Skip to main content
Top
Published in: BMC Medical Imaging 1/2014

Open Access 01-12-2014 | Research article

Masked smoothing using separable kernels for CT perfusion images

Authors: David S Wack, Kenneth V Snyder, Kevin F Seals, Adnan H Siddiqui

Published in: BMC Medical Imaging | Issue 1/2014

Login to get access

Abstract

Background

CT perfusion images have a high contrast ratio between voxels representing different anatomy, such as tissue or vessels, which makes image segmentation of tissue and vascular regions relatively easy. However, grey and white matter tissue regions have relatively low values and can suffer from poor signal to noise ratios. While smoothing can improve the image quality of the tissue regions, the inclusion of much higher valued vascular voxels can skew the tissue values. It is thus desirable to smooth tissue voxels separately from other voxel types, as has been previously implemented using mean filter kernels. We created a novel Masked Smoothing method that performs Gaussian smoothing restricted to tissue voxels. Unlike previous methods, it is implemented as a combination of separable kernels and is therefore fast enough to consider for clinical work, even for large kernel sizes.

Methods

We compare our Masked Smoothing method to alternatives using Gaussian smoothing on an unaltered image volume and Gaussian smoothing on an image volume with vascular voxels set to zero. Each method was tested on simulation data, collected phantom data, and CT perfusion data sets. We then examined tissue voxels for bias and noise reduction.

Results

Simulation and phantom experiments demonstrate that Masked Smoothing does not bias the underlying tissue value, whereas the other smoothing methods create significant bias. Furthermore, using actual CT perfusion data, we demonstrate significant differences in the calculated CBF and CBV values dependent on the smoothing method used.

Conclusion

The Masked Smoothing is fast enough to allow eventual clinical usage and can remove the bias of tissue voxel values that neighbor blood vessels. Conversely, the other Gaussian smoothing methods introduced significant bias to the tissue voxels.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, Miyasaka K: Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H215O positron emission tomography. AJNR Am J Neuroradiol. 2003, 24 (3): 419-426.PubMed Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, Miyasaka K: Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H215O positron emission tomography. AJNR Am J Neuroradiol. 2003, 24 (3): 419-426.PubMed
2.
go back to reference König M, Bültmann E, Bode-Schnurbus L, Koenen D, Mielke E, Heuser L: Image quality in CT perfusion imaging of the brain. Eur Radiol. 2007, 17 (1): 39-47. 10.1007/s00330-006-0277-3.CrossRefPubMed König M, Bültmann E, Bode-Schnurbus L, Koenen D, Mielke E, Heuser L: Image quality in CT perfusion imaging of the brain. Eur Radiol. 2007, 17 (1): 39-47. 10.1007/s00330-006-0277-3.CrossRefPubMed
3.
go back to reference Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, Ogasawara K: Differences in CT Perfusion Maps Generated by Different Commercial Software: Quantitative Analysis by Using Identical Source Data of Acute Stroke Patients1. Radiology. 2010, 254 (1): 200-10.1148/radiol.254082000.CrossRefPubMed Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, Ogasawara K: Differences in CT Perfusion Maps Generated by Different Commercial Software: Quantitative Analysis by Using Identical Source Data of Acute Stroke Patients1. Radiology. 2010, 254 (1): 200-10.1148/radiol.254082000.CrossRefPubMed
4.
go back to reference Sasaki M, Kudo K, Oikawa H: CT perfusion for acute stroke: current concepts on technical aspects and clinical applications. 2006, Elsevier, 30-36. Sasaki M, Kudo K, Oikawa H: CT perfusion for acute stroke: current concepts on technical aspects and clinical applications. 2006, Elsevier, 30-36.
5.
go back to reference Klotz E, Konig M: Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 1999, 30 (3): 170-184. 10.1016/S0720-048X(99)00009-1.CrossRefPubMed Klotz E, Konig M: Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 1999, 30 (3): 170-184. 10.1016/S0720-048X(99)00009-1.CrossRefPubMed
6.
go back to reference Saint-Marc P, Chen J, Medioni G: Adaptive smoothing: a general tool for early vision. IEEE Trans Pattern Anal Mach Intell. 1991, 13 (6): 618-624.CrossRef Saint-Marc P, Chen J, Medioni G: Adaptive smoothing: a general tool for early vision. IEEE Trans Pattern Anal Mach Intell. 1991, 13 (6): 618-624.CrossRef
7.
go back to reference Nagao M, Matsuyama T: Edge preserving smoothing. Computer graphics and image processing. 1979, 9 (4): 394-407. 10.1016/0146-664X(79)90102-3.CrossRef Nagao M, Matsuyama T: Edge preserving smoothing. Computer graphics and image processing. 1979, 9 (4): 394-407. 10.1016/0146-664X(79)90102-3.CrossRef
8.
go back to reference Fang M, Qian J: Adaptive edge-preserving smoothing filter. Google Patents. 1998, US Patent: 08/672,194, Publication date: June 23 Fang M, Qian J: Adaptive edge-preserving smoothing filter. Google Patents. 1998, US Patent: 08/672,194, Publication date: June 23
9.
go back to reference Alvarez L, Guichard F, Lions PL, Morel JM: Axioms and fundamental equations of image processing. Archive for rational mechanics and analysis. 1993, 123 (3): 199-257. 10.1007/BF00375127.CrossRef Alvarez L, Guichard F, Lions PL, Morel JM: Axioms and fundamental equations of image processing. Archive for rational mechanics and analysis. 1993, 123 (3): 199-257. 10.1007/BF00375127.CrossRef
10.
go back to reference Alvarez L, Lions PL, Morel JM: Image selective smoothing and edge detection by nonlinear diffusion. II SIAM Journal on numerical analysis. 1992, 29 (3): 845-866. 10.1137/0729052.CrossRef Alvarez L, Lions PL, Morel JM: Image selective smoothing and edge detection by nonlinear diffusion. II SIAM Journal on numerical analysis. 1992, 29 (3): 845-866. 10.1137/0729052.CrossRef
11.
go back to reference Angenent S, Pichon E, Tannenbaum A: Mathematical methods in medical image processing. Bulletin of the American Mathematical Society. 2006, 43 (3): 365-396. 10.1090/S0273-0979-06-01104-9.CrossRefPubMedPubMedCentral Angenent S, Pichon E, Tannenbaum A: Mathematical methods in medical image processing. Bulletin of the American Mathematical Society. 2006, 43 (3): 365-396. 10.1090/S0273-0979-06-01104-9.CrossRefPubMedPubMedCentral
12.
go back to reference Chan TF, Shen J, Vese L: Variational PDE models in image processing. Notices AMS. 2003, 50: 14-26. Chan TF, Shen J, Vese L: Variational PDE models in image processing. Notices AMS. 2003, 50: 14-26.
13.
go back to reference Garcia D: Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis. 2010, 54 (4): 1167-1178. 10.1016/j.csda.2009.09.020.CrossRef Garcia D: Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis. 2010, 54 (4): 1167-1178. 10.1016/j.csda.2009.09.020.CrossRef
14.
go back to reference Paris S, Durand F: A fast approximation of the bilateral filter using a signal processing approach. International Journal of Computer Vision. 2009, 81 (1): 24-52. 10.1007/s11263-007-0110-8.CrossRef Paris S, Durand F: A fast approximation of the bilateral filter using a signal processing approach. International Journal of Computer Vision. 2009, 81 (1): 24-52. 10.1007/s11263-007-0110-8.CrossRef
15.
go back to reference Paris S, Kornprobst P, Tumblin J: Bilateral filtering. Theory and applications, Foundations and Trends in Computer Graphics and Vision. 2009, 4 (1): 1-73. Paris S, Kornprobst P, Tumblin J: Bilateral filtering. Theory and applications, Foundations and Trends in Computer Graphics and Vision. 2009, 4 (1): 1-73.
16.
go back to reference Mendrik A, Vonken E, Dankbaar JW, Prokop M, Van Ginneken B: Noise filtering in thin-slice 4D cerebral CT perfusion scans. 2010, SPIE Proceedings, 7623CrossRef Mendrik A, Vonken E, Dankbaar JW, Prokop M, Van Ginneken B: Noise filtering in thin-slice 4D cerebral CT perfusion scans. 2010, SPIE Proceedings, 7623CrossRef
17.
go back to reference Mendrik AM, Vonken E, van Ginneken B, de Jong HW, Riordan A, van Seeters T, Smit EJ, Viergever MA, Prokop M: TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps. Phys Med Biol. 2011, 56: 3857-10.1088/0031-9155/56/13/008.CrossRefPubMed Mendrik AM, Vonken E, van Ginneken B, de Jong HW, Riordan A, van Seeters T, Smit EJ, Viergever MA, Prokop M: TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps. Phys Med Biol. 2011, 56: 3857-10.1088/0031-9155/56/13/008.CrossRefPubMed
18.
go back to reference Mendrik A, Vonken E, van Ginneken B, Smit E, Waaijer A, Bertolini G, Viergever MA, Prokop M: Automatic segmentation of intracranial arteries and veins in four-dimensional cerebral CT perfusion scans. Med Phys. 2010, 37: 2956-10.1118/1.3397813.CrossRefPubMed Mendrik A, Vonken E, van Ginneken B, Smit E, Waaijer A, Bertolini G, Viergever MA, Prokop M: Automatic segmentation of intracranial arteries and veins in four-dimensional cerebral CT perfusion scans. Med Phys. 2010, 37: 2956-10.1118/1.3397813.CrossRefPubMed
19.
go back to reference Fisher J: Improvements in Computed Tomography Perfusion Output using Complex Singular Value Decomposition and the Maximum Slope Algorithm. 2014, Master’s Thesis, Boston University, School of Medicine Fisher J: Improvements in Computed Tomography Perfusion Output using Complex Singular Value Decomposition and the Maximum Slope Algorithm. 2014, Master’s Thesis, Boston University, School of Medicine
20.
go back to reference Wack DS, Badgaiyan RD: Complex singular value decomposition based noise reduction of dynamic PET images. Current Medical Imaging Reviews. 2011, 7 (2): 113-117. 10.2174/157340511795445685.CrossRef Wack DS, Badgaiyan RD: Complex singular value decomposition based noise reduction of dynamic PET images. Current Medical Imaging Reviews. 2011, 7 (2): 113-117. 10.2174/157340511795445685.CrossRef
21.
go back to reference Snyder K, Seals K, Wack D: Using simulations to explore the characteristics of CT perfusion calculations in the assessment of stroke. Current Medical Imaging Reviews. 2014, 10 (3): In press Snyder K, Seals K, Wack D: Using simulations to explore the characteristics of CT perfusion calculations in the assessment of stroke. Current Medical Imaging Reviews. 2014, 10 (3): In press
Metadata
Title
Masked smoothing using separable kernels for CT perfusion images
Authors
David S Wack
Kenneth V Snyder
Kevin F Seals
Adnan H Siddiqui
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2014
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-14-28

Other articles of this Issue 1/2014

BMC Medical Imaging 1/2014 Go to the issue