Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma

Authors: Amanda Tivnan, Lorraine Tracey, Patrick G Buckley, Leah C Alcock, Andrew M Davidoff, Raymond L Stallings

Published in: BMC Cancer | Issue 1/2011

Login to get access

ABSTRACT

Background

Neuroblastoma is a paediatric cancer which originates from precursor cells of the sympathetic nervous system and accounts for 15% of childhood cancer mortalities. With regards to the role of miRNAs in neuroblastoma, miR-34a, mapping to a chromosome 1p36 region that is commonly deleted, has been found to act as a tumor suppressor through targeting of numerous genes associated with cell proliferation and apoptosis.

Methods

A synthetic miR-34a (or negative control) precursor molecule was transfected into NB1691luc and SK-N-ASluc neuroblastoma cells. Quantitative PCR was used to verify increased miR-34a levels in NB1691luc and SK-N-ASluc cell lines prior to in vitro and in vivo analysis. In vitro analysis of the effects of miR-34a over expression on cell growth, cell cycle and phosphoprotein activation in signal transduction pathways was performed. Neuroblastoma cells over expressing miR-34a were injected retroperitoneally into immunocompromised CB17-SCID mice and tumor burden was assessed over a 21 day period by measuring bioluminescence (photons/sec/cm2).

Results

Over expression of miR-34a in both NB1691luc and SK-N-ASluc neuroblastoma cell lines led to a significant decrease in cell number relative to premiR-negative control treated cells over a 72 hour period. Flow cytometry results indicated that miR-34a induced cell cycle arrest and subsequent apoptosis activation. Phosphoprotein analysis highlighted key elements involved in signal transduction, whose activation was dysregulated as a result of miR-34a introduction into cells. As a potential mechanism of miR-34a action on phosphoprotein levels, we demonstrate that miR-34a over-expression results in a significant reduction of MAP3K9 mRNA and protein levels. Although MAP3K9 is a predicted target of miR-34a, direct targeting could not be validated with luciferase reporter assays. Despite this fact, any functional effects of reduced MAP3K9 expression as a result of miR-34a would be expected to be similar regardless of the mechanism involved. Most notably, in vivo studies showed that tumor growth was significantly repressed after exogenous miR-34a administration in retroperitoneal neuroblastoma tumors.

Conclusion

We demonstrate for the first time that miR-34a significantly reduces tumor growth in an in vivo orthotopic murine model of neuroblastoma and identified novel effects that miR-34a has on phospho-activation of key proteins involved with apoptosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Breving K, Esquela-Kerscher A: The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol. 2009, 42 (8): 1316-1329. 10.1016/j.biocel.2009.09.016.CrossRefPubMed Breving K, Esquela-Kerscher A: The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol. 2009, 42 (8): 1316-1329. 10.1016/j.biocel.2009.09.016.CrossRefPubMed
2.
go back to reference Kim VN: Small RNAs: classification, biogenesis, and function. Mol Cells. 2005, 19 (1): 1-15. 10.1016/j.molcel.2005.05.026.CrossRefPubMed Kim VN: Small RNAs: classification, biogenesis, and function. Mol Cells. 2005, 19 (1): 1-15. 10.1016/j.molcel.2005.05.026.CrossRefPubMed
3.
go back to reference Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu Rev Med. 2009, 60: 167-179. 10.1146/annurev.med.59.053006.104707.CrossRefPubMed Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu Rev Med. 2009, 60: 167-179. 10.1146/annurev.med.59.053006.104707.CrossRefPubMed
4.
go back to reference Brodeur GM: Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003, 3 (3): 203-216. 10.1038/nrc1014.CrossRefPubMed Brodeur GM: Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003, 3 (3): 203-216. 10.1038/nrc1014.CrossRefPubMed
5.
go back to reference Stallings RL, Foley NH, Bryan K, Buckley PG, Bray I: Therapeutic targeting of miRNAs in neuroblastoma. Expert Opin Ther Targets. 2010, 14 (9): 951-962. 10.1517/14728222.2010.510136.CrossRefPubMed Stallings RL, Foley NH, Bryan K, Buckley PG, Bray I: Therapeutic targeting of miRNAs in neuroblastoma. Expert Opin Ther Targets. 2010, 14 (9): 951-962. 10.1517/14728222.2010.510136.CrossRefPubMed
6.
go back to reference Welch C, Chen Y, Stallings RL: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007, 26 (34): 5017-5022. 10.1038/sj.onc.1210293.CrossRefPubMed Welch C, Chen Y, Stallings RL: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007, 26 (34): 5017-5022. 10.1038/sj.onc.1210293.CrossRefPubMed
7.
go back to reference Stallings RL: Are chromosomal imbalances important in cancer?. Trends Genet. 2007, 23 (6): 278-283. 10.1016/j.tig.2007.03.009.CrossRefPubMed Stallings RL: Are chromosomal imbalances important in cancer?. Trends Genet. 2007, 23 (6): 278-283. 10.1016/j.tig.2007.03.009.CrossRefPubMed
8.
go back to reference Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM: A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res. 2008, 6 (5): 735-742. 10.1158/1541-7786.MCR-07-2102.CrossRefPubMedPubMedCentral Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM: A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res. 2008, 6 (5): 735-742. 10.1158/1541-7786.MCR-07-2102.CrossRefPubMedPubMedCentral
9.
go back to reference Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, et al: The MYCN oncogene is a direct target of miR-34a. Oncogene. 2008, 27 (39): 5204-5213. 10.1038/onc.2008.154.CrossRefPubMedPubMedCentral Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, et al: The MYCN oncogene is a direct target of miR-34a. Oncogene. 2008, 27 (39): 5204-5213. 10.1038/onc.2008.154.CrossRefPubMedPubMedCentral
10.
go back to reference Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG, Jin DY, Costello JF, Liang R: Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis. 31 (4): 745-750. 10.1093/carcin/bgq033. Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG, Jin DY, Costello JF, Liang R: Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis. 31 (4): 745-750. 10.1093/carcin/bgq033.
11.
go back to reference Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X: miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009, 275 (1): 44-53. 10.1016/j.canlet.2008.09.035.CrossRefPubMed Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X: miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009, 275 (1): 44-53. 10.1016/j.canlet.2008.09.035.CrossRefPubMed
12.
go back to reference Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, et al: MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009, 4 (8): e6816-10.1371/journal.pone.0006816.CrossRefPubMedPubMedCentral Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, et al: MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009, 4 (8): e6816-10.1371/journal.pone.0006816.CrossRefPubMedPubMedCentral
13.
go back to reference Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007, 104 (39): 15472-15477. 10.1073/pnas.0707351104.CrossRefPubMedPubMedCentral Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007, 104 (39): 15472-15477. 10.1073/pnas.0707351104.CrossRefPubMedPubMedCentral
14.
go back to reference Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al: p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007, 17 (15): 1298-1307. 10.1016/j.cub.2007.06.068.CrossRefPubMed Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al: p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007, 17 (15): 1298-1307. 10.1016/j.cub.2007.06.068.CrossRefPubMed
15.
go back to reference Luan S, Sun L, Huang F: MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010, 41 (2): 67-74. 10.1016/j.arcmed.2010.02.007.CrossRefPubMed Luan S, Sun L, Huang F: MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010, 41 (2): 67-74. 10.1016/j.arcmed.2010.02.007.CrossRefPubMed
16.
go back to reference Yamakuchi M, Ferlito M, Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 2008, 105 (36): 13421-13426. 10.1073/pnas.0801613105.CrossRefPubMedPubMedCentral Yamakuchi M, Ferlito M, Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 2008, 105 (36): 13421-13426. 10.1073/pnas.0801613105.CrossRefPubMedPubMedCentral
17.
go back to reference Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, Oza JH, Yao M, Juan D, Liou LS, et al: Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol. 2010, 4: 51-10.1186/1752-0509-4-51.CrossRefPubMedPubMedCentral Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, Oza JH, Yao M, Juan D, Liou LS, et al: Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol. 2010, 4: 51-10.1186/1752-0509-4-51.CrossRefPubMedPubMedCentral
18.
go back to reference Pang RT, Leung CO, Ye TM, Liu W, Chiu PC, Lam KK, Lee KF, Yeung WS: MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis. 2010, 31 (6): 1037-1044. 10.1093/carcin/bgq066.CrossRefPubMed Pang RT, Leung CO, Ye TM, Liu W, Chiu PC, Lam KK, Lee KF, Yeung WS: MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis. 2010, 31 (6): 1037-1044. 10.1093/carcin/bgq066.CrossRefPubMed
19.
go back to reference Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X: Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 2008, 582 (10): 1564-1568. 10.1016/j.febslet.2008.03.057.CrossRefPubMed Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X: Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 2008, 582 (10): 1564-1568. 10.1016/j.febslet.2008.03.057.CrossRefPubMed
20.
go back to reference Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26 (5): 745-752. 10.1016/j.molcel.2007.05.010.CrossRefPubMedPubMedCentral Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26 (5): 745-752. 10.1016/j.molcel.2007.05.010.CrossRefPubMedPubMedCentral
21.
go back to reference Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26 (5): 731-743. 10.1016/j.molcel.2007.05.017.CrossRefPubMed Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26 (5): 731-743. 10.1016/j.molcel.2007.05.017.CrossRefPubMed
22.
go back to reference Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007, 6 (13): 1586-1593. 10.4161/cc.6.13.4436.CrossRefPubMed Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007, 6 (13): 1586-1593. 10.4161/cc.6.13.4436.CrossRefPubMed
23.
go back to reference Cai KM, Bao XL, Kong XH, Jinag W, Mao MR, Chu JS, Huang YJ, Zhao XJ: Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met. Int J Mol Med. 25 (4): 565-571. Cai KM, Bao XL, Kong XH, Jinag W, Mao MR, Chu JS, Huang YJ, Zhao XJ: Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met. Int J Mol Med. 25 (4): 565-571.
24.
go back to reference Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, Lilja H, Ceder Y: miR-34c is down regulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer. Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, Lilja H, Ceder Y: miR-34c is down regulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer.
25.
go back to reference Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, et al: MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009, 69 (19): 7569-7576. 10.1158/0008-5472.CAN-09-0529.CrossRefPubMedPubMedCentral Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, et al: MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009, 69 (19): 7569-7576. 10.1158/0008-5472.CAN-09-0529.CrossRefPubMedPubMedCentral
26.
go back to reference Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010, 70 (14): 5923-5930. 10.1158/0008-5472.CAN-10-0655.CrossRefPubMedPubMedCentral Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010, 70 (14): 5923-5930. 10.1158/0008-5472.CAN-10-0655.CrossRefPubMedPubMedCentral
27.
go back to reference Chen Y, Zhu X, Zhang X, Liu B, Huang L: Nanoparticles Modified With Tumor-targeting scFv Deliver siRNA and miRNA for Cancer Therapy. Mol Ther. 2010, 18 (9): 1650-1656. 10.1038/mt.2010.136.CrossRefPubMedPubMedCentral Chen Y, Zhu X, Zhang X, Liu B, Huang L: Nanoparticles Modified With Tumor-targeting scFv Deliver siRNA and miRNA for Cancer Therapy. Mol Ther. 2010, 18 (9): 1650-1656. 10.1038/mt.2010.136.CrossRefPubMedPubMedCentral
28.
go back to reference McKenzie PP, Guichard SM, Middlemas DS, Ashmun RA, Danks MK, Harris LC: Wild-type p53 can induce p21 and apoptosis in neuroblastoma cells but the DNA damage-induced G1 checkpoint function is attenuated. Clin Cancer Res. 1999, 5 (12): 4199-4207.PubMed McKenzie PP, Guichard SM, Middlemas DS, Ashmun RA, Danks MK, Harris LC: Wild-type p53 can induce p21 and apoptosis in neuroblastoma cells but the DNA damage-induced G1 checkpoint function is attenuated. Clin Cancer Res. 1999, 5 (12): 4199-4207.PubMed
29.
go back to reference Dickson PV, Hamner B, Ng CY, Hall MM, Zhou J, Hargrove PW, McCarville MB, Davidoff AM: In vivo bioluminescence imaging for early detection and monitoring of disease progression in a murine model of neuroblastoma. J Pediatr Surg. 2007, 42 (7): 1172-1179. 10.1016/j.jpedsurg.2007.02.027.CrossRefPubMed Dickson PV, Hamner B, Ng CY, Hall MM, Zhou J, Hargrove PW, McCarville MB, Davidoff AM: In vivo bioluminescence imaging for early detection and monitoring of disease progression in a murine model of neuroblastoma. J Pediatr Surg. 2007, 42 (7): 1172-1179. 10.1016/j.jpedsurg.2007.02.027.CrossRefPubMed
30.
go back to reference Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27 (1): 91-105. 10.1016/j.molcel.2007.06.017.CrossRefPubMedPubMedCentral Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27 (1): 91-105. 10.1016/j.molcel.2007.06.017.CrossRefPubMedPubMedCentral
31.
go back to reference Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001, 22 (2): 153-183. 10.1210/er.22.2.153.PubMed Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001, 22 (2): 153-183. 10.1210/er.22.2.153.PubMed
32.
go back to reference Zhuang S, Schnellmann RG: A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther. 2006, 319 (3): 991-997. 10.1124/jpet.106.107367.CrossRefPubMed Zhuang S, Schnellmann RG: A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther. 2006, 319 (3): 991-997. 10.1124/jpet.106.107367.CrossRefPubMed
33.
go back to reference Subramaniam S, Unsicker K: ERK and cell death: ERK1/2 in neuronal death. FEBS J. 2010, 277 (1): 22-29. 10.1111/j.1742-4658.2009.07367.x.CrossRefPubMed Subramaniam S, Unsicker K: ERK and cell death: ERK1/2 in neuronal death. FEBS J. 2010, 277 (1): 22-29. 10.1111/j.1742-4658.2009.07367.x.CrossRefPubMed
34.
go back to reference Cheung EC, Slack RS: Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE. 2004, 2004 (251): PE45-10.1126/stke.2512004pe45.PubMed Cheung EC, Slack RS: Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE. 2004, 2004 (251): PE45-10.1126/stke.2512004pe45.PubMed
35.
go back to reference Kusaba T, Nakayama T, Yamazumi K, Yakata Y, Yoshizaki A, Inoue K, Nagayasu T, Sekine I: Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep. 2006, 15 (6): 1445-1451.PubMed Kusaba T, Nakayama T, Yamazumi K, Yakata Y, Yoshizaki A, Inoue K, Nagayasu T, Sekine I: Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep. 2006, 15 (6): 1445-1451.PubMed
36.
go back to reference Alvarez JV, Greulich H, Sellers WR, Meyerson M, Frank DA: Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res. 2006, 66 (6): 3162-3168. 10.1158/0008-5472.CAN-05-3757.CrossRefPubMed Alvarez JV, Greulich H, Sellers WR, Meyerson M, Frank DA: Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res. 2006, 66 (6): 3162-3168. 10.1158/0008-5472.CAN-05-3757.CrossRefPubMed
37.
go back to reference Chai H, Luo AZ, Weerasinghe P, Brown RE: Sorafenib downregulates ERK/Akt and STAT3 survival pathways and induces apoptosis in a human neuroblastoma cell line. Int J Clin Exp Pathol. 2010, 3 (4): 408-415.PubMedPubMedCentral Chai H, Luo AZ, Weerasinghe P, Brown RE: Sorafenib downregulates ERK/Akt and STAT3 survival pathways and induces apoptosis in a human neuroblastoma cell line. Int J Clin Exp Pathol. 2010, 3 (4): 408-415.PubMedPubMedCentral
38.
go back to reference Gheeya JS, Chen QR, Benjamin CD, Cheuk AT, Tsang P, Chung JY, Metaferia BB, Badgett TC, Johansson P, Wei JS, et al: Screening a panel of drugs with diverse mechanisms of action yields potential therapeutic agents against neuroblastoma. Cancer Biol Ther. 2009, 8 (24): 2386-2395. 10.4161/cbt.8.24.10184.CrossRefPubMedPubMedCentral Gheeya JS, Chen QR, Benjamin CD, Cheuk AT, Tsang P, Chung JY, Metaferia BB, Badgett TC, Johansson P, Wei JS, et al: Screening a panel of drugs with diverse mechanisms of action yields potential therapeutic agents against neuroblastoma. Cancer Biol Ther. 2009, 8 (24): 2386-2395. 10.4161/cbt.8.24.10184.CrossRefPubMedPubMedCentral
39.
go back to reference Greenberg AK, Basu S, Hu J, Yie TA, Tchou-Wong KM, Rom WN, Lee TC: Selective p38 activation in human non-small cell lung cancer. Am J Respir Cell Mol Biol. 2002, 26 (5): 558-564.CrossRefPubMed Greenberg AK, Basu S, Hu J, Yie TA, Tchou-Wong KM, Rom WN, Lee TC: Selective p38 activation in human non-small cell lung cancer. Am J Respir Cell Mol Biol. 2002, 26 (5): 558-564.CrossRefPubMed
40.
go back to reference Liu J, Lin A: Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 2005, 15 (1): 36-42. 10.1038/sj.cr.7290262.CrossRefPubMed Liu J, Lin A: Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 2005, 15 (1): 36-42. 10.1038/sj.cr.7290262.CrossRefPubMed
41.
go back to reference Bost F, McKay R, Bost M, Potapova O, Dean NM, Mercola D: The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol. 1999, 19 (3): 1938-1949.CrossRefPubMedPubMedCentral Bost F, McKay R, Bost M, Potapova O, Dean NM, Mercola D: The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol. 1999, 19 (3): 1938-1949.CrossRefPubMedPubMedCentral
42.
go back to reference Potapova O, Anisimov SV, Gorospe M, Dougherty RH, Gaarde WA, Boheler KR, Holbrook NJ: Targets of c-Jun NH(2)-terminal kinase 2-mediated tumor growth regulation revealed by serial analysis of gene expression. Cancer Res. 2002, 62 (11): 3257-3263.PubMed Potapova O, Anisimov SV, Gorospe M, Dougherty RH, Gaarde WA, Boheler KR, Holbrook NJ: Targets of c-Jun NH(2)-terminal kinase 2-mediated tumor growth regulation revealed by serial analysis of gene expression. Cancer Res. 2002, 62 (11): 3257-3263.PubMed
43.
go back to reference Lee S, Das HK: Inhibition of basal activity of c-jun-NH2-terminal kinase (JNK) represses the expression of presenilin-1 by a p53-dependent mechanism. Brain Res. 2008, 1207: 19-31. 10.1016/j.brainres.2008.02.016.CrossRefPubMed Lee S, Das HK: Inhibition of basal activity of c-jun-NH2-terminal kinase (JNK) represses the expression of presenilin-1 by a p53-dependent mechanism. Brain Res. 2008, 1207: 19-31. 10.1016/j.brainres.2008.02.016.CrossRefPubMed
Metadata
Title
MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma
Authors
Amanda Tivnan
Lorraine Tracey
Patrick G Buckley
Leah C Alcock
Andrew M Davidoff
Raymond L Stallings
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-33

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine