Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

Authors: Sonia A Greco, June Chia, Kelly J Inglis, Sarah-Jane Cozzi, Ingunn Ramsnes, Ronald L Buttenshaw, Kevin J Spring, Glen M Boyle, Daniel L Worthley, Barbara A Leggett, Vicki LJ Whitehall

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Thrombospondin-4 (THBS4) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter.

Methods

Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon.

Results

THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the colon.

Conclusions

THBS4 shows increased methylation in colorectal cancer, but this is not strongly associated with altered gene expression, either because methylation has not always reached a critical level or because other factors influence THBS4 expression. THBS4 may act as a tumour suppressor gene, demonstrated by its suppression of tumour colony formation in vitro. THBS4 methylation is detectable in normal colonic mucosa and its level may be a biomarker for the occurrence of adenomas and carcinoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stenina OI, Desai SY, Krukovets I, Kight K, Janigro D, Topol EJ, Plow EF: Thrombospondin-4 and its variants: expression and differential effects on endothelial cells. Circulation. 2003, 108 (12): 1514-1519. 10.1161/01.CIR.0000089085.76320.4E.CrossRefPubMed Stenina OI, Desai SY, Krukovets I, Kight K, Janigro D, Topol EJ, Plow EF: Thrombospondin-4 and its variants: expression and differential effects on endothelial cells. Circulation. 2003, 108 (12): 1514-1519. 10.1161/01.CIR.0000089085.76320.4E.CrossRefPubMed
3.
go back to reference Arber S, Caroni P: Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol. 1995, 131 (4): 1083-1094. 10.1083/jcb.131.4.1083.CrossRefPubMed Arber S, Caroni P: Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol. 1995, 131 (4): 1083-1094. 10.1083/jcb.131.4.1083.CrossRefPubMed
5.
go back to reference Si Z, Palkama A, Gebhardt BM, Velasquez D, Galeano MJ, Beuerman RW: Distribution of thrombospondin-4 in the bovine eye. Curr Eye Res. 2003, 27 (3): 165-173. 10.1076/ceyr.27.3.165.16050.CrossRefPubMed Si Z, Palkama A, Gebhardt BM, Velasquez D, Galeano MJ, Beuerman RW: Distribution of thrombospondin-4 in the bovine eye. Curr Eye Res. 2003, 27 (3): 165-173. 10.1076/ceyr.27.3.165.16050.CrossRefPubMed
6.
go back to reference van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, van der Velden PA, Vermeer MH, Willemze R, Yan PS, Huang TH, Tensen CP: Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 2005, 23 (17): 3886-3896. 10.1200/JCO.2005.11.353.CrossRefPubMed van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, van der Velden PA, Vermeer MH, Willemze R, Yan PS, Huang TH, Tensen CP: Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 2005, 23 (17): 3886-3896. 10.1200/JCO.2005.11.353.CrossRefPubMed
7.
go back to reference Ahuja N, Mohan AL, Li Q, Stolker JM, Herman JG, Hamilton SR, Baylin SB, Issa JP: Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 1997, 57 (16): 3370-3374.PubMed Ahuja N, Mohan AL, Li Q, Stolker JM, Herman JG, Hamilton SR, Baylin SB, Issa JP: Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 1997, 57 (16): 3370-3374.PubMed
8.
go back to reference Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY, Chew KL, Dairkee SH, Jensen RM, Waldman FM: Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res. 2003, 63 (21): 7167-7175.PubMed Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY, Chew KL, Dairkee SH, Jensen RM, Waldman FM: Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res. 2003, 63 (21): 7167-7175.PubMed
9.
go back to reference Kondo Y, Shen L, Yan PS, Huang TH, Issa JP: Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA. 2004, 101 (19): 7398-7403. 10.1073/pnas.0306641101.CrossRefPubMedPubMedCentral Kondo Y, Shen L, Yan PS, Huang TH, Issa JP: Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA. 2004, 101 (19): 7398-7403. 10.1073/pnas.0306641101.CrossRefPubMedPubMedCentral
10.
go back to reference Issa JP: DNA methylation as a therapeutic target in cancer. Clin Cancer Res. 2007, 13 (6): 1634-1637. 10.1158/1078-0432.CCR-06-2076.CrossRefPubMed Issa JP: DNA methylation as a therapeutic target in cancer. Clin Cancer Res. 2007, 13 (6): 1634-1637. 10.1158/1078-0432.CCR-06-2076.CrossRefPubMed
12.
go back to reference Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999, 96 (15): 8681-8686. 10.1073/pnas.96.15.8681.CrossRefPubMedPubMedCentral Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999, 96 (15): 8681-8686. 10.1073/pnas.96.15.8681.CrossRefPubMedPubMedCentral
13.
go back to reference O'Brien MJ, Yang S, Mack C, Xu H, Huang CS, Mulcahy E, Amorosino M, Farraye FA: Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol. 2006, 30 (12): 1491-1501. 10.1097/01.pas.0000213313.36306.85.CrossRefPubMed O'Brien MJ, Yang S, Mack C, Xu H, Huang CS, Mulcahy E, Amorosino M, Farraye FA: Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol. 2006, 30 (12): 1491-1501. 10.1097/01.pas.0000213313.36306.85.CrossRefPubMed
14.
go back to reference Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP: Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998, 58 (23): 5489-5494.PubMed Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP: Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998, 58 (23): 5489-5494.PubMed
15.
go back to reference Young J, Jass JR: The case for a genetic predisposition to serrated neoplasia in the colorectum: hypothesis and review of the literature. Cancer Epidemiol Biomarkers Prev. 2006, 15 (10): 1778-1784. 10.1158/1055-9965.EPI-06-0164.CrossRefPubMed Young J, Jass JR: The case for a genetic predisposition to serrated neoplasia in the colorectum: hypothesis and review of the literature. Cancer Epidemiol Biomarkers Prev. 2006, 15 (10): 1778-1784. 10.1158/1055-9965.EPI-06-0164.CrossRefPubMed
16.
go back to reference Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell. 1996, 87 (2): 159-170. 10.1016/S0092-8674(00)81333-1.CrossRefPubMed Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell. 1996, 87 (2): 159-170. 10.1016/S0092-8674(00)81333-1.CrossRefPubMed
17.
go back to reference Jass JR, Young J, Leggett BA: Hyperplastic polyps and DNA microsatellite unstable cancers of the colorectum. Histopathology. 2000, 37 (4): 295-301. 10.1046/j.1365-2559.2000.01028.x.CrossRefPubMed Jass JR, Young J, Leggett BA: Hyperplastic polyps and DNA microsatellite unstable cancers of the colorectum. Histopathology. 2000, 37 (4): 295-301. 10.1046/j.1365-2559.2000.01028.x.CrossRefPubMed
18.
go back to reference Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, Tanaka N, Higuchi T, Young J, Jass JR, Leggett BA: BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004, 53 (8): 1137-1144. 10.1136/gut.2003.037671.CrossRefPubMedPubMedCentral Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, Tanaka N, Higuchi T, Young J, Jass JR, Leggett BA: BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004, 53 (8): 1137-1144. 10.1136/gut.2003.037671.CrossRefPubMedPubMedCentral
19.
go back to reference Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006, 38 (7): 787-793. 10.1038/ng1834.CrossRefPubMed Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006, 38 (7): 787-793. 10.1038/ng1834.CrossRefPubMed
20.
go back to reference Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16 (3): 1215-10.1093/nar/16.3.1215.CrossRefPubMedPubMedCentral Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16 (3): 1215-10.1093/nar/16.3.1215.CrossRefPubMedPubMedCentral
21.
22.
go back to reference Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW: MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000, 28 (8): E32-10.1093/nar/28.8.e32.CrossRefPubMedPubMedCentral Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW: MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000, 28 (8): E32-10.1093/nar/28.8.e32.CrossRefPubMedPubMedCentral
23.
go back to reference Worthley DL, Whitehall VL, Buttenshaw RL, Irahara N, Greco SA, Ramsnes I, Mallitt KA, Le Leu RK, Winter J, Hu Y, Ogino S, Young GP, and Leggett BA: DNA methylation within the normal colorectal mucosa is associated with pathway-specific predisposition to cancer. Oncogene, in press. Worthley DL, Whitehall VL, Buttenshaw RL, Irahara N, Greco SA, Ramsnes I, Mallitt KA, Le Leu RK, Winter J, Hu Y, Ogino S, Young GP, and Leggett BA: DNA methylation within the normal colorectal mucosa is associated with pathway-specific predisposition to cancer. Oncogene, in press.
24.
go back to reference Park BH, Vogelstein B: Tumor-Suppressor Genes. Cancer Medicine 6. 2003, Hamiton, Ontario: BC Decker Inc, 87-102. Park BH, Vogelstein B: Tumor-Suppressor Genes. Cancer Medicine 6. 2003, Hamiton, Ontario: BC Decker Inc, 87-102.
25.
go back to reference Grady WM, Carethers JM: Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008, 135 (4): 1079-1099. 10.1053/j.gastro.2008.07.076.CrossRefPubMedPubMedCentral Grady WM, Carethers JM: Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008, 135 (4): 1079-1099. 10.1053/j.gastro.2008.07.076.CrossRefPubMedPubMedCentral
26.
go back to reference Lawler J, McHenry K, Duquette M, Derick L: Characterization of human thrombospondin-4. J Biol Chem. 1995, 270 (6): 2809-2814. 10.1074/jbc.270.6.2809.CrossRefPubMed Lawler J, McHenry K, Duquette M, Derick L: Characterization of human thrombospondin-4. J Biol Chem. 1995, 270 (6): 2809-2814. 10.1074/jbc.270.6.2809.CrossRefPubMed
27.
go back to reference Toyota M, Issa JP: CpG island methylator phenotypes in aging and cancer. Seminars in cancer biology. 1999, 9 (5): 349-357. 10.1006/scbi.1999.0135.CrossRefPubMed Toyota M, Issa JP: CpG island methylator phenotypes in aging and cancer. Seminars in cancer biology. 1999, 9 (5): 349-357. 10.1006/scbi.1999.0135.CrossRefPubMed
28.
go back to reference Ahuja N, Issa JP: Aging, methylation and cancer. Histol Histopathol. 2000, 15 (3): 835-842.PubMed Ahuja N, Issa JP: Aging, methylation and cancer. Histol Histopathol. 2000, 15 (3): 835-842.PubMed
29.
go back to reference Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, Einspahr JG, Buckmeier J, Alberts DS, Hamilton SR, Issa JP: MGMT Promoter Methylation and Field Defect in Sporadic Colorectal Cancer. J Natl Cancer Inst. 2005, 97 (18): 1330-1338. 10.1093/jnci/dji275.CrossRefPubMed Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, Einspahr JG, Buckmeier J, Alberts DS, Hamilton SR, Issa JP: MGMT Promoter Methylation and Field Defect in Sporadic Colorectal Cancer. J Natl Cancer Inst. 2005, 97 (18): 1330-1338. 10.1093/jnci/dji275.CrossRefPubMed
30.
go back to reference Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA: Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001, 61 (9): 3573-3577.PubMed Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA: Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001, 61 (9): 3573-3577.PubMed
Metadata
Title
Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation
Authors
Sonia A Greco
June Chia
Kelly J Inglis
Sarah-Jane Cozzi
Ingunn Ramsnes
Ronald L Buttenshaw
Kevin J Spring
Glen M Boyle
Daniel L Worthley
Barbara A Leggett
Vicki LJ Whitehall
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-494

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine