/jbc.M001601200.CrossRefPubMed
Metadata
Title
Plant HDAC inhibitor chrysin arrest cell growth and induce p21 WAF1 by altering chromatin of STAT response element in A375 cells
Authors
Manika Pal-Bhadra
M Janaki Ramaiah
T Lakshminarayan Reddy
Anita Krishnan
SNCVL Pushpavalli
K Suresh Babu
Ashok K Tiwari
J Madhusudana Rao
Jhillu S Yadav
Utpal Bhadra
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-180

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine