Skip to main content
Top
Published in: BMC Medical Imaging 1/2008

Open Access 01-12-2008 | Research article

The impact of image dynamic range on texture classification of brain white matter

Authors: Doaa Mahmoud-Ghoneim, Mariam K Alkaabi, Jacques D de Certaines, Frank-M Goettsche

Published in: BMC Medical Imaging | Issue 1/2008

Login to get access

Abstract

Background

The Greylevel Cooccurrence Matrix method (COM) is one of the most promising methods used in Texture Analysis of Magnetic Resonance Images. This method provides statistical information about the spatial distribution of greylevels in the image which can be used for classification of different tissue regions. Optimizing the size and complexity of the COM has the potential to enhance the reliability of Texture Analysis results. In this paper we investigate the effect of matrix size and calculation approach on the ability of COM to discriminate between peritumoral white matter and other white matter regions.

Method

MR images were obtained from patients with histologically confirmed brain glioblastoma using MRI at 3-T giving isotropic resolution of 1 mm3. Three Regions of Interest (ROI) were outlined in visually normal white matter on three image slices based on relative distance from the tumor: one peritumoral white matter region and two distant white matter regions on both hemispheres. Volumes of Interest (VOI) were composed from the three slices. Two different calculation approaches for COM were used: i) Classical approach (CCOM) on each individual ROI, and ii) Three Dimensional approach (3DCOM) calculated on VOIs. For, each calculation approach five dynamic ranges (number of greylevels N) were investigated (N = 16, 32, 64, 128, and 256).

Results

Classification showed that peritumoral white matter always represents a homogenous class, separate from other white matter, regardless of the value of N or the calculation approach used. The best test measures (sensitivity and specificity) for average CCOM were obtained for N = 128. These measures were also optimal for 3DCOM with N = 128, which additionally showed a balanced tradeoff between the measures.

Conclusion

We conclude that the dynamic range used for COM calculation significantly influences the classification results for identical samples. In order to obtain more reliable classification results with COM, the dynamic range must be optimized to avoid too small or sparse matrices. Larger dynamic ranges for COM calculations do not necessarily give better texture results; they might increase the computation costs and limit the method performance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Castellano G, Bonilha L, Li LM, Cenes F: Texture analysis of medical images. Clinical Radiology. 2004, 59: 1061-1069. 10.1016/j.crad.2004.07.008.CrossRefPubMed Castellano G, Bonilha L, Li LM, Cenes F: Texture analysis of medical images. Clinical Radiology. 2004, 59: 1061-1069. 10.1016/j.crad.2004.07.008.CrossRefPubMed
2.
go back to reference Mahmoud-Ghoneim D, Cherel Y, Lemaire L, de Certaines JD, Maniere A: Texture analysis of Magnetic Resonance Images of rats muscles during atrophy and regeneration. Magn Reson Imaging. 2006, 24: 167-171. 10.1016/j.mri.2005.10.002.CrossRefPubMed Mahmoud-Ghoneim D, Cherel Y, Lemaire L, de Certaines JD, Maniere A: Texture analysis of Magnetic Resonance Images of rats muscles during atrophy and regeneration. Magn Reson Imaging. 2006, 24: 167-171. 10.1016/j.mri.2005.10.002.CrossRefPubMed
3.
go back to reference Mahmoud-Ghoneim D, Bonny JM, Renou JP, de Certaines JD: Ex-vivo Magnetic Resonance Imaging Texture Analysis Can Discriminate Genotypic Origin in Bovine Meat. J Sci Food Agr. 2005, 85: 629-632. 10.1002/jsfa.1841.CrossRef Mahmoud-Ghoneim D, Bonny JM, Renou JP, de Certaines JD: Ex-vivo Magnetic Resonance Imaging Texture Analysis Can Discriminate Genotypic Origin in Bovine Meat. J Sci Food Agr. 2005, 85: 629-632. 10.1002/jsfa.1841.CrossRef
4.
go back to reference Chen W, Giger ML, Li H, Bick U, Newstead GM: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med. 2007, 58: 562-71. 10.1002/mrm.21347.CrossRefPubMed Chen W, Giger ML, Li H, Bick U, Newstead GM: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med. 2007, 58: 562-71. 10.1002/mrm.21347.CrossRefPubMed
5.
go back to reference Kato H, Kanematsu M, Zhang X, Saio M, Kondo H, Goshima S, Fujita H: Computer-aided diagnosis of hepatic fibrosis: preliminary evaluation of MRI texture analysis using the finite difference method and an artificial neural network. AJR Am J Roentgenol. 2007, 189: 117-22. 10.2214/AJR.07.2070.CrossRefPubMed Kato H, Kanematsu M, Zhang X, Saio M, Kondo H, Goshima S, Fujita H: Computer-aided diagnosis of hepatic fibrosis: preliminary evaluation of MRI texture analysis using the finite difference method and an artificial neural network. AJR Am J Roentgenol. 2007, 189: 117-22. 10.2214/AJR.07.2070.CrossRefPubMed
6.
go back to reference Schad LR, Blüml S, Zuna I: MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging. 1993, 11: 889-896. 10.1016/0730-725X(93)90206-S.CrossRefPubMed Schad LR, Blüml S, Zuna I: MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging. 1993, 11: 889-896. 10.1016/0730-725X(93)90206-S.CrossRefPubMed
7.
go back to reference Herlidou-Même S, Constans JM, Carsin B, Olivier D, Eliat PA, Nadal-Desbarats L, Gondry C, Le Rumeur E, Idy-Peretti I, de Certaines JD: MRI Texture Analysis on Texture Test Objects, Normal Brain and Intracranial Tumors. Magn Reson Imaging. 2003, 21: 989-993. 10.1016/S0730-725X(03)00212-1.CrossRefPubMed Herlidou-Même S, Constans JM, Carsin B, Olivier D, Eliat PA, Nadal-Desbarats L, Gondry C, Le Rumeur E, Idy-Peretti I, de Certaines JD: MRI Texture Analysis on Texture Test Objects, Normal Brain and Intracranial Tumors. Magn Reson Imaging. 2003, 21: 989-993. 10.1016/S0730-725X(03)00212-1.CrossRefPubMed
8.
go back to reference Mahmoud-Ghoneim D, Toussaint G, Constans JM, de Certaines JD: "Three Dimensional Texture Analysis in MRI: a preliminary evaluation in gliomas". Magn Reson Imaging. 2003, 21: 983-987. 10.1016/S0730-725X(03)00201-7.CrossRefPubMed Mahmoud-Ghoneim D, Toussaint G, Constans JM, de Certaines JD: "Three Dimensional Texture Analysis in MRI: a preliminary evaluation in gliomas". Magn Reson Imaging. 2003, 21: 983-987. 10.1016/S0730-725X(03)00201-7.CrossRefPubMed
9.
go back to reference Collewet G, Strzeleck M, Mariette F: Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Mag Reson Imaging. 2004, 22: 81-91. 10.1016/j.mri.2003.09.001.CrossRef Collewet G, Strzeleck M, Mariette F: Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Mag Reson Imaging. 2004, 22: 81-91. 10.1016/j.mri.2003.09.001.CrossRef
10.
go back to reference Haralick RM, Shanmugam K, Dinstein I: Textural Features for Image Classification. IEEE T Syst Man Cy. 1973, 3: 610-621. 10.1109/TSMC.1973.4309314.CrossRef Haralick RM, Shanmugam K, Dinstein I: Textural Features for Image Classification. IEEE T Syst Man Cy. 1973, 3: 610-621. 10.1109/TSMC.1973.4309314.CrossRef
11.
go back to reference Swets W: Using discriminant eigenfeatures for image retrieval. IEEE PAMI. 1996, 18 (8): 831-836.CrossRef Swets W: Using discriminant eigenfeatures for image retrieval. IEEE PAMI. 1996, 18 (8): 831-836.CrossRef
Metadata
Title
The impact of image dynamic range on texture classification of brain white matter
Authors
Doaa Mahmoud-Ghoneim
Mariam K Alkaabi
Jacques D de Certaines
Frank-M Goettsche
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2008
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-8-18

Other articles of this Issue 1/2008

BMC Medical Imaging 1/2008 Go to the issue