Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1Cin pancreatic endocrine tumors

Authors: Giorgio Malpeli, Eliana Amato, Mario Dandrea, Caterina Fumagalli, Valentina Debattisti, Letizia Boninsegna, Giuseppe Pelosi, Massimo Falconi, Aldo Scarpa

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

RASSF1A gene silencing by DNA methylation has been suggested as a major event in pancreatic endocrine tumor (PET) but RASSF1A expression has never been studied. The RASSF1 locus contains two CpG islands (A and C) and generates seven transcripts (RASSF1A-RASSF1G) by differential promoter usage and alternative splicing.

Methods

We studied 20 primary PETs, their matched normal pancreas and three PET cell lines for the (i) methylation status of the RASSF1 CpG islands using methylation-specific PCR and pyrosequencing and (ii) expression of RASSF1 isoforms by quantitative RT-PCR in 13 cases. CpG island A methylation was evaluated by methylation-specific PCR (MSP) and by quantitative methylation-specific PCR (qMSP); pyrosequencing was applied to quantify the methylation of 51 CpGs also encompassing those explored by MSP and qMSP approaches.

Results

MSP detected methylation in 16/20 (80%) PETs and 13/20 (65%) normal pancreas. At qMSP, 11/20 PETs (55%) and 9/20 (45%) normals were methylated in at least 20% of RASSF1A alleles.
Pyrosequencing showed variable distribution and levels of methylation within and among samples, with PETs having average methylation higher than normals in 15/20 (75%) cases (P = 0.01). The evaluation of mRNA expression of RASSF1 variants showed that: i) RASSF1A was always expressed in PET and normal tissues, but it was, on average, expressed 6.8 times less in PET (P = 0.003); ii) RASSF1A methylation inversely correlated with its expression; iii) RASSF1 isoforms were rarely found, except for RASSF1B that was always expressed and RASSF1C whose expression was 11.4 times higher in PET than in normal tissue (P = 0.001). A correlation between RASSF1A expression and gene methylation was found in two of the three PET cell lines, which also showed a significant increase in RASSF1A expression upon demethylating treatment.

Conclusions

RASSF1A gene methylation in PET is higher than normal pancreas in no more than 75% of cases and as such it cannot be considered a marker for this neoplasm. RASSF1A is always expressed in PET and normal pancreas and its levels are inversely correlated with gene methylation. Isoform RASSF1C is overexpressed in PET and the recent demonstration of its involvement in the regulation of the Wnt pathway points to a potential pathogenetic role in tumor development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arnold CN, Sosnowski A, Schmitt-Graff A, Arnold R, Blum HE: Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro-entero-pancreatic system. Int J Cancer. 2007, 120 (10): 2157-2164. 10.1002/ijc.22569.CrossRefPubMed Arnold CN, Sosnowski A, Schmitt-Graff A, Arnold R, Blum HE: Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro-entero-pancreatic system. Int J Cancer. 2007, 120 (10): 2157-2164. 10.1002/ijc.22569.CrossRefPubMed
2.
go back to reference Dammann R, Schagdarsurengin U, Liu L, Otto N, Gimm O, Dralle H, Boehm BO, Pfeifer GP, Hoang-Vu C: Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene. 2003, 22 (24): 3806-3812. 10.1038/sj.onc.1206582.CrossRefPubMed Dammann R, Schagdarsurengin U, Liu L, Otto N, Gimm O, Dralle H, Boehm BO, Pfeifer GP, Hoang-Vu C: Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene. 2003, 22 (24): 3806-3812. 10.1038/sj.onc.1206582.CrossRefPubMed
3.
go back to reference House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Lillemoe KD, Cameron JL, Hruban RH, Maitra A, Yeo CJ: Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg. 2003, 238 (3): 423-431. discussion 431-422PubMedPubMedCentral House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Lillemoe KD, Cameron JL, Hruban RH, Maitra A, Yeo CJ: Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg. 2003, 238 (3): 423-431. discussion 431-422PubMedPubMedCentral
4.
go back to reference Liu L, Broaddus RR, Yao JC, Xie S, White JA, Wu TT, Hamilton SR, Rashid A: Epigenetic alterations in neuroendocrine tumors: methylation of RAS-association domain family 1, isoform A and p16 genes are associated with metastasis. Mod Pathol. 2005, 18 (12): 1632-1640.PubMed Liu L, Broaddus RR, Yao JC, Xie S, White JA, Wu TT, Hamilton SR, Rashid A: Epigenetic alterations in neuroendocrine tumors: methylation of RAS-association domain family 1, isoform A and p16 genes are associated with metastasis. Mod Pathol. 2005, 18 (12): 1632-1640.PubMed
5.
go back to reference Pizzi S, Azzoni C, Bottarelli L, Campanini N, D'Adda T, Pasquali C, Rossi G, Rindi G, Bordi C: RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol. 2005, 206 (4): 409-416. 10.1002/path.1784.CrossRefPubMed Pizzi S, Azzoni C, Bottarelli L, Campanini N, D'Adda T, Pasquali C, Rossi G, Rindi G, Bordi C: RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol. 2005, 206 (4): 409-416. 10.1002/path.1784.CrossRefPubMed
6.
go back to reference Gonzalgo ML, Yegnasubramanian S, Yan G, Rogers CG, Nicol TL, Nelson WG, Pavlovich CP: Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis. Clin Cancer Res. 2004, 10 (21): 7276-7283. 10.1158/1078-0432.CCR-03-0692.CrossRefPubMed Gonzalgo ML, Yegnasubramanian S, Yan G, Rogers CG, Nicol TL, Nelson WG, Pavlovich CP: Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis. Clin Cancer Res. 2004, 10 (21): 7276-7283. 10.1158/1078-0432.CCR-03-0692.CrossRefPubMed
7.
go back to reference Lehmann U, Berg-Ribbe I, Wingen LU, Brakensiek K, Becker T, Klempnauer J, Schlegelberger B, Kreipe H, Flemming P: Distinct methylation patterns of benign and malignant liver tumors revealed by quantitative methylation profiling. Clin Cancer Res. 2005, 11 (10): 3654-3660. 10.1158/1078-0432.CCR-04-2462.CrossRefPubMed Lehmann U, Berg-Ribbe I, Wingen LU, Brakensiek K, Becker T, Klempnauer J, Schlegelberger B, Kreipe H, Flemming P: Distinct methylation patterns of benign and malignant liver tumors revealed by quantitative methylation profiling. Clin Cancer Res. 2005, 11 (10): 3654-3660. 10.1158/1078-0432.CCR-04-2462.CrossRefPubMed
8.
go back to reference Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B, Kreipe H: Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol. 2002, 160 (2): 605-612. 10.1016/S0002-9440(10)64880-8.CrossRefPubMedPubMedCentral Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B, Kreipe H: Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol. 2002, 160 (2): 605-612. 10.1016/S0002-9440(10)64880-8.CrossRefPubMedPubMedCentral
9.
go back to reference van der Weyden L, Adams DJ: The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 2007, 1776 (1): 58-85.PubMedPubMedCentral van der Weyden L, Adams DJ: The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 2007, 1776 (1): 58-85.PubMedPubMedCentral
10.
go back to reference Xing M, Cohen Y, Mambo E, Tallini G, Udelsman R, Ladenson PW, Sidransky D: Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer Res. 2004, 64 (5): 1664-1668. 10.1158/0008-5472.CAN-03-3242.CrossRefPubMed Xing M, Cohen Y, Mambo E, Tallini G, Udelsman R, Ladenson PW, Sidransky D: Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer Res. 2004, 64 (5): 1664-1668. 10.1158/0008-5472.CAN-03-3242.CrossRefPubMed
11.
go back to reference Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J, Fullwood P, Chauhan A, Walker R, Shaw JA, et al: Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene. 2001, 20 (12): 1509-1518. 10.1038/sj.onc.1204175.CrossRefPubMed Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J, Fullwood P, Chauhan A, Walker R, Shaw JA, et al: Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene. 2001, 20 (12): 1509-1518. 10.1038/sj.onc.1204175.CrossRefPubMed
12.
go back to reference Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP: Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect. 2007, 115 (10): 1454-1459.PubMedPubMedCentral Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP: Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect. 2007, 115 (10): 1454-1459.PubMedPubMedCentral
13.
go back to reference Geli J, Kiss N, Lanner F, Foukakis T, Natalishvili N, Larsson O, Kogner P, Hoog A, Clark GJ, Ekstrom TJ, et al: The Ras effectors NORE1A and RASSF1A are frequently inactivated in pheochromocytoma and abdominal paraganglioma. Endocr Relat Cancer. 2007, 14 (1): 125-134. 10.1677/ERC-06-0031.CrossRefPubMed Geli J, Kiss N, Lanner F, Foukakis T, Natalishvili N, Larsson O, Kogner P, Hoog A, Clark GJ, Ekstrom TJ, et al: The Ras effectors NORE1A and RASSF1A are frequently inactivated in pheochromocytoma and abdominal paraganglioma. Endocr Relat Cancer. 2007, 14 (1): 125-134. 10.1677/ERC-06-0031.CrossRefPubMed
14.
go back to reference Greenspan EJ, Jablonski MA, Rajan TV, Levine J, Belinsky GS, Rosenberg DW: Epigenetic alterations in RASSF1A in human aberrant crypt foci. Carcinogenesis. 2006, 27 (7): 1316-1322. 10.1093/carcin/bgi373.CrossRefPubMedPubMedCentral Greenspan EJ, Jablonski MA, Rajan TV, Levine J, Belinsky GS, Rosenberg DW: Epigenetic alterations in RASSF1A in human aberrant crypt foci. Carcinogenesis. 2006, 27 (7): 1316-1322. 10.1093/carcin/bgi373.CrossRefPubMedPubMedCentral
15.
go back to reference Li Y, Wei Q, Cao F, Cao X: Expression and promoter methylation of the RASSF1A gene in sporadic breast cancers in Chinese women. Oncol Rep. 2008, 19 (5): 1149-1153.PubMed Li Y, Wei Q, Cao F, Cao X: Expression and promoter methylation of the RASSF1A gene in sporadic breast cancers in Chinese women. Oncol Rep. 2008, 19 (5): 1149-1153.PubMed
16.
go back to reference Liu L, Yoon JH, Dammann R, Pfeifer GP: Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene. 2002, 21 (44): 6835-6840. 10.1038/sj.onc.1205814.CrossRefPubMed Liu L, Yoon JH, Dammann R, Pfeifer GP: Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene. 2002, 21 (44): 6835-6840. 10.1038/sj.onc.1205814.CrossRefPubMed
17.
go back to reference Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, Chow LS, Teo PM, Johnson PJ, Huang DP: High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res. 2001, 61 (10): 3877-3881.PubMed Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, Chow LS, Teo PM, Johnson PJ, Huang DP: High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res. 2001, 61 (10): 3877-3881.PubMed
18.
go back to reference Qian ZR, Sano T, Yoshimoto K, Yamada S, Ishizuka A, Mizusawa N, Horiguchi H, Hirokawa M, Asa SL: Inactivation of RASSF1A tumor suppressor gene by aberrant promoter hypermethylation in human pituitary adenomas. Lab Invest. 2005, 85 (4): 464-473. 10.1038/labinvest.3700248.CrossRefPubMed Qian ZR, Sano T, Yoshimoto K, Yamada S, Ishizuka A, Mizusawa N, Horiguchi H, Hirokawa M, Asa SL: Inactivation of RASSF1A tumor suppressor gene by aberrant promoter hypermethylation in human pituitary adenomas. Lab Invest. 2005, 85 (4): 464-473. 10.1038/labinvest.3700248.CrossRefPubMed
19.
go back to reference Yan PS, Shi H, Rahmatpanah F, Hsiau TH, Hsiau AH, Leu YW, Liu JC, Huang TH: Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res. 2003, 63 (19): 6178-6186.PubMed Yan PS, Shi H, Rahmatpanah F, Hsiau TH, Hsiau AH, Leu YW, Liu JC, Huang TH: Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res. 2003, 63 (19): 6178-6186.PubMed
20.
go back to reference Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP: Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000, 25 (3): 315-319. 10.1038/77083.CrossRefPubMed Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP: Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000, 25 (3): 315-319. 10.1038/77083.CrossRefPubMed
21.
go back to reference Rong R, Jin W, Zhang J, Sheikh MS, Huang Y: Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene. 2004, 23 (50): 8216-8230. 10.1038/sj.onc.1207901.CrossRefPubMed Rong R, Jin W, Zhang J, Sheikh MS, Huang Y: Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene. 2004, 23 (50): 8216-8230. 10.1038/sj.onc.1207901.CrossRefPubMed
22.
go back to reference Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA: The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002, 22 (12): 4309-4318. 10.1128/MCB.22.12.4309-4318.2002.CrossRefPubMedPubMedCentral Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA: The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002, 22 (12): 4309-4318. 10.1128/MCB.22.12.4309-4318.2002.CrossRefPubMedPubMedCentral
23.
go back to reference Vos MD, Martinez A, Elam C, Dallol A, Taylor BJ, Latif F, Clark GJ: A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res. 2004, 64 (12): 4244-4250. 10.1158/0008-5472.CAN-04-0339.CrossRefPubMed Vos MD, Martinez A, Elam C, Dallol A, Taylor BJ, Latif F, Clark GJ: A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res. 2004, 64 (12): 4244-4250. 10.1158/0008-5472.CAN-04-0339.CrossRefPubMed
24.
go back to reference Agathanggelou A, Cooper WN, Latif F: Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005, 65 (9): 3497-3508. 10.1158/0008-5472.CAN-04-4088.CrossRefPubMed Agathanggelou A, Cooper WN, Latif F: Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005, 65 (9): 3497-3508. 10.1158/0008-5472.CAN-04-4088.CrossRefPubMed
25.
go back to reference Liu L, Guo C, Dammann R, Tommasi S, Pfeifer GP: RASSF1A interacts with and activates the mitotic kinase Aurora-A. Oncogene. 2008, 27 (47): 6175-6186. 10.1038/onc.2008.220.CrossRefPubMed Liu L, Guo C, Dammann R, Tommasi S, Pfeifer GP: RASSF1A interacts with and activates the mitotic kinase Aurora-A. Oncogene. 2008, 27 (47): 6175-6186. 10.1038/onc.2008.220.CrossRefPubMed
26.
go back to reference Liu L, Tommasi S, Lee DH, Dammann R, Pfeifer GP: Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene. 2003, 22 (50): 8125-8136. 10.1038/sj.onc.1206984.CrossRefPubMed Liu L, Tommasi S, Lee DH, Dammann R, Pfeifer GP: Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene. 2003, 22 (50): 8125-8136. 10.1038/sj.onc.1206984.CrossRefPubMed
27.
go back to reference Heitz PU, Komminoth P, Perren A: Tumors of the endocrine pancreas. 2004, Lyon, France: IARC Press Heitz PU, Komminoth P, Perren A: Tumors of the endocrine pancreas. 2004, Lyon, France: IARC Press
28.
go back to reference Di Gioia S, Bianchi P, Destro A, Grizzi F, Malesci A, Laghi L, Levrero M, Morabito A, Roncalli M: Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver. BMC Cancer. 2006, 6: 89-10.1186/1471-2407-6-89.CrossRefPubMedPubMedCentral Di Gioia S, Bianchi P, Destro A, Grizzi F, Malesci A, Laghi L, Levrero M, Morabito A, Roncalli M: Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver. BMC Cancer. 2006, 6: 89-10.1186/1471-2407-6-89.CrossRefPubMedPubMedCentral
29.
go back to reference Colella S, Shen L, Baggerly KA, Issa JP, Krahe R: Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques. 2003, 35 (1): 146-150.PubMed Colella S, Shen L, Baggerly KA, Issa JP, Krahe R: Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques. 2003, 35 (1): 146-150.PubMed
30.
go back to reference Waki T, Tamura G, Sato M, Motoyama T: Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene. 2003, 22 (26): 4128-4133. 10.1038/sj.onc.1206651.CrossRefPubMed Waki T, Tamura G, Sato M, Motoyama T: Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene. 2003, 22 (26): 4128-4133. 10.1038/sj.onc.1206651.CrossRefPubMed
31.
go back to reference Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996, 93 (18): 9821-9826. 10.1073/pnas.93.18.9821.CrossRefPubMedPubMedCentral Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996, 93 (18): 9821-9826. 10.1073/pnas.93.18.9821.CrossRefPubMedPubMedCentral
32.
go back to reference Ahuja N, Issa JP: Aging, methylation and cancer. Histol Histopathol. 2000, 15 (3): 835-842.PubMed Ahuja N, Issa JP: Aging, methylation and cancer. Histol Histopathol. 2000, 15 (3): 835-842.PubMed
33.
go back to reference Guo M, House MG, Hooker C, Han Y, Heath E, Gabrielson E, Yang SC, Baylin SB, Herman JG, Brock MV: Promoter hypermethylation of resected bronchial margins: a field defect of changes?. Clin Cancer Res. 2004, 10 (15): 5131-5136. 10.1158/1078-0432.CCR-03-0763.CrossRefPubMed Guo M, House MG, Hooker C, Han Y, Heath E, Gabrielson E, Yang SC, Baylin SB, Herman JG, Brock MV: Promoter hypermethylation of resected bronchial margins: a field defect of changes?. Clin Cancer Res. 2004, 10 (15): 5131-5136. 10.1158/1078-0432.CCR-03-0763.CrossRefPubMed
34.
go back to reference Corbo V, Beghelli S, Bersani S, Antonello D, Talamini G, Brunelli M, Capelli P, Falconi M, Scarpa A: Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann Oncol. 2011 Corbo V, Beghelli S, Bersani S, Antonello D, Talamini G, Brunelli M, Capelli P, Falconi M, Scarpa A: Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann Oncol. 2011
35.
go back to reference Estrabaud E, Lassot I, Blot G, Le Rouzic E, Tanchou V, Quemeneur E, Daviet L, Margottin-Goguet F, Benarous R: RASSF1C, an isoform of the tumor suppressor RASSF1A, promotes the accumulation of beta-catenin by interacting with betaTrCP. Cancer Res. 2007, 67 (3): 1054-1061. 10.1158/0008-5472.CAN-06-2530.CrossRefPubMed Estrabaud E, Lassot I, Blot G, Le Rouzic E, Tanchou V, Quemeneur E, Daviet L, Margottin-Goguet F, Benarous R: RASSF1C, an isoform of the tumor suppressor RASSF1A, promotes the accumulation of beta-catenin by interacting with betaTrCP. Cancer Res. 2007, 67 (3): 1054-1061. 10.1158/0008-5472.CAN-06-2530.CrossRefPubMed
36.
go back to reference Rulifson IC, Karnik SK, Heiser PW, ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebrok M, Kim SK: Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA. 2007, 104 (15): 6247-6252. 10.1073/pnas.0701509104.CrossRefPubMedPubMedCentral Rulifson IC, Karnik SK, Heiser PW, ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebrok M, Kim SK: Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA. 2007, 104 (15): 6247-6252. 10.1073/pnas.0701509104.CrossRefPubMedPubMedCentral
37.
go back to reference Reeves ME, Baldwin SW, Baldwin ML, Chen ST, Moretz JM, Aragon RJ, Li X, Strong DD, Mohan S, Amaar YG: Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis. BMC Cancer. 10: 562- Reeves ME, Baldwin SW, Baldwin ML, Chen ST, Moretz JM, Aragon RJ, Li X, Strong DD, Mohan S, Amaar YG: Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis. BMC Cancer. 10: 562-
Metadata
Title
Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1Cin pancreatic endocrine tumors
Authors
Giorgio Malpeli
Eliana Amato
Mario Dandrea
Caterina Fumagalli
Valentina Debattisti
Letizia Boninsegna
Giuseppe Pelosi
Massimo Falconi
Aldo Scarpa
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-351

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine