Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

Authors: Elina Mattila, Heidi Marttila, Niko Sahlberg, Pekka Kohonen, Siri Tähtinen, Pasi Halonen, Merja Perälä, Johanna Ivaska

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds.

Methods

We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays.

Results

From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells.

Conclusions

In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening to identify small molecule PTP activators that could function as RTK antagonists in cells.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Ostman A, Hellberg C, Bohmer FD: Protein-tyrosine phosphatases and cancer. Nat Rev Cancer. 2006, 6 (4): 307-320. 10.1038/nrc1837.CrossRefPubMed Ostman A, Hellberg C, Bohmer FD: Protein-tyrosine phosphatases and cancer. Nat Rev Cancer. 2006, 6 (4): 307-320. 10.1038/nrc1837.CrossRefPubMed
3.
go back to reference Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T: Protein tyrosine phosphatases in the human genome. Cell. 2004, 117 (6): 699-711. 10.1016/j.cell.2004.05.018.CrossRefPubMed Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T: Protein tyrosine phosphatases in the human genome. Cell. 2004, 117 (6): 699-711. 10.1016/j.cell.2004.05.018.CrossRefPubMed
4.
go back to reference Tiganis T, Bennett AM, Ravichandran KS, Tonks NK: Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol Cell Biol. 1998, 18 (3): 1622-1634.CrossRefPubMedPubMedCentral Tiganis T, Bennett AM, Ravichandran KS, Tonks NK: Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol Cell Biol. 1998, 18 (3): 1622-1634.CrossRefPubMedPubMedCentral
5.
go back to reference Sangwan V, Paliouras GN, Abella JV, Dube N, Monast A, Tremblay ML, Park M: Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase. J Biol Chem. 2008, 283 (49): 34374-34383. 10.1074/jbc.M805916200.CrossRefPubMedPubMedCentral Sangwan V, Paliouras GN, Abella JV, Dube N, Monast A, Tremblay ML, Park M: Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase. J Biol Chem. 2008, 283 (49): 34374-34383. 10.1074/jbc.M805916200.CrossRefPubMedPubMedCentral
6.
go back to reference Mattila E, Pellinen T, Nevo J, Vuoriluoto K, Arjonen A, Ivaska J: Negative regulation of EGFR signalling through integrin-alpha1beta1-mediated activation of protein tyrosine phosphatase TCPTP. Nat Cell Biol. 2005, 7 (1): 78-85. 10.1038/ncb1209.CrossRefPubMed Mattila E, Pellinen T, Nevo J, Vuoriluoto K, Arjonen A, Ivaska J: Negative regulation of EGFR signalling through integrin-alpha1beta1-mediated activation of protein tyrosine phosphatase TCPTP. Nat Cell Biol. 2005, 7 (1): 78-85. 10.1038/ncb1209.CrossRefPubMed
7.
go back to reference Mosinger B, Tillmann U, Westphal H, Tremblay ML: Cloning and characterization of a mouse cDNA encoding a cytoplasmic protein-tyrosine-phosphatase. Proc Natl Acad Sci USA. 1992, 89 (2): 499-503. 10.1073/pnas.89.2.499.CrossRefPubMedPubMedCentral Mosinger B, Tillmann U, Westphal H, Tremblay ML: Cloning and characterization of a mouse cDNA encoding a cytoplasmic protein-tyrosine-phosphatase. Proc Natl Acad Sci USA. 1992, 89 (2): 499-503. 10.1073/pnas.89.2.499.CrossRefPubMedPubMedCentral
8.
go back to reference Cool DE, Tonks NK, Charbonneau H, Walsh KA, Fischer EH, Krebs EG: cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family. Proc Natl Acad Sci USA. 1989, 86 (14): 5257-5261. 10.1073/pnas.86.14.5257.CrossRefPubMedPubMedCentral Cool DE, Tonks NK, Charbonneau H, Walsh KA, Fischer EH, Krebs EG: cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family. Proc Natl Acad Sci USA. 1989, 86 (14): 5257-5261. 10.1073/pnas.86.14.5257.CrossRefPubMedPubMedCentral
9.
go back to reference Mattila E, Auvinen K, Salmi M, Ivaska J: The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J Cell Sci. 2008, 121 (Pt 21): 3570-3580. 10.1242/jcs.031898.CrossRefPubMed Mattila E, Auvinen K, Salmi M, Ivaska J: The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J Cell Sci. 2008, 121 (Pt 21): 3570-3580. 10.1242/jcs.031898.CrossRefPubMed
10.
go back to reference Persson C, Savenhed C, Bourdeau A, Tremblay ML, Markova B, Bohmer FD, Haj FG, Neel BG, Elson A, Heldin CH, Ronnstrand L, Ostman A, Hellberg C: Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase. Mol Cell Biol. 2004, 24 (5): 2190-2201. 10.1128/MCB.24.5.2190-2201.2004.CrossRefPubMedPubMedCentral Persson C, Savenhed C, Bourdeau A, Tremblay ML, Markova B, Bohmer FD, Haj FG, Neel BG, Elson A, Heldin CH, Ronnstrand L, Ostman A, Hellberg C: Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase. Mol Cell Biol. 2004, 24 (5): 2190-2201. 10.1128/MCB.24.5.2190-2201.2004.CrossRefPubMedPubMedCentral
11.
go back to reference ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 2002, 22 (16): 5662-5668. 10.1128/MCB.22.16.5662-5668.2002.CrossRefPubMedPubMedCentral ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 2002, 22 (16): 5662-5668. 10.1128/MCB.22.16.5662-5668.2002.CrossRefPubMedPubMedCentral
12.
go back to reference Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T: The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun. 2002, 297 (4): 811-817. 10.1016/S0006-291X(02)02291-X.CrossRefPubMed Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T: The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun. 2002, 297 (4): 811-817. 10.1016/S0006-291X(02)02291-X.CrossRefPubMed
13.
go back to reference Lu X, Chen J, Sasmono RT, Hsi ED, Sarosiek KA, Tiganis T, Lossos IS: T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol Cell Biol. 2007, 27 (6): 2166-2179. 10.1128/MCB.01234-06.CrossRefPubMedPubMedCentral Lu X, Chen J, Sasmono RT, Hsi ED, Sarosiek KA, Tiganis T, Lossos IS: T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol Cell Biol. 2007, 27 (6): 2166-2179. 10.1128/MCB.01234-06.CrossRefPubMedPubMedCentral
14.
go back to reference Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK, Tiganis T: Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol. 2003, 23 (6): 2096-2108. 10.1128/MCB.23.6.2096-2108.2003.CrossRefPubMedPubMedCentral Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK, Tiganis T: Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol. 2003, 23 (6): 2096-2108. 10.1128/MCB.23.6.2096-2108.2003.CrossRefPubMedPubMedCentral
15.
go back to reference Simoncic PD, Bourdeau A, Lee-Loy A, Rohrschneider LR, Tremblay ML, Stanley ER, McGlade CJ: T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Mol Cell Biol. 2006, 26 (11): 4149-4160. 10.1128/MCB.01932-05.CrossRefPubMedPubMedCentral Simoncic PD, Bourdeau A, Lee-Loy A, Rohrschneider LR, Tremblay ML, Stanley ER, McGlade CJ: T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Mol Cell Biol. 2006, 26 (11): 4149-4160. 10.1128/MCB.01932-05.CrossRefPubMedPubMedCentral
16.
go back to reference Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ: The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol. 2002, 12 (6): 446-453. 10.1016/S0960-9822(02)00697-8.CrossRefPubMed Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ: The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol. 2002, 12 (6): 446-453. 10.1016/S0960-9822(02)00697-8.CrossRefPubMed
17.
go back to reference Shields BJ, Court NW, Hauser C, Bukczynska PE, Tiganis T: Cell cycle-dependent regulation of SFK, JAK1 and STAT3 signalling by the protein tyrosine phosphatase TCPTP. Cell Cycle. 2008, 7 (21): 3405-3416. 10.4161/cc.7.21.6950.CrossRefPubMed Shields BJ, Court NW, Hauser C, Bukczynska PE, Tiganis T: Cell cycle-dependent regulation of SFK, JAK1 and STAT3 signalling by the protein tyrosine phosphatase TCPTP. Cell Cycle. 2008, 7 (21): 3405-3416. 10.4161/cc.7.21.6950.CrossRefPubMed
18.
go back to reference Finkel T: Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003, 15 (2): 247-254. 10.1016/S0955-0674(03)00002-4.CrossRefPubMed Finkel T: Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003, 15 (2): 247-254. 10.1016/S0955-0674(03)00002-4.CrossRefPubMed
19.
go back to reference Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004, 304 (5676): 1497-1500. 10.1126/science.1099314.CrossRefPubMed Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004, 304 (5676): 1497-1500. 10.1126/science.1099314.CrossRefPubMed
20.
go back to reference Pei D, Lorenz U, Klingmuller U, Neel BG, Walsh CT: Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains. Biochemistry. 1994, 33 (51): 15483-15493. 10.1021/bi00255a030.CrossRefPubMed Pei D, Lorenz U, Klingmuller U, Neel BG, Walsh CT: Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains. Biochemistry. 1994, 33 (51): 15483-15493. 10.1021/bi00255a030.CrossRefPubMed
21.
go back to reference Hao L, Tiganis T, Tonks NK, Charbonneau H: The noncatalytic C-terminal segment of the T cell protein tyrosine phosphatase regulates activity via an intramolecular mechanism. J Biol Chem. 1997, 272 (46): 29322-29329. 10.1074/jbc.272.46.29322.CrossRefPubMed Hao L, Tiganis T, Tonks NK, Charbonneau H: The noncatalytic C-terminal segment of the T cell protein tyrosine phosphatase regulates activity via an intramolecular mechanism. J Biol Chem. 1997, 272 (46): 29322-29329. 10.1074/jbc.272.46.29322.CrossRefPubMed
22.
go back to reference Zhang S, Zhang ZY: PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today. 2007, 12 (9-10): 373-381. 10.1016/j.drudis.2007.03.011.CrossRefPubMed Zhang S, Zhang ZY: PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today. 2007, 12 (9-10): 373-381. 10.1016/j.drudis.2007.03.011.CrossRefPubMed
23.
go back to reference Tonks NK: Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006, 7 (11): 833-846. 10.1038/nrm2039.CrossRefPubMed Tonks NK: Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006, 7 (11): 833-846. 10.1038/nrm2039.CrossRefPubMed
24.
go back to reference Arkin MR, Wells JA: Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov. 2004, 3 (4): 301-317. 10.1038/nrd1343.CrossRefPubMed Arkin MR, Wells JA: Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov. 2004, 3 (4): 301-317. 10.1038/nrd1343.CrossRefPubMed
25.
go back to reference Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303 (5659): 844-848. 10.1126/science.1092472.CrossRefPubMed Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303 (5659): 844-848. 10.1126/science.1092472.CrossRefPubMed
26.
go back to reference Koskinen K, Vainio PJ, Smith DJ, Pihlavisto M, Yla-Herttuala S, Jalkanen S, Salmi M: Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood. 2004, 103 (9): 3388-3395. 10.1182/blood-2003-09-3275.CrossRefPubMed Koskinen K, Vainio PJ, Smith DJ, Pihlavisto M, Yla-Herttuala S, Jalkanen S, Salmi M: Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood. 2004, 103 (9): 3388-3395. 10.1182/blood-2003-09-3275.CrossRefPubMed
27.
go back to reference Korff T, Augustin HG: Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci. 1999, 112 (Pt 19): 3249-3258.PubMed Korff T, Augustin HG: Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci. 1999, 112 (Pt 19): 3249-3258.PubMed
28.
go back to reference van Vliet C, Bukczynska PE, Puryer MA, Sadek CM, Shields BJ, Tremblay ML, Tiganis T: Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat Immunol. 2005, 6 (3): 253-260. 10.1038/ni1169.CrossRefPubMed van Vliet C, Bukczynska PE, Puryer MA, Sadek CM, Shields BJ, Tremblay ML, Tiganis T: Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat Immunol. 2005, 6 (3): 253-260. 10.1038/ni1169.CrossRefPubMed
29.
go back to reference Tiganis T, Kemp BE, Tonks NK: The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. J Biol Chem. 1999, 274 (39): 27768-27775. 10.1074/jbc.274.39.27768.CrossRefPubMed Tiganis T, Kemp BE, Tonks NK: The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. J Biol Chem. 1999, 274 (39): 27768-27775. 10.1074/jbc.274.39.27768.CrossRefPubMed
30.
go back to reference Otsuka H: The toxic effect of spermidine on normal and transformed cells. J Cell Sci. 1971, 9 (1): 71-84.PubMed Otsuka H: The toxic effect of spermidine on normal and transformed cells. J Cell Sci. 1971, 9 (1): 71-84.PubMed
32.
go back to reference Comi G: Induction vs. escalating therapy in multiple sclerosis: practical implications. Neurol Sci. 2008, 29 (Suppl 2): S253-255. 10.1007/s10072-008-0954-x.CrossRefPubMed Comi G: Induction vs. escalating therapy in multiple sclerosis: practical implications. Neurol Sci. 2008, 29 (Suppl 2): S253-255. 10.1007/s10072-008-0954-x.CrossRefPubMed
33.
go back to reference Tallman MS, Gilliland DG, Rowe JM: Drug therapy for acute myeloid leukemia. Blood. 2005, 106 (4): 1154-1163. 10.1182/blood-2005-01-0178.CrossRefPubMed Tallman MS, Gilliland DG, Rowe JM: Drug therapy for acute myeloid leukemia. Blood. 2005, 106 (4): 1154-1163. 10.1182/blood-2005-01-0178.CrossRefPubMed
34.
go back to reference Dreicer R: Current status of cytotoxic chemotherapy in patients with metastatic prostate cancer. Urol Oncol. 2008, 26 (4): 426-429.CrossRefPubMed Dreicer R: Current status of cytotoxic chemotherapy in patients with metastatic prostate cancer. Urol Oncol. 2008, 26 (4): 426-429.CrossRefPubMed
35.
go back to reference Moinard C, Cynober L, de Bandt JP: Polyamines: metabolism and implications in human diseases. Clin Nutr. 2005, 24 (2): 184-197. 10.1016/j.clnu.2004.11.001.CrossRefPubMed Moinard C, Cynober L, de Bandt JP: Polyamines: metabolism and implications in human diseases. Clin Nutr. 2005, 24 (2): 184-197. 10.1016/j.clnu.2004.11.001.CrossRefPubMed
36.
go back to reference Heby O: Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981, 19 (1): 1-20. 10.1111/j.1432-0436.1981.tb01123.x.CrossRefPubMed Heby O: Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981, 19 (1): 1-20. 10.1111/j.1432-0436.1981.tb01123.x.CrossRefPubMed
37.
go back to reference Faaland CA, Laskin JD, Thomas TJ: Inhibition of epidermal growth factor-stimulated EGF receptor tyrosine kinase activity in A431 human epidermoid carcinoma cells by polyamines. Cell Growth Differ. 1995, 6 (2): 115-121.PubMed Faaland CA, Laskin JD, Thomas TJ: Inhibition of epidermal growth factor-stimulated EGF receptor tyrosine kinase activity in A431 human epidermoid carcinoma cells by polyamines. Cell Growth Differ. 1995, 6 (2): 115-121.PubMed
38.
go back to reference Fujita-Yamaguchi Y, Sacks DB, McDonald JM, Sahal D, Kathuria S: Effect of basic polycations and proteins on purified insulin receptor. Insulin-independent activation of the receptor tyrosine-specific protein kinase by poly(L-lysine). Biochem J. 1989, 263 (3): 813-822.CrossRefPubMedPubMedCentral Fujita-Yamaguchi Y, Sacks DB, McDonald JM, Sahal D, Kathuria S: Effect of basic polycations and proteins on purified insulin receptor. Insulin-independent activation of the receptor tyrosine-specific protein kinase by poly(L-lysine). Biochem J. 1989, 263 (3): 813-822.CrossRefPubMedPubMedCentral
39.
go back to reference Takahashi T, Takahashi K, Mernaugh RL, Tsuboi N, Liu H, Daniel TO: A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis. Blood. 2006, 108 (4): 1234-1242. 10.1182/blood-2005-10-4296.CrossRefPubMedPubMedCentral Takahashi T, Takahashi K, Mernaugh RL, Tsuboi N, Liu H, Daniel TO: A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis. Blood. 2006, 108 (4): 1234-1242. 10.1182/blood-2005-10-4296.CrossRefPubMedPubMedCentral
40.
go back to reference Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Bohmer FD: Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J Biol Chem. 1995, 270 (36): 21277-21284. 10.1074/jbc.270.36.21277.CrossRefPubMed Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Bohmer FD: Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J Biol Chem. 1995, 270 (36): 21277-21284. 10.1074/jbc.270.36.21277.CrossRefPubMed
Metadata
Title
Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase
Authors
Elina Mattila
Heidi Marttila
Niko Sahlberg
Pekka Kohonen
Siri Tähtinen
Pasi Halonen
Merja Perälä
Johanna Ivaska
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-7

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine