Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

The hOGG1 Ser326Cys polymorphism and prostate cancer risk: a meta-analysis of 2584 cases and 3234 controls

Authors: Hongtuan Zhang, Yong Xu, Zhihong Zhang, Liang Li

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Genetic polymorphism of human 8-oxoguanine glycosylase 1 (hOGG1) Ser326Cys (rs1052133) has been implicated to alter the risk of prostate cancer, but the results are controversial.

Methods

Two investigators independently searched the Medline, and Cochrane Library up to June 7, 2011. Summary odds ratios (OR) and 95% confidence interval (CI) for Ser326Cys polymorphism and prostate cancer were calculated. Statistical analysis was performed with the software program Review Manage, version 5.0 and Stata 10.0.

Results

A total of 8 independent studies, including 2584 cases and 3234 controls, were identified. Our analysis suggested that Ser326Cys was not associated with prostate cancer risk in overall population. In the subgroup analysis, we detected the significant association between Ser326Cys polymorphism and decreased prostate risk in mixed population under additive model (OR = 0.67, 95% CI = 0.50-0.90, P = 0.007), recessive model (OR = 0.68, 95% CI = 0.51-0.91, P = 0.008), and Cys allele versus Ser allele (OR = 0.88, 95% CI = 0.78-0.98, P = 0.02). Subanalysis on Caucasian subjects demonstrated that Ser326Cys was not associated with prostate cancer risk.

Conclusion

This meta-analysis showed the evidence that hOGG1 Ser326Cys polymorphism was associated with a decreased risk of prostate cancer development in mixed populations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA: 8- Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem. 1992, 267: 166-172.PubMed Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA: 8- Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem. 1992, 267: 166-172.PubMed
2.
go back to reference Hazra TK, Hill JW, Izumi T, Mitra S: Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Prog Nucleic Acid Res Mol Biol. 2001, 68: 193-205.CrossRefPubMed Hazra TK, Hill JW, Izumi T, Mitra S: Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Prog Nucleic Acid Res Mol Biol. 2001, 68: 193-205.CrossRefPubMed
3.
go back to reference Boiteux S, Radicella JP: The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys. 2000, 377: 1-10.1006/abbi.2000.1773.CrossRefPubMed Boiteux S, Radicella JP: The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys. 2000, 377: 1-10.1006/abbi.2000.1773.CrossRefPubMed
4.
go back to reference Weiss JM, Goode EL, Ladiges WC, Ulrich CM: Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog. 2005, 42: 127-141. 10.1002/mc.20067.CrossRefPubMed Weiss JM, Goode EL, Ladiges WC, Ulrich CM: Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog. 2005, 42: 127-141. 10.1002/mc.20067.CrossRefPubMed
5.
go back to reference Kohno T, Shinmura K, Tosaka M, Tani M, Kim SR, Sugimura H, Nohmi T, Kasai H, Yokota J: Genetic polymorphisms and alternative splicing of hOGG1gene that is involved in repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998, 16: 3219-3225. 10.1038/sj.onc.1201872.CrossRefPubMed Kohno T, Shinmura K, Tosaka M, Tani M, Kim SR, Sugimura H, Nohmi T, Kasai H, Yokota J: Genetic polymorphisms and alternative splicing of hOGG1gene that is involved in repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998, 16: 3219-3225. 10.1038/sj.onc.1201872.CrossRefPubMed
6.
go back to reference Dherin C, Radicella JP, Dizdaroglu M, Boiteux S: Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 1999, 27: 4001-4007. 10.1093/nar/27.20.4001.CrossRefPubMedPubMedCentral Dherin C, Radicella JP, Dizdaroglu M, Boiteux S: Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 1999, 27: 4001-4007. 10.1093/nar/27.20.4001.CrossRefPubMedPubMedCentral
7.
go back to reference Vodicka P, Stetina R, Polakova V, Tulupova E, Naccarati A, Vodickova L, Kumar R, Hanova M, Pardini B, Slyskova J, Musak L, De Palma G, Soucek P, Hemminki K: Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007, 28: 657-64.CrossRefPubMed Vodicka P, Stetina R, Polakova V, Tulupova E, Naccarati A, Vodickova L, Kumar R, Hanova M, Pardini B, Slyskova J, Musak L, De Palma G, Soucek P, Hemminki K: Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007, 28: 657-64.CrossRefPubMed
8.
go back to reference Yun SJ, Ha YS, Chae Y, Kim JS, Kim IY, Kim WJ: The hOGG1 mutant genotype is associated with prostate cancer susceptibility and aggressive clinicopathological characteristics in the Korean population. Annals of Oncology. Yun SJ, Ha YS, Chae Y, Kim JS, Kim IY, Kim WJ: The hOGG1 mutant genotype is associated with prostate cancer susceptibility and aggressive clinicopathological characteristics in the Korean population. Annals of Oncology.
9.
go back to reference Zhang J, Dhakal IB, Greene G, Lang NP, Kadlubar FF: Polymorphisms in hOGG1 and XRCC1 and risk of prostate cancer: effects modified by plasma antioxidants. Urology. 2010, 75: 779-785. 10.1016/j.urology.2009.08.063.CrossRefPubMed Zhang J, Dhakal IB, Greene G, Lang NP, Kadlubar FF: Polymorphisms in hOGG1 and XRCC1 and risk of prostate cancer: effects modified by plasma antioxidants. Urology. 2010, 75: 779-785. 10.1016/j.urology.2009.08.063.CrossRefPubMed
10.
go back to reference Lavender NA, Komolafe OO, Benford M, Brock G, Moore JH, Vancleave TT, States JC, Kittles RA, Kidd LC: No Association between Variant DNA Repair Genes and Prostate Cancer Risk among Men of African descent. Prostate. 2010, 70: 113-119.PubMedPubMedCentral Lavender NA, Komolafe OO, Benford M, Brock G, Moore JH, Vancleave TT, States JC, Kittles RA, Kidd LC: No Association between Variant DNA Repair Genes and Prostate Cancer Risk among Men of African descent. Prostate. 2010, 70: 113-119.PubMedPubMedCentral
11.
go back to reference Dhillon VS, Yeoh E, Fenech M: DNA repair gene polymorphisms and prostate cancer risk in South Australia-results of a pilot study. Urol Oncol. Dhillon VS, Yeoh E, Fenech M: DNA repair gene polymorphisms and prostate cancer risk in South Australia-results of a pilot study. Urol Oncol.
12.
go back to reference Nock NL, Cicek MS, Li L, Liu X, Rybicki BA, Moreira A, Plummer SJ, Casey G, Witte JS: Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis. 2006, 27: 1842-1848. 10.1093/carcin/bgl022.CrossRefPubMed Nock NL, Cicek MS, Li L, Liu X, Rybicki BA, Moreira A, Plummer SJ, Casey G, Witte JS: Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis. 2006, 27: 1842-1848. 10.1093/carcin/bgl022.CrossRefPubMed
13.
go back to reference Nam RK, Zhang WW, Jewett MA, Trachtenberg J, Klotz LH, Emami M, Sugar L, Sweet J, Toi A, Narod SA: The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer. 2005, 11: 8391-8397. 10.1158/1078-0432.CCR-05-1226.CrossRef Nam RK, Zhang WW, Jewett MA, Trachtenberg J, Klotz LH, Emami M, Sugar L, Sweet J, Toi A, Narod SA: The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer. 2005, 11: 8391-8397. 10.1158/1078-0432.CCR-05-1226.CrossRef
14.
go back to reference Chen L, Elahi A, Pow-Sang J, Lazarus P, Park J: Association between polymorphism of human oxoguanine glycosylase 1 and risk of prostate cancer. J Urol. 2003, 170: 2471-2474. 10.1097/01.ju.0000087498.23008.bb.CrossRefPubMed Chen L, Elahi A, Pow-Sang J, Lazarus P, Park J: Association between polymorphism of human oxoguanine glycosylase 1 and risk of prostate cancer. J Urol. 2003, 170: 2471-2474. 10.1097/01.ju.0000087498.23008.bb.CrossRefPubMed
15.
go back to reference Xu J, Zheng SL, Turner A, Isaacs SD, Wiley KE, Hawkins GA, Chang BL, Bleecker ER, Walsh PC, Meyers DA, Isaacs WB: Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res. 2002, 62: 2253-2257.PubMed Xu J, Zheng SL, Turner A, Isaacs SD, Wiley KE, Hawkins GA, Chang BL, Bleecker ER, Walsh PC, Meyers DA, Isaacs WB: Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res. 2002, 62: 2253-2257.PubMed
16.
go back to reference Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959, 22: 719-748.PubMed Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959, 22: 719-748.PubMed
17.
go back to reference DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7: 177-188. 10.1016/0197-2456(86)90046-2.CrossRefPubMed DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7: 177-188. 10.1016/0197-2456(86)90046-2.CrossRefPubMed
18.
go back to reference de Boer JG: Polymorphisms in DNA repair and environmental interactions. Mutat Res. 2002, 509: 201-210. 10.1016/S0027-5107(02)00217-8.CrossRefPubMed de Boer JG: Polymorphisms in DNA repair and environmental interactions. Mutat Res. 2002, 509: 201-210. 10.1016/S0027-5107(02)00217-8.CrossRefPubMed
19.
go back to reference Berwick M, Vineis P: Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst. 2000, 92: 874-97. 10.1093/jnci/92.11.874.CrossRefPubMed Berwick M, Vineis P: Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst. 2000, 92: 874-97. 10.1093/jnci/92.11.874.CrossRefPubMed
20.
go back to reference Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG: Replication validity of genetic association studies. Nat Genet. 2001, 29: 306-309. 10.1038/ng749.CrossRefPubMed Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG: Replication validity of genetic association studies. Nat Genet. 2001, 29: 306-309. 10.1038/ng749.CrossRefPubMed
21.
go back to reference Munafò M: Replication validity of genetic association studies of smoking behavior: what can meta-analytic techniques offer?. Nicotine Tob Res. 2004, 6: 381-382. 10.1080/14622200410001676369.CrossRefPubMed Munafò M: Replication validity of genetic association studies of smoking behavior: what can meta-analytic techniques offer?. Nicotine Tob Res. 2004, 6: 381-382. 10.1080/14622200410001676369.CrossRefPubMed
22.
go back to reference Kang TS, Jin SK, Lee JE, Woo SW, Roh J: Comparison of genetic polymorphisms of the NAT2 gene between Korean and four other ethnic groups. J Clin Pharm Ther. 2009, 34: 709-718. 10.1111/j.1365-2710.2009.01065.x.CrossRefPubMed Kang TS, Jin SK, Lee JE, Woo SW, Roh J: Comparison of genetic polymorphisms of the NAT2 gene between Korean and four other ethnic groups. J Clin Pharm Ther. 2009, 34: 709-718. 10.1111/j.1365-2710.2009.01065.x.CrossRefPubMed
23.
go back to reference Dianat SS, Margreiter M, Eckersberger E, Finkelstein J, Kuehas F, Herwig R, Ayati M, Lepor H, Djavan B: Gene polymorphisms and prostate cancer: the evidence. BJU Int. 2009, 104: 1560-1572. 10.1111/j.1464-410X.2009.08973.x.CrossRefPubMed Dianat SS, Margreiter M, Eckersberger E, Finkelstein J, Kuehas F, Herwig R, Ayati M, Lepor H, Djavan B: Gene polymorphisms and prostate cancer: the evidence. BJU Int. 2009, 104: 1560-1572. 10.1111/j.1464-410X.2009.08973.x.CrossRefPubMed
Metadata
Title
The hOGG1 Ser326Cys polymorphism and prostate cancer risk: a meta-analysis of 2584 cases and 3234 controls
Authors
Hongtuan Zhang
Yong Xu
Zhihong Zhang
Liang Li
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-391

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine