Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP

Authors: Keiichi Jingu, Hisanori Ariga, Tomohiro Kaneta, Yoshihiro Takai, Ken Takeda, Lindel Katja, Kakutaro Narazaki, Takahiro Metoki, Keisuke Fujimoto, Rei Umezawa, Yoshihiro Ogawa, Kenji Nemoto, Masashi Koto, Masatoshi Mitsuya, Naruhiro Matsufuji, Shoki Takahashi, Shogo Yamada

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

To evaluate the safety of focal dose escalation to regions with standardized uptake value (SUV) >2.0 using intensity-modulated radiation therapy (IMRT) by comparison of radiotherapy plans using dose-volume histograms (DVHs) and normal tissue complication probability (NTCP) for postoperative local recurrent rectal cancer

Methods

First, we performed conventional radiotherapy with 40 Gy/20 fr. (CRT 40 Gy) for 12 patients with postoperative local recurrent rectal cancer, and then we performed FDG-PET/CT radiotherapy planning for those patients. We defined the regions with SUV > 2.0 as biological target volume (BTV) and made three boost plans for each patient: 1) CRT boost plan, 2) IMRT without dose-painting boost plan, and 3) IMRT with dose-painting boost plan. The total boost dose was 20 Gy. In IMRT with dose-painting boost plan, we increased the dose for BTV+5 mm by 30% of the prescribed dose. We added CRT boost plan to CRT 40 Gy (summed plan 1), IMRT without dose-painting boost plan to CRT 40 Gy (summed plan 2) and IMRT with dose-painting boost plan to CRT 40 Gy (summed plan 3), and we compared those plans using DVHs and NTCP.

Results

Dmean of PTV-PET and that of PTV-CT were 26.5 Gy and 21.3 Gy, respectively. V50 of small bowel PRV in summed plan 1 was significantly higher than those in other plans ((summed plan 1 vs. summed plan 2 vs. summed plan 3: 47.11 ± 45.33 cm3 vs. 40.63 ± 39.13 cm3 vs. 41.25 ± 39.96 cm3(p < 0.01, respectively)). There were no significant differences in V30, V40, V60, Dmean or NTCP of small bowel PRV.

Conclusions

FDG-PET-guided IMRT can facilitate focal dose-escalation to regions with SUV above 2.0 for postoperative local recurrent rectal cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mori T, Takahashi K, Yasuno M: Radical resection with autonomic nerve preservation and lymph node dissection techniques in lower rectal cancer surgery and its results: the impact of lateral lymph node dissection. Langenbecks Arch Surg. 1998, 383: 409-415. 10.1007/s004230050153.CrossRefPubMed Mori T, Takahashi K, Yasuno M: Radical resection with autonomic nerve preservation and lymph node dissection techniques in lower rectal cancer surgery and its results: the impact of lateral lymph node dissection. Langenbecks Arch Surg. 1998, 383: 409-415. 10.1007/s004230050153.CrossRefPubMed
2.
go back to reference Moriya Y, Sugihara K, Akasu T, et al: Importance of extended lymphadenectomy with lateral node dissection for advanced lower rectal cancer. World J Surg. 1997, 21: 728-732. 10.1007/s002689900298.CrossRefPubMed Moriya Y, Sugihara K, Akasu T, et al: Importance of extended lymphadenectomy with lateral node dissection for advanced lower rectal cancer. World J Surg. 1997, 21: 728-732. 10.1007/s002689900298.CrossRefPubMed
3.
go back to reference Hida J, Yasutomi M, Fujimoto K, et al: Does lateral lymph node dissection improve survival in rectal carcinoma? Examination of node metastases by the clearing method. J Am Coll Surg. 1997, 184: 475-480.PubMed Hida J, Yasutomi M, Fujimoto K, et al: Does lateral lymph node dissection improve survival in rectal carcinoma? Examination of node metastases by the clearing method. J Am Coll Surg. 1997, 184: 475-480.PubMed
4.
go back to reference Bergamaschi R, Pessaux P, Burtin P, et al: Abdominoperineal resection for locally recurrent rectal cancer. Tech Coloproctol. 2001, 5: 97-102. 10.1007/PL00012131.CrossRefPubMed Bergamaschi R, Pessaux P, Burtin P, et al: Abdominoperineal resection for locally recurrent rectal cancer. Tech Coloproctol. 2001, 5: 97-102. 10.1007/PL00012131.CrossRefPubMed
5.
go back to reference Weiser MR, Landmann RG, Wong WD, et al: Surgical Salvage of Recurrent Rectal Cancer after Transanal Excision. Dis Colon Rectum. 2005, 48: 1169-1175. 10.1007/s10350-004-0930-3.CrossRefPubMed Weiser MR, Landmann RG, Wong WD, et al: Surgical Salvage of Recurrent Rectal Cancer after Transanal Excision. Dis Colon Rectum. 2005, 48: 1169-1175. 10.1007/s10350-004-0930-3.CrossRefPubMed
6.
go back to reference Gunderson LL, Sosin H: Area of failure found at reoperation following 'curative surgery' for adenocarcinoma of the rectum. Cancer. 1974, 34: 1278-1292. 10.1002/1097-0142(197410)34:4<1278::AID-CNCR2820340440>3.0.CO;2-F.CrossRefPubMed Gunderson LL, Sosin H: Area of failure found at reoperation following 'curative surgery' for adenocarcinoma of the rectum. Cancer. 1974, 34: 1278-1292. 10.1002/1097-0142(197410)34:4<1278::AID-CNCR2820340440>3.0.CO;2-F.CrossRefPubMed
7.
go back to reference Tepper JE, O'Connell M, Hollis D, et al: Analysis of surgical salvage after failure of primary therapy in rectal cancer: Results from intergroup study 0114. J Clin Oncol. 2003, 21: 3623-3628. 10.1200/JCO.2003.03.018.CrossRefPubMed Tepper JE, O'Connell M, Hollis D, et al: Analysis of surgical salvage after failure of primary therapy in rectal cancer: Results from intergroup study 0114. J Clin Oncol. 2003, 21: 3623-3628. 10.1200/JCO.2003.03.018.CrossRefPubMed
8.
go back to reference Kusters M, Beets GL, Velde van de CJ, et al: A comparison between the treatment of low rectal cancer in Japan and the Netherlands, focusing on the patterns of local recurrence. Ann Surg. 2009, 249: 229-235. 10.1097/SLA.0b013e318190a664.CrossRefPubMed Kusters M, Beets GL, Velde van de CJ, et al: A comparison between the treatment of low rectal cancer in Japan and the Netherlands, focusing on the patterns of local recurrence. Ann Surg. 2009, 249: 229-235. 10.1097/SLA.0b013e318190a664.CrossRefPubMed
9.
go back to reference Baxter NN, Rothenberger DA, Morris AM, et al: Adjuvant radiation for rectal cancer: do we measure up to the standard of care? An epidemiologic analysis of trends over 25 years in the United States. Dis Colon Rectum. 2005, 48: 9-15. 10.1007/s10350-004-0792-8.CrossRefPubMed Baxter NN, Rothenberger DA, Morris AM, et al: Adjuvant radiation for rectal cancer: do we measure up to the standard of care? An epidemiologic analysis of trends over 25 years in the United States. Dis Colon Rectum. 2005, 48: 9-15. 10.1007/s10350-004-0792-8.CrossRefPubMed
10.
go back to reference Pacini P, Cionini L, Pirtoli L, et al: Symptomatic recurrences of carcinoma of the rectum and sigmoid. The influence of radiotherapy on the quality of life. Dis Colon Rectum. 1986, 29: 865-868. 10.1007/BF02555365.CrossRefPubMed Pacini P, Cionini L, Pirtoli L, et al: Symptomatic recurrences of carcinoma of the rectum and sigmoid. The influence of radiotherapy on the quality of life. Dis Colon Rectum. 1986, 29: 865-868. 10.1007/BF02555365.CrossRefPubMed
11.
go back to reference Wendling P, Manz R, Thews G, et al: Heterogeneous oxygenation of rectal carcinomas in humans: a critical parameter for preperative irradiation?. Adv Exp Med Boil. 1984, 180: 293-300.CrossRef Wendling P, Manz R, Thews G, et al: Heterogeneous oxygenation of rectal carcinomas in humans: a critical parameter for preperative irradiation?. Adv Exp Med Boil. 1984, 180: 293-300.CrossRef
12.
go back to reference Eble MJ, Wulf J, van Kampen M, et al: Locally restricted dose escalation in radiotherapy of primary advanced and recurrent rectal cancers. Strahlenther Onkol. 1995, 171: 77-86.PubMed Eble MJ, Wulf J, van Kampen M, et al: Locally restricted dose escalation in radiotherapy of primary advanced and recurrent rectal cancers. Strahlenther Onkol. 1995, 171: 77-86.PubMed
13.
go back to reference Wong CS, Cummings BJ, Brierley JD, et al: Treatment of locally recurrent rectal carcinoma--results and prognostic factors. Int J Radiat Oncol Biol Phys. 1998, 40: 427-435.CrossRefPubMed Wong CS, Cummings BJ, Brierley JD, et al: Treatment of locally recurrent rectal carcinoma--results and prognostic factors. Int J Radiat Oncol Biol Phys. 1998, 40: 427-435.CrossRefPubMed
14.
go back to reference Huebner RH, Park KC, Shepherd JE, et al: A metaanalysis of the literature for whole-body FDG-PET detection of recurrent colorectal cancer. J Nucl Med. 2000, 41: 1177-1189.PubMed Huebner RH, Park KC, Shepherd JE, et al: A metaanalysis of the literature for whole-body FDG-PET detection of recurrent colorectal cancer. J Nucl Med. 2000, 41: 1177-1189.PubMed
15.
go back to reference Kutcher GJ, Burman C, Brewster L, et al: Histogram reduction method for calculating complication probabilities for threedimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys. 1991, 21: 137-146.CrossRefPubMed Kutcher GJ, Burman C, Brewster L, et al: Histogram reduction method for calculating complication probabilities for threedimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys. 1991, 21: 137-146.CrossRefPubMed
16.
go back to reference Lyman JT: Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985, 8: S13-19. 10.2307/3583506.CrossRefPubMed Lyman JT: Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985, 8: S13-19. 10.2307/3583506.CrossRefPubMed
17.
go back to reference Burman C, Kutcher GJ, Emami B, et al: Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991, 21: 123-135.CrossRefPubMed Burman C, Kutcher GJ, Emami B, et al: Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991, 21: 123-135.CrossRefPubMed
18.
go back to reference Clavo AC, Brown RS, Wahl RL: Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med. 1995, 36: 1625-1632.PubMed Clavo AC, Brown RS, Wahl RL: Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med. 1995, 36: 1625-1632.PubMed
19.
go back to reference Burgman P, Odonoghue JA, Humm JL, et al: Hypoxia-Induced increase in FDG uptake in MCF7 cells. J Nucl Med. 2001, 42: 170-175.PubMed Burgman P, Odonoghue JA, Humm JL, et al: Hypoxia-Induced increase in FDG uptake in MCF7 cells. J Nucl Med. 2001, 42: 170-175.PubMed
20.
go back to reference Pugachev A, Ruan S, Carlin S, et al: Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005, 62: 545-553.CrossRefPubMed Pugachev A, Ruan S, Carlin S, et al: Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005, 62: 545-553.CrossRefPubMed
21.
go back to reference Erdi YE, Rosenzweig K, Erdi AK, et al: Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol. 2002, 62: 51-60. 10.1016/S0167-8140(01)00470-4.CrossRefPubMed Erdi YE, Rosenzweig K, Erdi AK, et al: Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol. 2002, 62: 51-60. 10.1016/S0167-8140(01)00470-4.CrossRefPubMed
22.
go back to reference Mah K, Caldwell CB, Ung YC, et al: The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys. 2002, 52: 339-350.CrossRefPubMed Mah K, Caldwell CB, Ung YC, et al: The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys. 2002, 52: 339-350.CrossRefPubMed
23.
go back to reference Paulino AC, Koshy M, Howell R, et al: Comparison of CT- and FDGPET- defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2005, 61: 1385-1392.CrossRefPubMed Paulino AC, Koshy M, Howell R, et al: Comparison of CT- and FDGPET- defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2005, 61: 1385-1392.CrossRefPubMed
24.
go back to reference Daisne JF, Duprez T, Weynand B, et al: Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging and FDG PET and validation with surgical specimen. Radiology. 2004, 233: 93-100. 10.1148/radiol.2331030660.CrossRefPubMed Daisne JF, Duprez T, Weynand B, et al: Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging and FDG PET and validation with surgical specimen. Radiology. 2004, 233: 93-100. 10.1148/radiol.2331030660.CrossRefPubMed
25.
go back to reference Wang D, Schultz CJ, Jursinic PA, et al: Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. Int J Radiat Oncol Biol Phys. 2006, 65: 143-151.CrossRefPubMed Wang D, Schultz CJ, Jursinic PA, et al: Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. Int J Radiat Oncol Biol Phys. 2006, 65: 143-151.CrossRefPubMed
26.
go back to reference Bayne M, MacManus M, Hicks R, et al: Can a mathematical formula help define a radiation target volume using positron emission tomography? In regard to Black et al. (Int J Radiat Oncol Biol Phys 60: 1272-1282). Int J Radiat Oncol Biol Phys. 2005, 62: 299-300. 10.1016/j.ijrobp.2005.01.052.CrossRefPubMed Bayne M, MacManus M, Hicks R, et al: Can a mathematical formula help define a radiation target volume using positron emission tomography? In regard to Black et al. (Int J Radiat Oncol Biol Phys 60: 1272-1282). Int J Radiat Oncol Biol Phys. 2005, 62: 299-300. 10.1016/j.ijrobp.2005.01.052.CrossRefPubMed
27.
go back to reference Haberkorn U, Strauss LG, Dimitrakopoulou A, et al: PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med. 1991, 32: 1485-1490.PubMed Haberkorn U, Strauss LG, Dimitrakopoulou A, et al: PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med. 1991, 32: 1485-1490.PubMed
28.
go back to reference Quon A, Fischbein NJ, McDougall IR, et al: Clinical role of 18F-FDG PET/CT in the management of squamous cell carcinoma of the head and neck and thyroid carcinoma. J Nucl Med. 2007, 48 (Suppl 1): 58S-67S.PubMed Quon A, Fischbein NJ, McDougall IR, et al: Clinical role of 18F-FDG PET/CT in the management of squamous cell carcinoma of the head and neck and thyroid carcinoma. J Nucl Med. 2007, 48 (Suppl 1): 58S-67S.PubMed
29.
go back to reference Kasamon YL, Jones RJ, Wahl RL: Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med. 2007, 48 (Suppl 1): 19S-27S.PubMed Kasamon YL, Jones RJ, Wahl RL: Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med. 2007, 48 (Suppl 1): 19S-27S.PubMed
30.
go back to reference Findlay M, Young H, Cunningham D, et al: Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol. 1996, 14: 700-708.PubMed Findlay M, Young H, Cunningham D, et al: Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol. 1996, 14: 700-708.PubMed
31.
go back to reference de Geus-Oei LF, Vriens D, van Laarhoven HW, et al: Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med. 2009, 50 (Suppl 1): 43S-54S. 10.2967/jnumed.108.057224.CrossRefPubMed de Geus-Oei LF, Vriens D, van Laarhoven HW, et al: Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med. 2009, 50 (Suppl 1): 43S-54S. 10.2967/jnumed.108.057224.CrossRefPubMed
32.
go back to reference Emami B, Lyman J, Brown A, et al: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991, 21: 109-122.CrossRefPubMed Emami B, Lyman J, Brown A, et al: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991, 21: 109-122.CrossRefPubMed
33.
go back to reference Höckel M, Knoop C, Schlenger K, et al: Intratumoral pO2 histography as predictive assay in advanced cancer of the uterine cervix. Adv Exp Med Biol. 1994, 345: 445-450.CrossRefPubMed Höckel M, Knoop C, Schlenger K, et al: Intratumoral pO2 histography as predictive assay in advanced cancer of the uterine cervix. Adv Exp Med Biol. 1994, 345: 445-450.CrossRefPubMed
34.
go back to reference Höckel M, Schlenger K, Aral B, et al: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996, 56: 4509-4515.PubMed Höckel M, Schlenger K, Aral B, et al: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996, 56: 4509-4515.PubMed
35.
go back to reference Brizel DM, Sibley GS, Prosnitz LR, et al: Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997, 38: 285-289.CrossRefPubMed Brizel DM, Sibley GS, Prosnitz LR, et al: Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997, 38: 285-289.CrossRefPubMed
36.
go back to reference Nordsmark M, Overgaard M, Overgaard J: Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996, 41: 31-39.CrossRefPubMed Nordsmark M, Overgaard M, Overgaard J: Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996, 41: 31-39.CrossRefPubMed
37.
go back to reference Koh WJ, Rasey JS, Evans ML, et al: Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992, 22: 199-212.CrossRefPubMed Koh WJ, Rasey JS, Evans ML, et al: Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992, 22: 199-212.CrossRefPubMed
38.
go back to reference Lewis JS, Sharp TL, Laforest R, et al: Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med. 2001, 42: 655-661.PubMed Lewis JS, Sharp TL, Laforest R, et al: Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med. 2001, 42: 655-661.PubMed
39.
go back to reference Kaneta T, Takai Y, Iwata R, et al: Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med. 2007, 21: 101-107. 10.1007/BF03033987.CrossRefPubMed Kaneta T, Takai Y, Iwata R, et al: Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med. 2007, 21: 101-107. 10.1007/BF03033987.CrossRefPubMed
40.
go back to reference Lin Z, Mechalakos J, Nehmeh S, et al: The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys. 2008, 70: 1219-1228.CrossRefPubMedPubMedCentral Lin Z, Mechalakos J, Nehmeh S, et al: The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys. 2008, 70: 1219-1228.CrossRefPubMedPubMedCentral
Metadata
Title
Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP
Authors
Keiichi Jingu
Hisanori Ariga
Tomohiro Kaneta
Yoshihiro Takai
Ken Takeda
Lindel Katja
Kakutaro Narazaki
Takahiro Metoki
Keisuke Fujimoto
Rei Umezawa
Yoshihiro Ogawa
Kenji Nemoto
Masashi Koto
Masatoshi Mitsuya
Naruhiro Matsufuji
Shoki Takahashi
Shogo Yamada
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-127

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine