Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol

Authors: Yu Ren, Xuan Zhou, Mei Mei, Xu-Bo Yuan, Lei Han, Guang-Xiu Wang, Zhi-Fan Jia, Peng Xu, Pei-Yu Pu, Chun-Sheng Kang

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Substantial data indicate that the oncogene microRNA 21 (miR-21) is significantly elevated in glioblastoma multiforme (GBM) and regulates multiple genes associated with cancer cell proliferation, apoptosis, and invasiveness. Thus, miR-21 can theoretically become a target to enhance the chemotherapeutic effect in cancer therapy. So far, the effect of downregulating miR-21 to enhance the chemotherapeutic effect to taxol has not been studied in human GBM.

Methods

Human glioblastoma U251 (PTEN-mutant) and LN229 (PTEN wild-type) cells were treated with taxol and the miR-21 inhibitor (in a poly (amidoamine) (PAMAM) dendrimer), alone or in combination. The 50% inhibitory concentration and cell viability were determined by the MTT assay. The mechanism between the miR-21 inhibitor and the anticancer drug taxol was analyzed using the Zheng-Jun Jin method. Annexin V/PI staining was performed, and apoptosis and the cell cycle were evaluated by flow cytometry analysis. Expression of miR-21 was investigated by RT-PCR, and western blotting was performed to evaluate malignancy related protein alteration.

Results

IC(50) values were dramatically decreased in cells treated with miR-21 inhibitor combine with taxol, to a greater extent than those treated with taxol alone. Furthermore, the miR-21 inhibitor significantly enhanced apoptosis in both U251 cells and LN229 cells, and cell invasiveness was obviously weakened. Interestingly, the above data suggested that in both the PTEN mutant and the wild-type GBM cells, miR-21 blockage increased the chemosensitivity to taxol. It is worth noting that the miR-21 inhibitor additively interacted with taxol on U251cells and synergistically on LN229 cells. Thus, the miR-21 inhibitor might interrupt the activity of EGFR pathways, independently of PTEN status. Meanwhile, the expression of STAT3 and p-STAT3 decreased to relatively low levels after miR-21 inhibitor and taxol treatment. The data strongly suggested that a regulatory loop between miR-21 and STAT3 might provide an insight into the mechanism of modulating EGFR/STAT3 signaling.

Conclusions

Taken together, the miR-21 inhibitor could enhance the chemo-sensitivity of human glioblastoma cells to taxol. A combination of miR-21 inhibitor and taxol could be an effective therapeutic strategy for controlling the growth of GBM by inhibiting STAT3 expression and phosphorylation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Frank BF, Tim F, Robert MB, et al: Malignant astrocytic glioma: genetics, biology, and paths to treatment. GENES & DEVELOPMENT. 2007, 21: 2683-2710. 10.1101/gad.1596707.CrossRef Frank BF, Tim F, Robert MB, et al: Malignant astrocytic glioma: genetics, biology, and paths to treatment. GENES & DEVELOPMENT. 2007, 21: 2683-2710. 10.1101/gad.1596707.CrossRef
2.
go back to reference Dimpy K, Ruijun Sh, Sherry B, et al: Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol Cancer Ther. 2006, 5: 637-644. 10.1158/1535-7163.MCT-05-0453.CrossRef Dimpy K, Ruijun Sh, Sherry B, et al: Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol Cancer Ther. 2006, 5: 637-644. 10.1158/1535-7163.MCT-05-0453.CrossRef
3.
go back to reference Davies MA, Lu Y, Sano T, et al: Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res. 1998, 58: 5285-90.PubMed Davies MA, Lu Y, Sano T, et al: Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res. 1998, 58: 5285-90.PubMed
4.
go back to reference Mehrian ShR, Chen CD, Shi T, et al: Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. PNAS. 2007, 104: 5563-5568. 10.1073/pnas.0609139104.CrossRef Mehrian ShR, Chen CD, Shi T, et al: Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. PNAS. 2007, 104: 5563-5568. 10.1073/pnas.0609139104.CrossRef
5.
go back to reference Solit D, Ye Q, Reilly KO, et al: The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell. 2005, 8: 287-297. 10.1016/j.ccr.2005.09.006.CrossRefPubMedPubMedCentral Solit D, Ye Q, Reilly KO, et al: The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell. 2005, 8: 287-297. 10.1016/j.ccr.2005.09.006.CrossRefPubMedPubMedCentral
6.
go back to reference Sansal Isabelle, Sellers William: The Biology and Clinical Relevance of the PTEN Tumor Suppressor Pathway. Journal of Clinical Oncology. 2004, 22: 2954-2963. 10.1200/JCO.2004.02.141.CrossRefPubMed Sansal Isabelle, Sellers William: The Biology and Clinical Relevance of the PTEN Tumor Suppressor Pathway. Journal of Clinical Oncology. 2004, 22: 2954-2963. 10.1200/JCO.2004.02.141.CrossRefPubMed
7.
go back to reference Nabendu P, Zibin J, Anjali G, et al: EGFR Tyrosine Kinase Inhibitors Decrease VEGF Expression by Both Hypoxia-Inducible Factor (HIF)-1-Independent and HIF-1-Dependent Mechanisms. Cancer Research. 2006, 66: 3197-3204. 10.1158/0008-5472.CAN-05-3090.CrossRef Nabendu P, Zibin J, Anjali G, et al: EGFR Tyrosine Kinase Inhibitors Decrease VEGF Expression by Both Hypoxia-Inducible Factor (HIF)-1-Independent and HIF-1-Dependent Mechanisms. Cancer Research. 2006, 66: 3197-3204. 10.1158/0008-5472.CAN-05-3090.CrossRef
8.
go back to reference Karmakar S, Banik NL, Patel SJ, et al: Combination of all- trans retinoic acid and taxol regressed glioblastoma T98G xenografts in nude mice. Apoptosis. 2007, 12: 2077-2087. 10.1007/s10495-007-0116-2.CrossRefPubMed Karmakar S, Banik NL, Patel SJ, et al: Combination of all- trans retinoic acid and taxol regressed glioblastoma T98G xenografts in nude mice. Apoptosis. 2007, 12: 2077-2087. 10.1007/s10495-007-0116-2.CrossRefPubMed
9.
go back to reference Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.CrossRefPubMed Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.CrossRefPubMed
10.
go back to reference Asangani IA, Rasheed SAK, Nikolova DA: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008, 27: 2128-2136. 10.1038/sj.onc.1210856.CrossRefPubMed Asangani IA, Rasheed SAK, Nikolova DA: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008, 27: 2128-2136. 10.1038/sj.onc.1210856.CrossRefPubMed
11.
go back to reference Thales P, Alice Sh, Kenneth SK: MicroRNA-21 Targets a Network of Key Tumor-Suppressive Pathways in Glioblastoma Cells. Cancer Research. 2008, 68: 8164-8172. 10.1158/0008-5472.CAN-08-1305.CrossRef Thales P, Alice Sh, Kenneth SK: MicroRNA-21 Targets a Network of Key Tumor-Suppressive Pathways in Glioblastoma Cells. Cancer Research. 2008, 68: 8164-8172. 10.1158/0008-5472.CAN-08-1305.CrossRef
12.
go back to reference Ren Y, Kang CS, Yuan XB, et al: Co-delivery of miR-21 inhibitor and 5-Fu by Poly(amidoamine) Dendrimer Attenuate Human Glioma Cell Growth in vitro. J Biomater Sci Polym Ed. 2009, 1: 1-12. Ren Y, Kang CS, Yuan XB, et al: Co-delivery of miR-21 inhibitor and 5-Fu by Poly(amidoamine) Dendrimer Attenuate Human Glioma Cell Growth in vitro. J Biomater Sci Polym Ed. 2009, 1: 1-12.
13.
go back to reference Jin ZJ: About the evaluation of drug combination. Acta Pharmacol Sin. 2004, 2: 146-147. Jin ZJ: About the evaluation of drug combination. Acta Pharmacol Sin. 2004, 2: 146-147.
14.
go back to reference Chan JA, et al: MicroRNA-21 Is an Antiapoptotic Factor in Human. Glioblastoma Cells. Cancer Res. 2005, 65: 6029-33. 10.1158/0008-5472.CAN-05-0137.CrossRefPubMed Chan JA, et al: MicroRNA-21 Is an Antiapoptotic Factor in Human. Glioblastoma Cells. Cancer Res. 2005, 65: 6029-33. 10.1158/0008-5472.CAN-05-0137.CrossRefPubMed
15.
go back to reference Jeremy RG, Ann MM, Kimberly RH, et al: The Protein Kinase Cβ-Selective Inhibitor, Enzastaurin (LY317615.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, and Suppresses Growth of Human Colon Cancer and Glioblastoma Xenografts. Cancer Research. 2005, 65: 7462-7469. 10.1158/0008-5472.CAN-05-0071.CrossRef Jeremy RG, Ann MM, Kimberly RH, et al: The Protein Kinase Cβ-Selective Inhibitor, Enzastaurin (LY317615.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, and Suppresses Growth of Human Colon Cancer and Glioblastoma Xenografts. Cancer Research. 2005, 65: 7462-7469. 10.1158/0008-5472.CAN-05-0071.CrossRef
16.
go back to reference Raffaella Sordella, Daphne WB, Daniel AH, Jeffrey S: Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways. SCIENCE. 2004, 305: 1163-1167. 10.1126/science.1101637.CrossRef Raffaella Sordella, Daphne WB, Daniel AH, Jeffrey S: Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways. SCIENCE. 2004, 305: 1163-1167. 10.1126/science.1101637.CrossRef
17.
go back to reference Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene. 2007, 26: 2799-803. 10.1038/sj.onc.1210083.CrossRefPubMed Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene. 2007, 26: 2799-803. 10.1038/sj.onc.1210083.CrossRefPubMed
18.
go back to reference Schniewind B, Christgen M, Kurdow R, et al: Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria-mediated apoptosis. Int J Cancer. 2004, 109: 182-8. 10.1002/ijc.11679.CrossRefPubMed Schniewind B, Christgen M, Kurdow R, et al: Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria-mediated apoptosis. Int J Cancer. 2004, 109: 182-8. 10.1002/ijc.11679.CrossRefPubMed
19.
20.
go back to reference Gabriely G, Wurdinger T, Kesari S, et al: MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008, 28: 5369-80. 10.1128/MCB.00479-08.CrossRefPubMedPubMedCentral Gabriely G, Wurdinger T, Kesari S, et al: MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008, 28: 5369-80. 10.1128/MCB.00479-08.CrossRefPubMedPubMedCentral
21.
go back to reference Roberti A, La Sala D, Cinti C: Multiple genetic and epigenetic interacting mechanisms contributes to clonally selection of drug-resistant tumors: current views and new therapeutic prospective. J cell Physiol. 2006, 207: 571-81. 10.1002/jcp.20515.CrossRefPubMed Roberti A, La Sala D, Cinti C: Multiple genetic and epigenetic interacting mechanisms contributes to clonally selection of drug-resistant tumors: current views and new therapeutic prospective. J cell Physiol. 2006, 207: 571-81. 10.1002/jcp.20515.CrossRefPubMed
22.
go back to reference Olga K, Jody F, James M, et al: Involvement of microRNA-451 in resistance of MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008, 7: 2152-2159. 10.1158/1535-7163.MCT-08-0021.CrossRef Olga K, Jody F, James M, et al: Involvement of microRNA-451 in resistance of MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008, 7: 2152-2159. 10.1158/1535-7163.MCT-08-0021.CrossRef
23.
go back to reference Yu-Zhuo P, Marilyn EM, Ai-ming Y: MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Molecular Pharmacology. 2009, 75: 1374-1379. 10.1124/mol.108.054163.CrossRef Yu-Zhuo P, Marilyn EM, Ai-ming Y: MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Molecular Pharmacology. 2009, 75: 1374-1379. 10.1124/mol.108.054163.CrossRef
24.
go back to reference Tyler EM, Kalpana G, Bhuvaneswari R, et al: MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27kip1. Journal of biological chemistry. 2008, 283: 29897-29903. 10.1074/jbc.M804612200.CrossRef Tyler EM, Kalpana G, Bhuvaneswari R, et al: MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27kip1. Journal of biological chemistry. 2008, 283: 29897-29903. 10.1074/jbc.M804612200.CrossRef
25.
go back to reference Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007, 133: 647-658. 10.1053/j.gastro.2007.05.022.CrossRefPubMedPubMedCentral Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007, 133: 647-658. 10.1053/j.gastro.2007.05.022.CrossRefPubMedPubMedCentral
26.
go back to reference Maier D, Jones G, Li X, et al: The PTEN lipid phosphatase domain is not required to inhibit invasion of glioma cells. Cancer Res. 1999, 59: 5479-82.PubMed Maier D, Jones G, Li X, et al: The PTEN lipid phosphatase domain is not required to inhibit invasion of glioma cells. Cancer Res. 1999, 59: 5479-82.PubMed
27.
go back to reference Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007, 67: 8994-9000. 10.1158/0008-5472.CAN-07-1045.CrossRefPubMed Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007, 67: 8994-9000. 10.1158/0008-5472.CAN-07-1045.CrossRefPubMed
28.
go back to reference Kefas B, Godlewski J, Comeau L, et al: microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma. Cancer Res. 2008, 68: 3566-3572. 10.1158/0008-5472.CAN-07-6639.CrossRefPubMed Kefas B, Godlewski J, Comeau L, et al: microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma. Cancer Res. 2008, 68: 3566-3572. 10.1158/0008-5472.CAN-07-6639.CrossRefPubMed
29.
go back to reference Meng F, Henson R, Lang M: Involvement of Human Micro-RNA in Growth and Response to Chemotherapy in Human Cholangiocarcinoma Cell Lines. Gastroenterology. 2006, 130: 2113-2129. 10.1053/j.gastro.2006.02.057.CrossRefPubMed Meng F, Henson R, Lang M: Involvement of Human Micro-RNA in Growth and Response to Chemotherapy in Human Cholangiocarcinoma Cell Lines. Gastroenterology. 2006, 130: 2113-2129. 10.1053/j.gastro.2006.02.057.CrossRefPubMed
30.
go back to reference Lo HW, Cao XY, Zhu H, et al: Constitutively Activated STAT3 Frequently Coexpresses with Epidermal Growth Factor Receptor in High-Grade Gliomas and Targeting STAT3 Sensitizes Them to Iressa and Alkylators. Clinical Cancer Research. 2008, 14: 6042-6054. 10.1158/1078-0432.CCR-07-4923.CrossRefPubMedPubMedCentral Lo HW, Cao XY, Zhu H, et al: Constitutively Activated STAT3 Frequently Coexpresses with Epidermal Growth Factor Receptor in High-Grade Gliomas and Targeting STAT3 Sensitizes Them to Iressa and Alkylators. Clinical Cancer Research. 2008, 14: 6042-6054. 10.1158/1078-0432.CCR-07-4923.CrossRefPubMedPubMedCentral
Metadata
Title
MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol
Authors
Yu Ren
Xuan Zhou
Mei Mei
Xu-Bo Yuan
Lei Han
Guang-Xiu Wang
Zhi-Fan Jia
Peng Xu
Pei-Yu Pu
Chun-Sheng Kang
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-27

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine