Skip to main content
Top
Published in: BMC Neurology 1/2011

Open Access 01-12-2011 | Research article

Individualized, home-based interactive training of cerebral palsy children delivered through the Internet

Authors: Peder E Bilde, Mette Kliim-Due, Betina Rasmussen, Line Z Petersen, Tue H Petersen, Jens B Nielsen

Published in: BMC Neurology | Issue 1/2011

Login to get access

Abstract

Background

The available health resources limit the amount of therapy that may be offered to children with cerebral palsy and the amount of training in each session may be insufficient to drive the neuroplastic changes, which are necessary for functional improvements to take place. The aim of this pilot study was to provide proof of concept that individualized and supervised interactive home-based training delivered through the internet may provide an efficient way of maintaining intensive training of children with cerebral palsy over prolonged periods.

Methods

9 children (aged 9-13 years) with cerebral palsy were included in the study. Motor, perceptual and cognitive abilities were evaluated before and after 20 weeks of home-based training delivered through the internet.

Results

The children and their families reported great enthusiasm with the training system and all experienced subjective improvements in motor abilities and self-esteem. The children on average trained for 74 hours during a 20 week period equalling just over 30 minutes per day. Significant improvements in functional muscle strength measured as the frontal and lateral step-up and sit-to-stand tests were observed. Assessment of Motor and processing skills also showed significant increases. Endurance measured as the Bruce test showed a significant improvement, whereas there was no significant change in the 6 min walking test. Balance (Romberg) was unchanged. Visual perceptual abilities increased significantly.

Conclusions

We conclude that it is feasible to deliver interactive training of children with cerebral palsy at home through the internet and thereby ensure more intensive and longer lasting training than what is normally offered to this group.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, Hornby TG, Ross SA, Scheets PL: Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009, 90: 1692-8. 10.1016/j.apmr.2009.04.005.CrossRefPubMedPubMedCentral Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, Hornby TG, Ross SA, Scheets PL: Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009, 90: 1692-8. 10.1016/j.apmr.2009.04.005.CrossRefPubMedPubMedCentral
2.
go back to reference Jensen JL, Marstrand PC, Nielsen JB: Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol. 2005, 99: 1558-68. 10.1152/japplphysiol.01408.2004.CrossRefPubMed Jensen JL, Marstrand PC, Nielsen JB: Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol. 2005, 99: 1558-68. 10.1152/japplphysiol.01408.2004.CrossRefPubMed
3.
go back to reference Nielsen JB, Cohen LG: The Olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports?. J Physiol. 2008, 586: 65-70. 10.1113/jphysiol.2007.142661.CrossRefPubMed Nielsen JB, Cohen LG: The Olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports?. J Physiol. 2008, 586: 65-70. 10.1113/jphysiol.2007.142661.CrossRefPubMed
4.
go back to reference Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol. 1995, 74: 1037-45.PubMed Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol. 1995, 74: 1037-45.PubMed
5.
go back to reference Perez MA, Lungholt BK, Nyborg K, Nielsen JB: Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004, 159: 197-205. 10.1007/s00221-004-1947-5.CrossRefPubMed Perez MA, Lungholt BK, Nyborg K, Nielsen JB: Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004, 159: 197-205. 10.1007/s00221-004-1947-5.CrossRefPubMed
6.
go back to reference Dodd KJ, Taylor NF, Graham HK: A randomized clinical trial of strength training in young people with cerebral palsy. Dev Med Child Neurol. 2003, 45: 652-7. 10.1111/j.1469-8749.2003.tb00866.x.CrossRefPubMed Dodd KJ, Taylor NF, Graham HK: A randomized clinical trial of strength training in young people with cerebral palsy. Dev Med Child Neurol. 2003, 45: 652-7. 10.1111/j.1469-8749.2003.tb00866.x.CrossRefPubMed
7.
go back to reference Katz-Leurer M, Rotem H, Keren O, Meyer S: The effects of a 'home-based' task-oriented exercise programme on motor and balance performance in children with spastic cerebral palsy and severe traumatic brain injury. Clin Rehabil. 2009, 23: 714-24. 10.1177/0269215509335293.CrossRefPubMed Katz-Leurer M, Rotem H, Keren O, Meyer S: The effects of a 'home-based' task-oriented exercise programme on motor and balance performance in children with spastic cerebral palsy and severe traumatic brain injury. Clin Rehabil. 2009, 23: 714-24. 10.1177/0269215509335293.CrossRefPubMed
8.
go back to reference Marshall AL, Owen N, Bauman AE: Mediated approaches for influencing physical activity: update of the evidence on mass media, print, telephone and website delivery of interventions. J Sci Med Sport. 2004, 7 (1 Suppl): 74-80. 10.1016/S1440-2440(04)80281-0.CrossRefPubMed Marshall AL, Owen N, Bauman AE: Mediated approaches for influencing physical activity: update of the evidence on mass media, print, telephone and website delivery of interventions. J Sci Med Sport. 2004, 7 (1 Suppl): 74-80. 10.1016/S1440-2440(04)80281-0.CrossRefPubMed
9.
go back to reference McKay HG, King D, Eakin EG, Seeley JR, Glasgow RE: The diabetes network internet-based physical activity intervention: a randomized pilot study. Diabetes Care. 2001, 24: 1328-34. 10.2337/diacare.24.8.1328.CrossRefPubMed McKay HG, King D, Eakin EG, Seeley JR, Glasgow RE: The diabetes network internet-based physical activity intervention: a randomized pilot study. Diabetes Care. 2001, 24: 1328-34. 10.2337/diacare.24.8.1328.CrossRefPubMed
10.
go back to reference Napolitano MA, Fotheringham M, Tate D, Sciamanna C, Leslie E, Owen N, Bauman A, Marcus B: Evaluation of an internet-based physical activity intervention: a preliminary investigation. Ann Behav Med. 2003, 25: 92-9. 10.1207/S15324796ABM2502_04.CrossRefPubMed Napolitano MA, Fotheringham M, Tate D, Sciamanna C, Leslie E, Owen N, Bauman A, Marcus B: Evaluation of an internet-based physical activity intervention: a preliminary investigation. Ann Behav Med. 2003, 25: 92-9. 10.1207/S15324796ABM2502_04.CrossRefPubMed
11.
go back to reference van den Berg MH, Ronday HK, Peeters AJ, le Cessie S, van der Giesen FJ, Breedveld FC, Vliet Vlieland TP: Using internet technology to deliver a home-based physical activity intervention for patients with rheumatoid arthritis: A randomized controlled trial. Arthritis Rheum. 2006, 55: 935-45. 10.1002/art.22339.CrossRefPubMed van den Berg MH, Ronday HK, Peeters AJ, le Cessie S, van der Giesen FJ, Breedveld FC, Vliet Vlieland TP: Using internet technology to deliver a home-based physical activity intervention for patients with rheumatoid arthritis: A randomized controlled trial. Arthritis Rheum. 2006, 55: 935-45. 10.1002/art.22339.CrossRefPubMed
12.
go back to reference Graf DL, Pratt LV, Hester CN, Short KR: Playing active video games increases energy expenditure in children. Pediatrics. 2009, 124: 534-40. 10.1542/peds.2008-2851.CrossRefPubMed Graf DL, Pratt LV, Hester CN, Short KR: Playing active video games increases energy expenditure in children. Pediatrics. 2009, 124: 534-40. 10.1542/peds.2008-2851.CrossRefPubMed
13.
go back to reference Lanningham-Foster L, Foster RC, McCrady SK, Jensen TB, Mitre N, Levine JA: Activity-promoting video games and increased energy expenditure. J Pediatr. 2009, 154: 819-23. 10.1016/j.jpeds.2009.01.009.CrossRefPubMedPubMedCentral Lanningham-Foster L, Foster RC, McCrady SK, Jensen TB, Mitre N, Levine JA: Activity-promoting video games and increased energy expenditure. J Pediatr. 2009, 154: 819-23. 10.1016/j.jpeds.2009.01.009.CrossRefPubMedPubMedCentral
14.
go back to reference Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P: Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther. 2008, 88: 1196-207. 10.2522/ptj.20080062.CrossRefPubMed Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P: Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther. 2008, 88: 1196-207. 10.2522/ptj.20080062.CrossRefPubMed
15.
go back to reference Eliasson AC, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Ohrvall AM, Rosenbaum P: The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006, 48: 549-54. 10.1017/S0012162206001162.CrossRefPubMed Eliasson AC, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Ohrvall AM, Rosenbaum P: The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006, 48: 549-54. 10.1017/S0012162206001162.CrossRefPubMed
16.
go back to reference Morris C, Bartlett D: Gross Motor Function Classification System: Impact and utility. Dev Med Child Neurol. 2004, 46: 60-65. 10.1111/j.1469-8749.2004.tb00436.x.CrossRefPubMed Morris C, Bartlett D: Gross Motor Function Classification System: Impact and utility. Dev Med Child Neurol. 2004, 46: 60-65. 10.1111/j.1469-8749.2004.tb00436.x.CrossRefPubMed
17.
go back to reference Palisano RJ, Rosenbaum PL, Walter S, Russell D, Wood E, Galuppi B: Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997, 39: 214-233. 10.1111/j.1469-8749.1997.tb07414.x.CrossRefPubMed Palisano RJ, Rosenbaum PL, Walter S, Russell D, Wood E, Galuppi B: Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997, 39: 214-233. 10.1111/j.1469-8749.1997.tb07414.x.CrossRefPubMed
18.
go back to reference Kottorp A, Bernspång B, Fisher AG: Validity of a performance assessment of activities of daily living for people with developmental disabilities. J Intellect Disabil Res. 2003, 47: 597-605. 10.1046/j.1365-2788.2003.00475.x.CrossRefPubMed Kottorp A, Bernspång B, Fisher AG: Validity of a performance assessment of activities of daily living for people with developmental disabilities. J Intellect Disabil Res. 2003, 47: 597-605. 10.1046/j.1365-2788.2003.00475.x.CrossRefPubMed
19.
go back to reference Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson AC: The Assisting Hand Assessment: current evidence of validity, reliability, and responsiveness to change. Dev Med Child Neurol. 2007, 49: 259-64. 10.1111/j.1469-8749.2007.00259.x.CrossRefPubMed Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson AC: The Assisting Hand Assessment: current evidence of validity, reliability, and responsiveness to change. Dev Med Child Neurol. 2007, 49: 259-64. 10.1111/j.1469-8749.2007.00259.x.CrossRefPubMed
20.
go back to reference Verschuren O, Ketelaar M, Takken T, van Brussel M, Helders PJ, Gorter JW: Reliability of hand-held dynamometry and functional strength tests for the lower extremity in children with cerebral palsy. Disabil Rehabil. 2008, 30: 1358-66. 10.1080/09638280701639873.CrossRefPubMed Verschuren O, Ketelaar M, Takken T, van Brussel M, Helders PJ, Gorter JW: Reliability of hand-held dynamometry and functional strength tests for the lower extremity in children with cerebral palsy. Disabil Rehabil. 2008, 30: 1358-66. 10.1080/09638280701639873.CrossRefPubMed
21.
go back to reference Cumming GR, Everatt D, Hastman L: Bruce treadmill test in children: normal values in a clinic population. Am J Cardiol. 1978, 41: 69-75. 10.1016/0002-9149(78)90134-0.CrossRefPubMed Cumming GR, Everatt D, Hastman L: Bruce treadmill test in children: normal values in a clinic population. Am J Cardiol. 1978, 41: 69-75. 10.1016/0002-9149(78)90134-0.CrossRefPubMed
22.
go back to reference Thompson P, Beath T, Bell J, Jacobson G, Phair T, Salbach NM, Wright FV: Test-retest reliability of the 10-metre fast walk test and 6-minute walk test in ambulatory school-aged children with cerebral palsy. Dev Med Child Neurol. 2008, 50: 370-6. 10.1111/j.1469-8749.2008.02048.x.CrossRefPubMed Thompson P, Beath T, Bell J, Jacobson G, Phair T, Salbach NM, Wright FV: Test-retest reliability of the 10-metre fast walk test and 6-minute walk test in ambulatory school-aged children with cerebral palsy. Dev Med Child Neurol. 2008, 50: 370-6. 10.1111/j.1469-8749.2008.02048.x.CrossRefPubMed
23.
go back to reference Martin NA: Test of visual-perceptual skills (TVPS). 2004, Academic Therapy Publications, 3 Martin NA: Test of visual-perceptual skills (TVPS). 2004, Academic Therapy Publications, 3
24.
go back to reference Rimmer JH: Physical fitness levels of persons with cerebral palsy. Dev Med Child Neurol. 2001, 43: 208-12.CrossRefPubMed Rimmer JH: Physical fitness levels of persons with cerebral palsy. Dev Med Child Neurol. 2001, 43: 208-12.CrossRefPubMed
25.
go back to reference Blundell SW, Shepherd RB, Dean CM, Adams RD, Cahill BM: Functional strength training in cerebral palsy: a pilot study of a group circuit training class for children aged 4-8 years. Clin Rehabil. 2003, 17: 48-57. 10.1191/0269215503cr584oa.CrossRefPubMed Blundell SW, Shepherd RB, Dean CM, Adams RD, Cahill BM: Functional strength training in cerebral palsy: a pilot study of a group circuit training class for children aged 4-8 years. Clin Rehabil. 2003, 17: 48-57. 10.1191/0269215503cr584oa.CrossRefPubMed
26.
go back to reference Gorter H, Holty L, Rameckers EE, Elvers HJ, Oostendorp RA: Changes in endurance and walking ability through functional physical training in children with cerebral palsy. Pediatr Phys Ther. 2009, 21: 31-7. 10.1097/PEP.0b013e318196f563.CrossRefPubMed Gorter H, Holty L, Rameckers EE, Elvers HJ, Oostendorp RA: Changes in endurance and walking ability through functional physical training in children with cerebral palsy. Pediatr Phys Ther. 2009, 21: 31-7. 10.1097/PEP.0b013e318196f563.CrossRefPubMed
Metadata
Title
Individualized, home-based interactive training of cerebral palsy children delivered through the Internet
Authors
Peder E Bilde
Mette Kliim-Due
Betina Rasmussen
Line Z Petersen
Tue H Petersen
Jens B Nielsen
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2011
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/1471-2377-11-32

Other articles of this Issue 1/2011

BMC Neurology 1/2011 Go to the issue