Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

Authors: Henne Holstege, Erik van Beers, Arno Velds, Xiaoling Liu, Simon A Joosse, Sjoerd Klarenbeek, Eva Schut, Ron Kerkhoven, Christiaan N Klijn, Lodewyk FA Wessels, Petra M Nederlof, Jos Jonkers

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development.

Methods

To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1 Δ/Δ ;p53 Δ/Δ , Brca2 Δ/Δ ;p53 Δ/Δ and p53 Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers.

Results

Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2 Δ/Δ ;p53 Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species.

Conclusions

The selection of the oncogenome during mouse and human breast tumor development is markedly different, apart from the MYC gain and RB1-associated loss. These differences should be kept in mind when using mouse models for preclinical studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference King MC, Marks JH, Mandell JB: Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003, 302 (5645): 643-646. 10.1126/science.1088759.CrossRefPubMed King MC, Marks JH, Mandell JB: Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003, 302 (5645): 643-646. 10.1126/science.1088759.CrossRefPubMed
2.
go back to reference Paakkonen K, Sauramo S, Sarantaus L, Vahteristo P, Hartikainen A, Vehmanen P, Ignatius J, Ollikainen V, Kaariainen H, Vauramo E, et al: Involvement of BRCA1 and BRCA2 in breast cancer in a western Finnish sub-population. Genet Epidemiol. 2001, 20 (2): 239-246. 10.1002/1098-2272(200102)20:2<239::AID-GEPI6>3.0.CO;2-Y.CrossRefPubMed Paakkonen K, Sauramo S, Sarantaus L, Vahteristo P, Hartikainen A, Vehmanen P, Ignatius J, Ollikainen V, Kaariainen H, Vauramo E, et al: Involvement of BRCA1 and BRCA2 in breast cancer in a western Finnish sub-population. Genet Epidemiol. 2001, 20 (2): 239-246. 10.1002/1098-2272(200102)20:2<239::AID-GEPI6>3.0.CO;2-Y.CrossRefPubMed
3.
go back to reference Hofmann W, Schlag PM: BRCA1 and BRCA2--breast cancer susceptibility genes. J Cancer Res Clin Oncol. 2000, 126 (9): 487-496. 10.1007/s004320000140.CrossRefPubMed Hofmann W, Schlag PM: BRCA1 and BRCA2--breast cancer susceptibility genes. J Cancer Res Clin Oncol. 2000, 126 (9): 487-496. 10.1007/s004320000140.CrossRefPubMed
4.
go back to reference Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G: Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995, 378 (6559): 789-792. 10.1038/378789a0.CrossRefPubMed Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G: Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995, 378 (6559): 789-792. 10.1038/378789a0.CrossRefPubMed
5.
go back to reference Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994, 266 (5182): 66-71. 10.1126/science.7545954.CrossRefPubMed Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994, 266 (5182): 66-71. 10.1126/science.7545954.CrossRefPubMed
6.
go back to reference Turner N, Tutt A, Ashworth A: Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer. 2004, 4 (10): 814-819. 10.1038/nrc1457.CrossRefPubMed Turner N, Tutt A, Ashworth A: Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer. 2004, 4 (10): 814-819. 10.1038/nrc1457.CrossRefPubMed
7.
go back to reference Loffler H, Lukas J, Bartek J, Kramer A: Structure meets function--centrosomes, genome maintenance and the DNA damage response. Exp Cell Res. 2006, 312 (14): 2633-2640. 10.1016/j.yexcr.2006.06.008.CrossRefPubMed Loffler H, Lukas J, Bartek J, Kramer A: Structure meets function--centrosomes, genome maintenance and the DNA damage response. Exp Cell Res. 2006, 312 (14): 2633-2640. 10.1016/j.yexcr.2006.06.008.CrossRefPubMed
8.
go back to reference Bertwistle D, Ashworth A: The pathology of familial breast cancer: How do the functions of BRCA1 and BRCA2 relate to breast tumour pathology?. Breast Cancer Res. 1999, 1 (1): 41-47. 10.1186/bcr12.CrossRefPubMedPubMedCentral Bertwistle D, Ashworth A: The pathology of familial breast cancer: How do the functions of BRCA1 and BRCA2 relate to breast tumour pathology?. Breast Cancer Res. 1999, 1 (1): 41-47. 10.1186/bcr12.CrossRefPubMedPubMedCentral
9.
go back to reference DeVries S, Gray JW, Pinkel D, Waldman FM, Sudar D: Comparative genomic hybridization. Curr Protoc Hum Genet. 2001, Chapter 4 (Unit4): 6-PubMed DeVries S, Gray JW, Pinkel D, Waldman FM, Sudar D: Comparative genomic hybridization. Curr Protoc Hum Genet. 2001, Chapter 4 (Unit4): 6-PubMed
10.
go back to reference Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LF, Peterse JL, et al: Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA. 2007, 104 (29): 12111-12116. 10.1073/pnas.0702969104.CrossRefPubMedPubMedCentral Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LF, Peterse JL, et al: Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA. 2007, 104 (29): 12111-12116. 10.1073/pnas.0702969104.CrossRefPubMedPubMedCentral
11.
go back to reference Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001, 29 (4): 418-425. 10.1038/ng747.CrossRefPubMed Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001, 29 (4): 418-425. 10.1038/ng747.CrossRefPubMed
12.
go back to reference Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin PP, McGuffog L, Easton DF: The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol. 2002, 20 (9): 2310-2318. 10.1200/JCO.2002.09.023.CrossRefPubMed Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin PP, McGuffog L, Easton DF: The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol. 2002, 20 (9): 2310-2318. 10.1200/JCO.2002.09.023.CrossRefPubMed
13.
go back to reference Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N, Trudel M, Akslen LA: Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2003, 95 (19): 1482-1485.CrossRefPubMed Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N, Trudel M, Akslen LA: Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2003, 95 (19): 1482-1485.CrossRefPubMed
14.
go back to reference Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME: Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev. 2004, 13 (10): 1558-1568.PubMed Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME: Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev. 2004, 13 (10): 1558-1568.PubMed
15.
go back to reference Bane AL, Beck JC, Bleiweiss I, Buys SS, Catalano E, Daly MB, Giles G, Godwin AK, Hibshoosh H, Hopper JL, et al: BRCA2 mutation-associated breast cancers exhibit a distinguishing phenotype based on morphology and molecular profiles from tissue microarrays. Am J Surg Pathol. 2007, 31 (1): 121-128. 10.1097/01.pas.0000213351.49767.0f.CrossRefPubMed Bane AL, Beck JC, Bleiweiss I, Buys SS, Catalano E, Daly MB, Giles G, Godwin AK, Hibshoosh H, Hopper JL, et al: BRCA2 mutation-associated breast cancers exhibit a distinguishing phenotype based on morphology and molecular profiles from tissue microarrays. Am J Surg Pathol. 2007, 31 (1): 121-128. 10.1097/01.pas.0000213351.49767.0f.CrossRefPubMed
16.
go back to reference Adelaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F, Charafe-Jauffret E, Cervera N, Desplans J, Parzy D, et al: Integrated profiling of basal and luminal breast cancers. Cancer Res. 2007, 67 (24): 11565-11575. 10.1158/0008-5472.CAN-07-2536.CrossRefPubMed Adelaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F, Charafe-Jauffret E, Cervera N, Desplans J, Parzy D, et al: Integrated profiling of basal and luminal breast cancers. Cancer Res. 2007, 67 (24): 11565-11575. 10.1158/0008-5472.CAN-07-2536.CrossRefPubMed
17.
go back to reference Peeper D, Berns A: Cross-species oncogenomics in cancer gene identification. Cell. 2006, 125 (7): 1230-1233. 10.1016/j.cell.2006.06.018.CrossRefPubMed Peeper D, Berns A: Cross-species oncogenomics in cancer gene identification. Cell. 2006, 125 (7): 1230-1233. 10.1016/j.cell.2006.06.018.CrossRefPubMed
18.
go back to reference Klijn C, Holstege H, de Ridder J, Liu X, Reinders M, Jonkers J, Wessels L: Identification of cancer genes using a statistical framework for multiexperiment analysis of nondiscretized array CGH data. Nucleic Acids Res. 2008, 36 (2): e13-10.1093/nar/gkm1143.CrossRefPubMedPubMedCentral Klijn C, Holstege H, de Ridder J, Liu X, Reinders M, Jonkers J, Wessels L: Identification of cancer genes using a statistical framework for multiexperiment analysis of nondiscretized array CGH data. Nucleic Acids Res. 2008, 36 (2): e13-10.1093/nar/gkm1143.CrossRefPubMedPubMedCentral
19.
go back to reference Chung YJ, Jonkers J, Kitson H, Fiegler H, Humphray S, Scott C, Hunt S, Yu Y, Nishijima I, Velds A, et al: A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res. 2004, 14 (1): 188-196. 10.1101/gr.1878804.CrossRefPubMedPubMedCentral Chung YJ, Jonkers J, Kitson H, Fiegler H, Humphray S, Scott C, Hunt S, Yu Y, Nishijima I, Velds A, et al: A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res. 2004, 14 (1): 188-196. 10.1101/gr.1878804.CrossRefPubMedPubMedCentral
21.
go back to reference Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE: Rosetta error model for gene expression analysis. Bioinformatics. 2006, 22 (9): 1111-1121. 10.1093/bioinformatics/btl045.CrossRefPubMed Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE: Rosetta error model for gene expression analysis. Bioinformatics. 2006, 22 (9): 1111-1121. 10.1093/bioinformatics/btl045.CrossRefPubMed
22.
go back to reference Joosse SA, Brandwijk KI, Devilee P, Wesseling J, Hogervorst FB, Verhoef S, Nederlof PM: Prediction of BRCA2-association in hereditary breast carcinomas using array-CGH. Breast Cancer Res Treat. 2010, Joosse SA, Brandwijk KI, Devilee P, Wesseling J, Hogervorst FB, Verhoef S, Nederlof PM: Prediction of BRCA2-association in hereditary breast carcinomas using array-CGH. Breast Cancer Res Treat. 2010,
23.
go back to reference Joosse SA, van Beers EH, Tielen IH, Horlings H, Peterse JL, Hoogerbrugge N, Ligtenberg MJ, Wessels LF, Axwijk P, Verhoef S, et al: Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with array-CGH. Breast Cancer Res Treat. 2009, 116 (3): 479-489. 10.1007/s10549-008-0117-z.CrossRefPubMed Joosse SA, van Beers EH, Tielen IH, Horlings H, Peterse JL, Hoogerbrugge N, Ligtenberg MJ, Wessels LF, Axwijk P, Verhoef S, et al: Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with array-CGH. Breast Cancer Res Treat. 2009, 116 (3): 479-489. 10.1007/s10549-008-0117-z.CrossRefPubMed
25.
go back to reference Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD, et al: Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell. 1999, 97 (5): 575-586. 10.1016/S0092-8674(00)80769-2.CrossRefPubMed Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD, et al: Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell. 1999, 97 (5): 575-586. 10.1016/S0092-8674(00)80769-2.CrossRefPubMed
26.
go back to reference Wang X, Wang RH, Li W, Xu X, Hollander MC, Fornace AJ, Deng CX: Genetic interactions between Brca1 and Gadd45a in centrosome duplication, genetic stability, and neural tube closure. J Biol Chem. 2004, 279 (28): 29606-29614. 10.1074/jbc.M312279200.CrossRefPubMed Wang X, Wang RH, Li W, Xu X, Hollander MC, Fornace AJ, Deng CX: Genetic interactions between Brca1 and Gadd45a in centrosome duplication, genetic stability, and neural tube closure. J Biol Chem. 2004, 279 (28): 29606-29614. 10.1074/jbc.M312279200.CrossRefPubMed
27.
go back to reference Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, et al: Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998, 391 (6662): 90-92. 10.1038/34201.CrossRefPubMed Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, et al: Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998, 391 (6662): 90-92. 10.1038/34201.CrossRefPubMed
28.
go back to reference Matsuda S, Katsumata R, Okuda T, Yamamoto T, Miyazaki K, Senga T, Machida K, Thant AA, Nakatsugawa S, Hamaguchi M: Molecular cloning and characterization of human MAWD, a novel protein containing WD-40 repeats frequently overexpressed in breast cancer. Cancer Res. 2000, 60 (1): 13-17.PubMed Matsuda S, Katsumata R, Okuda T, Yamamoto T, Miyazaki K, Senga T, Machida K, Thant AA, Nakatsugawa S, Hamaguchi M: Molecular cloning and characterization of human MAWD, a novel protein containing WD-40 repeats frequently overexpressed in breast cancer. Cancer Res. 2000, 60 (1): 13-17.PubMed
29.
go back to reference Wessels LF, van Welsem T, Hart AA, van't Veer LJ, Reinders MJ, Nederlof PM: Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res. 2002, 62 (23): 7110-7117.PubMed Wessels LF, van Welsem T, Hart AA, van't Veer LJ, Reinders MJ, Nederlof PM: Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res. 2002, 62 (23): 7110-7117.PubMed
30.
go back to reference Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, et al: Initial sequencing and comparative analysis of the mouse genome. Nature. 2002, 420 (6915): 520-562. 10.1038/nature01262.CrossRefPubMed Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, et al: Initial sequencing and comparative analysis of the mouse genome. Nature. 2002, 420 (6915): 520-562. 10.1038/nature01262.CrossRefPubMed
31.
go back to reference Cheng AJ, Cheng NC, Ford J, Smith J, Murray JE, Flemming C, Lastowska M, Jackson MS, Hackett CS, Weiss WA, et al: Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma. Eur J Cancer. 2007, 43 (9): 1467-1475. 10.1016/j.ejca.2007.03.008.CrossRefPubMedPubMedCentral Cheng AJ, Cheng NC, Ford J, Smith J, Murray JE, Flemming C, Lastowska M, Jackson MS, Hackett CS, Weiss WA, et al: Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma. Eur J Cancer. 2007, 43 (9): 1467-1475. 10.1016/j.ejca.2007.03.008.CrossRefPubMedPubMedCentral
32.
go back to reference Hackett CS, Hodgson JG, Law ME, Fridlyand J, Osoegawa K, de Jong PJ, Nowak NJ, Pinkel D, Albertson DG, Jain A, et al: Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Res. 2003, 63 (17): 5266-5273.PubMed Hackett CS, Hodgson JG, Law ME, Fridlyand J, Osoegawa K, de Jong PJ, Nowak NJ, Pinkel D, Albertson DG, Jain A, et al: Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Res. 2003, 63 (17): 5266-5273.PubMed
33.
go back to reference Urzua U, Frankenberger C, Gangi L, Mayer S, Burkett S, Munroe DJ: Microarray comparative genomic hybridization profile of a murine model for epithelial ovarian cancer reveals genomic imbalances resembling human ovarian carcinomas. Tumour Biol. 2005, 26 (5): 236-244. 10.1159/000087378.CrossRefPubMed Urzua U, Frankenberger C, Gangi L, Mayer S, Burkett S, Munroe DJ: Microarray comparative genomic hybridization profile of a murine model for epithelial ovarian cancer reveals genomic imbalances resembling human ovarian carcinomas. Tumour Biol. 2005, 26 (5): 236-244. 10.1159/000087378.CrossRefPubMed
34.
go back to reference Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, et al: Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 2006, 125 (7): 1253-1267. 10.1016/j.cell.2006.05.030.CrossRefPubMedPubMedCentral Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, et al: Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 2006, 125 (7): 1253-1267. 10.1016/j.cell.2006.05.030.CrossRefPubMedPubMedCentral
35.
go back to reference Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, et al: Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell. 2006, 125 (7): 1269-1281. 10.1016/j.cell.2006.06.008.CrossRefPubMed Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, et al: Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell. 2006, 125 (7): 1269-1281. 10.1016/j.cell.2006.06.008.CrossRefPubMed
36.
go back to reference Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O'Neil J, Gutierrez A, Ivanova E, Perna I, et al: Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature. 2007, 447 (7147): 966-971. 10.1038/nature05886.CrossRefPubMedPubMedCentral Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O'Neil J, Gutierrez A, Ivanova E, Perna I, et al: Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature. 2007, 447 (7147): 966-971. 10.1038/nature05886.CrossRefPubMedPubMedCentral
37.
go back to reference Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS: BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA. 2008, 105 (5): 1680-1685. 10.1073/pnas.0711613105.CrossRefPubMedPubMedCentral Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS: BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA. 2008, 105 (5): 1680-1685. 10.1073/pnas.0711613105.CrossRefPubMedPubMedCentral
38.
go back to reference Kujawski M, Rydzanicz M, Sarlomo-Rikala M, Szyfter K: Rearrangements involving the 13q chromosome arm committed to the progression of laryngeal squamous cell carcinoma. Cancer Genet Cytogenet. 2002, 137 (1): 54-58. 10.1016/S0165-4608(02)00545-9.CrossRefPubMed Kujawski M, Rydzanicz M, Sarlomo-Rikala M, Szyfter K: Rearrangements involving the 13q chromosome arm committed to the progression of laryngeal squamous cell carcinoma. Cancer Genet Cytogenet. 2002, 137 (1): 54-58. 10.1016/S0165-4608(02)00545-9.CrossRefPubMed
39.
go back to reference Bodvarsdottir SK, Hilmarsdottir H, Birgisdottir V, Steinarsdottir M, Jonasson JG, Eyfjord JE: Aurora-A amplification associated with BRCA2 mutation in breast tumours. Cancer Lett. 2007, 248 (1): 96-102. 10.1016/j.canlet.2006.06.003.CrossRefPubMed Bodvarsdottir SK, Hilmarsdottir H, Birgisdottir V, Steinarsdottir M, Jonasson JG, Eyfjord JE: Aurora-A amplification associated with BRCA2 mutation in breast tumours. Cancer Lett. 2007, 248 (1): 96-102. 10.1016/j.canlet.2006.06.003.CrossRefPubMed
40.
41.
go back to reference Smith SA, Easton DF, Evans DG, Ponder BA: Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat Genet. 1992, 2 (2): 128-131. 10.1038/ng1092-128.CrossRefPubMed Smith SA, Easton DF, Evans DG, Ponder BA: Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat Genet. 1992, 2 (2): 128-131. 10.1038/ng1092-128.CrossRefPubMed
42.
go back to reference Collins N, McManus R, Wooster R, Mangion J, Seal S, Lakhani SR, Ormiston W, Daly PA, Ford D, Easton DF, et al: Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene. 1995, 10 (8): 1673-1675.PubMed Collins N, McManus R, Wooster R, Mangion J, Seal S, Lakhani SR, Ormiston W, Daly PA, Ford D, Easton DF, et al: Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene. 1995, 10 (8): 1673-1675.PubMed
43.
go back to reference Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007, 28 (6): 622-629. 10.1002/humu.20495.CrossRefPubMed Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007, 28 (6): 622-629. 10.1002/humu.20495.CrossRefPubMed
45.
go back to reference Huret JL, Dessen P, Bernheim A: Atlas of Genetics and Cytogenetics in Oncology and Haematology, year 2003. Nucleic Acids Res. 2003, 31 (1): 272-274. 10.1093/nar/gkg126.CrossRefPubMedPubMedCentral Huret JL, Dessen P, Bernheim A: Atlas of Genetics and Cytogenetics in Oncology and Haematology, year 2003. Nucleic Acids Res. 2003, 31 (1): 272-274. 10.1093/nar/gkg126.CrossRefPubMedPubMedCentral
46.
go back to reference Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR: A census of human cancer genes. Nat Rev Cancer. 2004, 4 (3): 177-183. 10.1038/nrc1299.CrossRefPubMedPubMedCentral Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR: A census of human cancer genes. Nat Rev Cancer. 2004, 4 (3): 177-183. 10.1038/nrc1299.CrossRefPubMedPubMedCentral
Metadata
Title
Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers
Authors
Henne Holstege
Erik van Beers
Arno Velds
Xiaoling Liu
Simon A Joosse
Sjoerd Klarenbeek
Eva Schut
Ron Kerkhoven
Christiaan N Klijn
Lodewyk FA Wessels
Petra M Nederlof
Jos Jonkers
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-455

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine