Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells

Authors: Marion T Weigel, Linda Dahmke, Christian Schem, Dirk O Bauerschlag, Katrin Weber, Peter Niehoff, Maret Bauer, Alexander Strauss, Walter Jonat, Nicolai Maass, Christoph Mundhenke

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Breast cancer treatment is based on a combination of adjuvant chemotherapy followed by radiotherapy effecting intracellular signal transduction. With the tyrosine kinase inhibitors new targeted drugs are available. Imatinib mesylate is a selective inhibitor of bcr-abl, PRGFR alpha, beta and c-kit. The purpose of this study was to determine whether Imatinib has an influence on the effectiveness of radiotherapy in breast cancer cell lines and if a combination of imatinib with standard chemotherapy could lead to increased cytoreduction.

Methods

Colony-forming tests of MCF 7 and MDA MB 231 were used to study differences in cell proliferation under incubation with imatinib and radiation. Changes in expression and phosphorylation of target receptors were detected using western blot. Cell proliferation, migration and apoptosis assays were performed combining imatinib with doxorubicin.

Results

The combination of imatinib and radiotherapy showed a significantly stronger inhibition of cell proliferation compared to single radiotherapy. Differences in PDGFR expression could not be detected, but receptor phosphorylation was significantly inhibited when treated with imatinib. Combination of imatinib with standard chemotherapy lead to an additive effect on cell growth inhibition compared to single treatment.

Conclusions

Imatinib treatment combined with radiotherapy leads in breast cancer cell lines to a significant benefit which might be influenced through inhibition of PDGFR phosphorylation. Combining imatinib with chemotherapy enhances cytoreductive effects. Further in vivo studies are needed to evaluate the benefit of Imatinib in combination with radiotherapy and chemotherapy on the treatment of breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Niehoff P, et al: Breast irradiation with brachytherapy: approved techniques and new concepts. Minerva Ginecol. 2007, 59 (4): 377-86.PubMed Niehoff P, et al: Breast irradiation with brachytherapy: approved techniques and new concepts. Minerva Ginecol. 2007, 59 (4): 377-86.PubMed
2.
go back to reference Vlahovic G, Crawford J: Activation of tyrosine kinases in cancer. Oncologist. 2003, 8 (6): 531-8. 10.1634/theoncologist.8-6-531.CrossRefPubMed Vlahovic G, Crawford J: Activation of tyrosine kinases in cancer. Oncologist. 2003, 8 (6): 531-8. 10.1634/theoncologist.8-6-531.CrossRefPubMed
3.
go back to reference Nahta R, Hortobagyi GN, Esteva FJ: Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist. 2003, 8 (1): 5-17. 10.1634/theoncologist.8-1-5.CrossRefPubMed Nahta R, Hortobagyi GN, Esteva FJ: Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist. 2003, 8 (1): 5-17. 10.1634/theoncologist.8-1-5.CrossRefPubMed
4.
go back to reference Fong TA, et al: SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59 (1): 99-106.PubMed Fong TA, et al: SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59 (1): 99-106.PubMed
5.
go back to reference Noble ME, Endicott JA, Johnson LN: Protein kinase inhibitors: insights into drug design from structure. Science. 2004, 303 (5665): 1800-5. 10.1126/science.1095920.CrossRefPubMed Noble ME, Endicott JA, Johnson LN: Protein kinase inhibitors: insights into drug design from structure. Science. 2004, 303 (5665): 1800-5. 10.1126/science.1095920.CrossRefPubMed
6.
go back to reference Clarke M, et al: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005, 366 (9503): 2087-106.CrossRefPubMed Clarke M, et al: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005, 366 (9503): 2087-106.CrossRefPubMed
7.
go back to reference Bartelink H, et al: Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol. 2007, 25 (22): 3259-65. 10.1200/JCO.2007.11.4991.CrossRefPubMed Bartelink H, et al: Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol. 2007, 25 (22): 3259-65. 10.1200/JCO.2007.11.4991.CrossRefPubMed
8.
go back to reference Baranowska-Kortylewicz J, et al: Effect of platelet-derived growth factor receptor-beta inhibition with STI571 on radioimmunotherapy. Cancer Res. 2005, 65 (17): 7824-31.PubMedPubMedCentral Baranowska-Kortylewicz J, et al: Effect of platelet-derived growth factor receptor-beta inhibition with STI571 on radioimmunotherapy. Cancer Res. 2005, 65 (17): 7824-31.PubMedPubMedCentral
9.
go back to reference Mendel DB, et al: In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003, 9 (1): 327-37.PubMed Mendel DB, et al: In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003, 9 (1): 327-37.PubMed
10.
go back to reference Buchdunger E, et al: Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000, 295 (1): 139-45.PubMed Buchdunger E, et al: Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000, 295 (1): 139-45.PubMed
11.
go back to reference Druker BJ: Imatinib as a paradigm of targeted therapies. Adv Cancer Res. 2004, 91: 1-30. full_text.CrossRefPubMed Druker BJ: Imatinib as a paradigm of targeted therapies. Adv Cancer Res. 2004, 91: 1-30. full_text.CrossRefPubMed
12.
go back to reference Heinrich MC, et al: Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000, 96 (3): 925-32.PubMed Heinrich MC, et al: Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000, 96 (3): 925-32.PubMed
13.
go back to reference Pietras RJ: Interactions between estrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J. 2003, 9 (5): 361-73. 10.1046/j.1524-4741.2003.09510.x.CrossRefPubMed Pietras RJ: Interactions between estrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J. 2003, 9 (5): 361-73. 10.1046/j.1524-4741.2003.09510.x.CrossRefPubMed
14.
go back to reference Attoub S, et al: The c-kit tyrosine kinase inhibitor STI571 for colorectal cancer therapy. Cancer Res. 2002, 62 (17): 4879-83.PubMed Attoub S, et al: The c-kit tyrosine kinase inhibitor STI571 for colorectal cancer therapy. Cancer Res. 2002, 62 (17): 4879-83.PubMed
15.
go back to reference Antoniades HN, et al: Malignant epithelial cells in primary human lung carcinomas coexpress in vivo platelet-derived growth factor (PDGF) and PDGF receptor mRNAs and their protein products. Proc Natl Acad Sci USA. 1992, 89 (9): 3942-6. 10.1073/pnas.89.9.3942.CrossRefPubMedPubMedCentral Antoniades HN, et al: Malignant epithelial cells in primary human lung carcinomas coexpress in vivo platelet-derived growth factor (PDGF) and PDGF receptor mRNAs and their protein products. Proc Natl Acad Sci USA. 1992, 89 (9): 3942-6. 10.1073/pnas.89.9.3942.CrossRefPubMedPubMedCentral
16.
go back to reference Fudge K, Bostwick DG, Stearns ME: Platelet-derived growth factor A and B chains and the alpha and beta receptors in prostatic intraepithelial neoplasia. Prostate. 1996, 29 (5): 282-6. 10.1002/(SICI)1097-0045(199611)29:5<282::AID-PROS2>3.0.CO;2-C.CrossRefPubMed Fudge K, Bostwick DG, Stearns ME: Platelet-derived growth factor A and B chains and the alpha and beta receptors in prostatic intraepithelial neoplasia. Prostate. 1996, 29 (5): 282-6. 10.1002/(SICI)1097-0045(199611)29:5<282::AID-PROS2>3.0.CO;2-C.CrossRefPubMed
17.
go back to reference Lindmark G, et al: Stromal expression of platelet-derived growth factor beta-receptor and platelet-derived growth factor B-chain in colorectal cancer. Lab Invest. 1993, 69 (6): 682-9.PubMed Lindmark G, et al: Stromal expression of platelet-derived growth factor beta-receptor and platelet-derived growth factor B-chain in colorectal cancer. Lab Invest. 1993, 69 (6): 682-9.PubMed
18.
go back to reference Schiffer CA: Signal transduction inhibition: changing paradigms in cancer care. Semin Oncol. 2001, 28 (5 Suppl 17): 34-9. 10.1053/sonc.2001.29183.CrossRefPubMed Schiffer CA: Signal transduction inhibition: changing paradigms in cancer care. Semin Oncol. 2001, 28 (5 Suppl 17): 34-9. 10.1053/sonc.2001.29183.CrossRefPubMed
19.
go back to reference Mundhenke C, et al: Novel treatment of ovarian cancer cell lines with Imatinib mesylate combined with Paclitaxel and Carboplatin leads to receptor-mediated antiproliferative effects. J Cancer Res Clin Oncol. 2008 Mundhenke C, et al: Novel treatment of ovarian cancer cell lines with Imatinib mesylate combined with Paclitaxel and Carboplatin leads to receptor-mediated antiproliferative effects. J Cancer Res Clin Oncol. 2008
20.
go back to reference Lev DC, et al: Inhibition of platelet-derived growth factor receptor signaling restricts the growth of human breast cancer in the bone of nude mice. Clin Cancer Res. 2005, 11 (1): 306-14.PubMed Lev DC, et al: Inhibition of platelet-derived growth factor receptor signaling restricts the growth of human breast cancer in the bone of nude mice. Clin Cancer Res. 2005, 11 (1): 306-14.PubMed
21.
go back to reference de Jong JS, et al: Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. J Pathol. 1998, 184 (1): 44-52. 10.1002/(SICI)1096-9896(199801)184:1<44::AID-PATH984>3.0.CO;2-H.CrossRefPubMed de Jong JS, et al: Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. J Pathol. 1998, 184 (1): 44-52. 10.1002/(SICI)1096-9896(199801)184:1<44::AID-PATH984>3.0.CO;2-H.CrossRefPubMed
22.
go back to reference Ariad S, Seymour L, Bezwoda WR: Platelet-derived growth factor (PDGF) in plasma of breast cancer patients: correlation with stage and rate of progression. Breast Cancer Res Treat. 1991, 20 (1): 11-7. 10.1007/BF01833352.CrossRefPubMed Ariad S, Seymour L, Bezwoda WR: Platelet-derived growth factor (PDGF) in plasma of breast cancer patients: correlation with stage and rate of progression. Breast Cancer Res Treat. 1991, 20 (1): 11-7. 10.1007/BF01833352.CrossRefPubMed
23.
go back to reference Seymour L, Bezwoda WR: Positive immunostaining for platelet derived growth factor (PDGF) is an adverse prognostic factor in patients with advanced breast cancer. Breast Cancer Res Treat. 1994, 32 (2): 229-33. 10.1007/BF00665774.CrossRefPubMed Seymour L, Bezwoda WR: Positive immunostaining for platelet derived growth factor (PDGF) is an adverse prognostic factor in patients with advanced breast cancer. Breast Cancer Res Treat. 1994, 32 (2): 229-33. 10.1007/BF00665774.CrossRefPubMed
24.
go back to reference Heldin CH, Ostman A, Ronnstrand L: Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1998, 1378 (1): F79-113.PubMed Heldin CH, Ostman A, Ronnstrand L: Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1998, 1378 (1): F79-113.PubMed
25.
go back to reference Kennedy SG, et al: The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 1997, 11 (6): 701-13. 10.1101/gad.11.6.701.CrossRefPubMed Kennedy SG, et al: The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 1997, 11 (6): 701-13. 10.1101/gad.11.6.701.CrossRefPubMed
26.
go back to reference Uehara H, et al: Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst. 2003, 95 (6): 458-70. 10.1093/jnci/95.6.458.CrossRefPubMed Uehara H, et al: Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst. 2003, 95 (6): 458-70. 10.1093/jnci/95.6.458.CrossRefPubMed
27.
go back to reference Apte SM, et al: Targeting the platelet-derived growth factor receptor in antivascular therapy for human ovarian carcinoma. Clin Cancer Res. 2004, 10 (3): 897-908. 10.1158/1078-0432.CCR-1151-3.CrossRefPubMed Apte SM, et al: Targeting the platelet-derived growth factor receptor in antivascular therapy for human ovarian carcinoma. Clin Cancer Res. 2004, 10 (3): 897-908. 10.1158/1078-0432.CCR-1151-3.CrossRefPubMed
28.
go back to reference Langley RR, et al: Activation of the platelet-derived growth factor-receptor enhances survival of murine bone endothelial cells. Cancer Res. 2004, 64 (11): 3727-30. 10.1158/0008-5472.CAN-03-3863.CrossRefPubMed Langley RR, et al: Activation of the platelet-derived growth factor-receptor enhances survival of murine bone endothelial cells. Cancer Res. 2004, 64 (11): 3727-30. 10.1158/0008-5472.CAN-03-3863.CrossRefPubMed
29.
go back to reference Pietras K, et al: Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 2001, 61 (7): 2929-34.PubMed Pietras K, et al: Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 2001, 61 (7): 2929-34.PubMed
30.
go back to reference Pietras K, et al: Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002, 62 (19): 5476-84.PubMed Pietras K, et al: Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002, 62 (19): 5476-84.PubMed
31.
go back to reference Weigel MT, et al: Combination of imatinib and vinorelbine enhances cell growth inhibition in breast cancer cells via PDGFR beta signalling. Cancer Lett. 2008 Weigel MT, et al: Combination of imatinib and vinorelbine enhances cell growth inhibition in breast cancer cells via PDGFR beta signalling. Cancer Lett. 2008
32.
go back to reference Chou TC: Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J Theor Biol. 1976, 59 (2): 253-76. 10.1016/0022-5193(76)90169-7.CrossRefPubMed Chou TC: Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J Theor Biol. 1976, 59 (2): 253-76. 10.1016/0022-5193(76)90169-7.CrossRefPubMed
33.
go back to reference Chou TC, Talalay P: Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur J Biochem. 1981, 115 (1): 207-16. 10.1111/j.1432-1033.1981.tb06218.x.CrossRefPubMed Chou TC, Talalay P: Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur J Biochem. 1981, 115 (1): 207-16. 10.1111/j.1432-1033.1981.tb06218.x.CrossRefPubMed
34.
go back to reference Roussidis AE, et al: The importance of c-Kit and PDGF receptors as potential targets for molecular therapy in breast cancer. Curr Med Chem. 2007, 14 (7): 735-43. 10.2174/092986707780090963.CrossRefPubMed Roussidis AE, et al: The importance of c-Kit and PDGF receptors as potential targets for molecular therapy in breast cancer. Curr Med Chem. 2007, 14 (7): 735-43. 10.2174/092986707780090963.CrossRefPubMed
35.
go back to reference Carvalho I, et al: Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res. 2005, 7 (5): R788-95. 10.1186/bcr1304.CrossRefPubMedPubMedCentral Carvalho I, et al: Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res. 2005, 7 (5): R788-95. 10.1186/bcr1304.CrossRefPubMedPubMedCentral
36.
go back to reference Bhardwaj B, et al: Localization of platelet-derived growth factor beta receptor expression in the periepithelial stroma of human breast carcinoma. Clin Cancer Res. 1996, 2 (4): 773-82.PubMed Bhardwaj B, et al: Localization of platelet-derived growth factor beta receptor expression in the periepithelial stroma of human breast carcinoma. Clin Cancer Res. 1996, 2 (4): 773-82.PubMed
37.
go back to reference Paulsson J, et al: Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol. 2009, 175 (1): 334-41. 10.2353/ajpath.2009.081030.CrossRefPubMedPubMedCentral Paulsson J, et al: Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol. 2009, 175 (1): 334-41. 10.2353/ajpath.2009.081030.CrossRefPubMedPubMedCentral
38.
39.
go back to reference Zhu L, et al: Possible predictive markers related to micro-metastasis in breast cancer patients. Oncol Rep. 2006, 15 (5): 1217-23.PubMed Zhu L, et al: Possible predictive markers related to micro-metastasis in breast cancer patients. Oncol Rep. 2006, 15 (5): 1217-23.PubMed
40.
go back to reference Skinner MA, Safford SD, Freemerman AJ: RET tyrosine kinase and medullary thyroid cells are unaffected by clinical doses of STI571. Anticancer Res. 2003, 23 (5A): 3601-6.PubMed Skinner MA, Safford SD, Freemerman AJ: RET tyrosine kinase and medullary thyroid cells are unaffected by clinical doses of STI571. Anticancer Res. 2003, 23 (5A): 3601-6.PubMed
41.
go back to reference Li J, et al: Effects of STI571 (gleevec) on pancreatic cancer cell growth. Mol Cancer. 2003, 2 (32): Li J, et al: Effects of STI571 (gleevec) on pancreatic cancer cell growth. Mol Cancer. 2003, 2 (32):
42.
go back to reference Druker BJ, et al: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001, 344 (14): 1031-7. 10.1056/NEJM200104053441401.CrossRefPubMed Druker BJ, et al: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001, 344 (14): 1031-7. 10.1056/NEJM200104053441401.CrossRefPubMed
43.
go back to reference Krystal GW, et al: The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res. 2000, 6 (8): 3319-26.PubMed Krystal GW, et al: The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res. 2000, 6 (8): 3319-26.PubMed
44.
go back to reference McHowat J, et al: Clinical concentrations of doxorubicin inhibit activity of myocardial membrane-associated, calcium-independent phospholipase A(2). Cancer Res. 2001, 61 (10): 4024-9.PubMed McHowat J, et al: Clinical concentrations of doxorubicin inhibit activity of myocardial membrane-associated, calcium-independent phospholipase A(2). Cancer Res. 2001, 61 (10): 4024-9.PubMed
45.
go back to reference Blagosklonny MV, Fojo T: Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer. 1999, 83 (2): 151-6. 10.1002/(SICI)1097-0215(19991008)83:2<151::AID-IJC1>3.0.CO;2-5.CrossRefPubMed Blagosklonny MV, Fojo T: Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer. 1999, 83 (2): 151-6. 10.1002/(SICI)1097-0215(19991008)83:2<151::AID-IJC1>3.0.CO;2-5.CrossRefPubMed
46.
go back to reference Yerushalmi R, et al: Combined antiproliferative activity of imatinib mesylate (STI-571) with radiation or cisplatin in vitro. Exp Oncol. 2007, 29 (2): 126-31.PubMed Yerushalmi R, et al: Combined antiproliferative activity of imatinib mesylate (STI-571) with radiation or cisplatin in vitro. Exp Oncol. 2007, 29 (2): 126-31.PubMed
47.
go back to reference Katayama R, et al: Imatinib mesylate inhibits platelet-derived growth factor activity and increases chemosensitivity in feline vaccine-associated sarcoma. Cancer Chemother Pharmacol. 2004, 54 (1): 25-33. 10.1007/s00280-004-0780-7.CrossRefPubMed Katayama R, et al: Imatinib mesylate inhibits platelet-derived growth factor activity and increases chemosensitivity in feline vaccine-associated sarcoma. Cancer Chemother Pharmacol. 2004, 54 (1): 25-33. 10.1007/s00280-004-0780-7.CrossRefPubMed
48.
go back to reference Modi S, et al: A phase II trial of imatinib mesylate monotherapy in patients with metastatic breast cancer. Breast Cancer Res Treat. 2005, 90 (2): 157-63. 10.1007/s10549-004-3974-0.CrossRefPubMed Modi S, et al: A phase II trial of imatinib mesylate monotherapy in patients with metastatic breast cancer. Breast Cancer Res Treat. 2005, 90 (2): 157-63. 10.1007/s10549-004-3974-0.CrossRefPubMed
49.
go back to reference Cristofanilli M, et al: Imatinib mesylate (Gleevec(R)) in advanced breast cancer-expressing C-Kit or PDGFR-{beta}: clinical activity and biological correlations. Ann Oncol. 2008 Cristofanilli M, et al: Imatinib mesylate (Gleevec(R)) in advanced breast cancer-expressing C-Kit or PDGFR-{beta}: clinical activity and biological correlations. Ann Oncol. 2008
50.
go back to reference Yardley DA, et al: Phase II trial of docetaxal plus imatinib mesylate in the treatment of patients with metastatic breast cancer. Clin Breast Cancer. 2009, 9 (4): 237-42. 10.3816/CBC.2009.n.040.CrossRefPubMed Yardley DA, et al: Phase II trial of docetaxal plus imatinib mesylate in the treatment of patients with metastatic breast cancer. Clin Breast Cancer. 2009, 9 (4): 237-42. 10.3816/CBC.2009.n.040.CrossRefPubMed
51.
go back to reference Fertil B, Malaise EP: Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiat Oncol Biol Phys. 1985, 11 (9): 1699-707. 10.1016/0360-3016(85)90223-8.CrossRefPubMed Fertil B, Malaise EP: Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiat Oncol Biol Phys. 1985, 11 (9): 1699-707. 10.1016/0360-3016(85)90223-8.CrossRefPubMed
52.
go back to reference Matthews JH, Meeker BE, Chapman JD: Response of human tumor cell lines in vitro to fractionated irradiation. Int J Radiat Oncol Biol Phys. 1989, 16 (1): 133-8. 10.1016/0360-3016(89)90020-5.CrossRefPubMed Matthews JH, Meeker BE, Chapman JD: Response of human tumor cell lines in vitro to fractionated irradiation. Int J Radiat Oncol Biol Phys. 1989, 16 (1): 133-8. 10.1016/0360-3016(89)90020-5.CrossRefPubMed
53.
go back to reference Geng L, et al: STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma. Int J Radiat Oncol Biol Phys. 2006, 64 (1): 263-71. 10.1016/j.ijrobp.2005.08.025.CrossRefPubMed Geng L, et al: STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma. Int J Radiat Oncol Biol Phys. 2006, 64 (1): 263-71. 10.1016/j.ijrobp.2005.08.025.CrossRefPubMed
54.
go back to reference Servidei T, et al: Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J Cell Physiol. 2006, 208 (1): 220-8. 10.1002/jcp.20659.CrossRefPubMed Servidei T, et al: Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J Cell Physiol. 2006, 208 (1): 220-8. 10.1002/jcp.20659.CrossRefPubMed
55.
go back to reference Chung HW, et al: Radiosensitization effect of STI-571 on pancreatic cancer cells in vitro. Int J Radiat Oncol Biol Phys. 2009, 75 (3): 862-9. 10.1016/j.ijrobp.2009.06.021.CrossRefPubMed Chung HW, et al: Radiosensitization effect of STI-571 on pancreatic cancer cells in vitro. Int J Radiat Oncol Biol Phys. 2009, 75 (3): 862-9. 10.1016/j.ijrobp.2009.06.021.CrossRefPubMed
56.
go back to reference Russell JS, et al: Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res. 2003, 63 (21): 7377-83.PubMed Russell JS, et al: Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res. 2003, 63 (21): 7377-83.PubMed
57.
go back to reference Holdhoff M, et al: Imatinib mesylate radiosensitizes human glioblastoma cells through inhibition of platelet-derived growth factor receptor. Blood Cells Mol Dis. 2005, 34 (2): 181-5. 10.1016/j.bcmd.2004.11.006.CrossRefPubMed Holdhoff M, et al: Imatinib mesylate radiosensitizes human glioblastoma cells through inhibition of platelet-derived growth factor receptor. Blood Cells Mol Dis. 2005, 34 (2): 181-5. 10.1016/j.bcmd.2004.11.006.CrossRefPubMed
58.
go back to reference Oertel S, et al: Human glioblastoma and carcinoma xenograft tumors treated by combined radiation and imatinib (Gleevec). Strahlenther Onkol. 2006, 182 (7): 400-7. 10.1007/s00066-006-1445-8.CrossRefPubMed Oertel S, et al: Human glioblastoma and carcinoma xenograft tumors treated by combined radiation and imatinib (Gleevec). Strahlenther Onkol. 2006, 182 (7): 400-7. 10.1007/s00066-006-1445-8.CrossRefPubMed
59.
go back to reference Pietras K: Increasing tumor uptake of anticancer drugs with imatinib. Semin Oncol. 2004, 31 (2 Suppl 6): 18-23. 10.1053/j.seminoncol.2004.03.036.CrossRefPubMed Pietras K: Increasing tumor uptake of anticancer drugs with imatinib. Semin Oncol. 2004, 31 (2 Suppl 6): 18-23. 10.1053/j.seminoncol.2004.03.036.CrossRefPubMed
60.
go back to reference Matei D, Chang DD, Jeng MH: Imatinib mesylate (Gleevec) inhibits ovarian cancer cell growth through a mechanism dependent on platelet-derived growth factor receptor alpha and Akt inactivation. Clin Cancer Res. 2004, 10 (2): 681-90. 10.1158/1078-0432.CCR-0754-03.CrossRefPubMed Matei D, Chang DD, Jeng MH: Imatinib mesylate (Gleevec) inhibits ovarian cancer cell growth through a mechanism dependent on platelet-derived growth factor receptor alpha and Akt inactivation. Clin Cancer Res. 2004, 10 (2): 681-90. 10.1158/1078-0432.CCR-0754-03.CrossRefPubMed
Metadata
Title
In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells
Authors
Marion T Weigel
Linda Dahmke
Christian Schem
Dirk O Bauerschlag
Katrin Weber
Peter Niehoff
Maret Bauer
Alexander Strauss
Walter Jonat
Nicolai Maass
Christoph Mundhenke
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-412

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine