Skip to main content
Top
Published in: BMC Infectious Diseases 1/2013

Open Access 01-12-2013 | Research article

Ecology and geography of hemorrhagic fever with renal syndrome in Changsha, China

Authors: Hong Xiao, Xiaoling Lin, Lidong Gao, Cunrui Huang, Huaiyu Tian, Na Li, Jianxin Qin, Peijuan Zhu, Biyun Chen, Xixing Zhang, Jian Zhao

Published in: BMC Infectious Diseases | Issue 1/2013

Login to get access

Abstract

Background

Hemorrhagic fever with renal syndrome (HFRS) is an important public health problem in mainland China. HFRS is particularly endemic in Changsha, the capital city of Hunan Province, with one of the highest incidences in China. The occurrence of HFRS is influenced by environmental factors. However, few studies have examined the relationship between environmental variation (such as land use changes and climate variations), rodents and HFRS occurrence. The purpose of this study is to predict the distribution of HFRS and identify the risk factors and relationship between HFRS occurrence and rodent hosts, combining ecological modeling with the Markov chain Monte Carlo approach.

Methods

Ecological niche models (ENMs) were used to evaluate potential geographic distributions of rodent species by reconstructing details of their ecological niches in ecological dimensions, and projecting the results onto geography. The Genetic Algorithm for Rule-set Production was used to produce ENMs. Data were collected on HFRS cases in Changsha from 2005 to 2009, as well as national land survey data, surveillance data of rodents, meteorological data and normalized difference vegetation index (NDVI).

Results

The highest occurrence of HFRS was in districts with strong temperature seasonality, where elevation is below 200 m, mean annual temperature is around 17.5°C, and annual precipitation is below 1600 mm. Cultivated and urban lands in particular are associated with HFRS occurrence. Monthly NDVI values of areas predicted present is lower than areas predicted absent, with high seasonal variation. The number of HFRS cases was correlated with rodent density, and the incidence of HFRS cases in urban and forest areas was mainly associated with the density of Rattus norvegicus and Apodemus agrarius, respectively.

Conclusions

Heterogeneity between different areas shows that HFRS occurrence is affected by the intensity of human activity, climate conditions, and landscape elements. Rodent density and species composition have significant impacts on the number of HFRS cases and their distribution.
Appendix
Available only for authorised users
Literature
1.
go back to reference Luo CW, Chen HX: Study on the factors influenced epidemic of hemorrhagic fever with renal syndrome [in Chinese]. Chin J Vector Bio & Control. 2003, 14: 451-454. Luo CW, Chen HX: Study on the factors influenced epidemic of hemorrhagic fever with renal syndrome [in Chinese]. Chin J Vector Bio & Control. 2003, 14: 451-454.
3.
go back to reference Zhang WY, Guo WD, Fang LQ, Li CP, Bi P, Glass GE, Jiang JF, Sun SH, Qian Q, Liu W, et al: Climate variability and hemorrhagic fever with renal syndrome transmission in northeastern China. Environ Health Persp. 2010, 118: 915-920. 10.1289/ehp.0901504.CrossRef Zhang WY, Guo WD, Fang LQ, Li CP, Bi P, Glass GE, Jiang JF, Sun SH, Qian Q, Liu W, et al: Climate variability and hemorrhagic fever with renal syndrome transmission in northeastern China. Environ Health Persp. 2010, 118: 915-920. 10.1289/ehp.0901504.CrossRef
4.
go back to reference Fang LQ, Wang XJ, Liang S, Li YL, Song SX, Zhang WY, Qian Q, Li YP, Wei L, Wang ZQ, et al: Spatiotemporal trends and climatic factors of hemorrhagic fever with renal syndrome epidemic in Shandong Province. China. PLoS Negl Trop Dis. 2010, 4: e789-10.1371/journal.pntd.0000789.CrossRefPubMed Fang LQ, Wang XJ, Liang S, Li YL, Song SX, Zhang WY, Qian Q, Li YP, Wei L, Wang ZQ, et al: Spatiotemporal trends and climatic factors of hemorrhagic fever with renal syndrome epidemic in Shandong Province. China. PLoS Negl Trop Dis. 2010, 4: e789-10.1371/journal.pntd.0000789.CrossRefPubMed
5.
go back to reference Viel JF, Lefebvre A, Marianneau P, Joly D, Giraudoux P, Upegui E, Tordo N, Hoen B: Environmental risk factors for haemorrhagic fever with renal syndrome in a French new epidemic area. Epidemiol Infect. 2011, 139: 867-874. 10.1017/S0950268810002062.CrossRefPubMed Viel JF, Lefebvre A, Marianneau P, Joly D, Giraudoux P, Upegui E, Tordo N, Hoen B: Environmental risk factors for haemorrhagic fever with renal syndrome in a French new epidemic area. Epidemiol Infect. 2011, 139: 867-874. 10.1017/S0950268810002062.CrossRefPubMed
6.
go back to reference Yan L, Fang LQ, Huang HG, Zhang LQ, Feng D, Zhao WJ, Zhang WY, Li XW, Cao WC: Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome, People's Republic of China. Emerg Infect Dis. 2007, 13: 1301-1306. 10.3201/eid1309.061481.CrossRefPubMedPubMedCentral Yan L, Fang LQ, Huang HG, Zhang LQ, Feng D, Zhao WJ, Zhang WY, Li XW, Cao WC: Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome, People's Republic of China. Emerg Infect Dis. 2007, 13: 1301-1306. 10.3201/eid1309.061481.CrossRefPubMedPubMedCentral
7.
8.
go back to reference Guisan A, Zimmermann NE: Predictive habitat distribution models in ecology. Ecol Model. 2000, 135: 147-186. 10.1016/S0304-3800(00)00354-9.CrossRef Guisan A, Zimmermann NE: Predictive habitat distribution models in ecology. Ecol Model. 2000, 135: 147-186. 10.1016/S0304-3800(00)00354-9.CrossRef
9.
go back to reference Wei L, Qian Q, Wang ZQ, Glass GE, Song SX, Zhang WY, Li XJ, Yang H, Wang XJ, Fang LQ, et al: Using Geographic Information System-based Ecologic Niche Models to Forecast the Risk of Hantavirus Infection in Shandong Province, China. Am J Trop Med Hyg. 2011, 84: 497-503. 10.4269/ajtmh.2011.10-0314.CrossRefPubMedPubMedCentral Wei L, Qian Q, Wang ZQ, Glass GE, Song SX, Zhang WY, Li XJ, Yang H, Wang XJ, Fang LQ, et al: Using Geographic Information System-based Ecologic Niche Models to Forecast the Risk of Hantavirus Infection in Shandong Province, China. Am J Trop Med Hyg. 2011, 84: 497-503. 10.4269/ajtmh.2011.10-0314.CrossRefPubMedPubMedCentral
10.
go back to reference Peterson AT: Ecological niche modelling and understanding the geography of disease transmission. Vet Ital. 2007, 43: 393-400.PubMed Peterson AT: Ecological niche modelling and understanding the geography of disease transmission. Vet Ital. 2007, 43: 393-400.PubMed
11.
go back to reference Ministry of Health: Handbook of Epidemic Hemorrhagic Fever Prevention and Control. 1998, Beijing: China People's Health Publishing House Ministry of Health: Handbook of Epidemic Hemorrhagic Fever Prevention and Control. 1998, Beijing: China People's Health Publishing House
12.
go back to reference Stockman AK, Beamer DA, Bond JE: An evaluation of a GARP model as an approach to predicting the spatial distribution of non‒vagile invertebrate species. Divers Distrib. 2006, 12: 81-89. 10.1111/j.1366-9516.2006.00225.x.CrossRef Stockman AK, Beamer DA, Bond JE: An evaluation of a GARP model as an approach to predicting the spatial distribution of non‒vagile invertebrate species. Divers Distrib. 2006, 12: 81-89. 10.1111/j.1366-9516.2006.00225.x.CrossRef
13.
go back to reference Stockwell D, Peters D: The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci. 1999, 13: 143-158. 10.1080/136588199241391.CrossRef Stockwell D, Peters D: The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci. 1999, 13: 143-158. 10.1080/136588199241391.CrossRef
14.
go back to reference Anderson RP, Lew D, Peterson AT: Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecol Model. 2003, 162: 211-232. 10.1016/S0304-3800(02)00349-6.CrossRef Anderson RP, Lew D, Peterson AT: Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecol Model. 2003, 162: 211-232. 10.1016/S0304-3800(02)00349-6.CrossRef
15.
go back to reference Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Ecol Model. 2006, 190: 231-259. 10.1016/j.ecolmodel.2005.03.026.CrossRef Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Ecol Model. 2006, 190: 231-259. 10.1016/j.ecolmodel.2005.03.026.CrossRef
16.
go back to reference Haario H, Laine M, Mira A, Saksman E: DRAM: efficient adaptive MCMC. Stat Comput. 2006, 16: 339-354. 10.1007/s11222-006-9438-0.CrossRef Haario H, Laine M, Mira A, Saksman E: DRAM: efficient adaptive MCMC. Stat Comput. 2006, 16: 339-354. 10.1007/s11222-006-9438-0.CrossRef
17.
go back to reference Pimentel D, Cooperstein S, Randell H, Filiberto D, Sorrentino S, Kaye B, Nicklin C, Yagi J, Brian J, O’hern J, et al: Ecology of increasing diseases: population growth and environmental degradation. Hum Ecol. 2007, 35: 653-668. 10.1007/s10745-007-9128-3.CrossRef Pimentel D, Cooperstein S, Randell H, Filiberto D, Sorrentino S, Kaye B, Nicklin C, Yagi J, Brian J, O’hern J, et al: Ecology of increasing diseases: population growth and environmental degradation. Hum Ecol. 2007, 35: 653-668. 10.1007/s10745-007-9128-3.CrossRef
18.
go back to reference Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, et al: Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Persp. 2004, 112: 1092-1098. 10.1289/ehp.6877.CrossRef Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, et al: Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Persp. 2004, 112: 1092-1098. 10.1289/ehp.6877.CrossRef
19.
go back to reference Fang LQ, Yan L, Liang S, De Vlas SJ, Feng D, Han X, Zhao W, Xu B, Bian L, Yang H, et al: Spatial analysis of hemorrhagic fever with renal syndrome in China. BMC Infect Dis. 2006, 6: 77-10.1186/1471-2334-6-77.CrossRefPubMedPubMedCentral Fang LQ, Yan L, Liang S, De Vlas SJ, Feng D, Han X, Zhao W, Xu B, Bian L, Yang H, et al: Spatial analysis of hemorrhagic fever with renal syndrome in China. BMC Infect Dis. 2006, 6: 77-10.1186/1471-2334-6-77.CrossRefPubMedPubMedCentral
20.
go back to reference Bi P, Wu X, Zhang F, Parton KA, Tong S: Seasonal rainfall variability, the incidence of hemorrhagic fever with renal syndrome, and prediction of the disease in low-lying areas of China. Am J Epidemiol. 1998, 148: 276-281. 10.1093/oxfordjournals.aje.a009636.CrossRefPubMed Bi P, Wu X, Zhang F, Parton KA, Tong S: Seasonal rainfall variability, the incidence of hemorrhagic fever with renal syndrome, and prediction of the disease in low-lying areas of China. Am J Epidemiol. 1998, 148: 276-281. 10.1093/oxfordjournals.aje.a009636.CrossRefPubMed
21.
go back to reference Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, et al: Novel methods improve prediction of species' distributions from occurrence data. Ecography. 2006, 29: 129-151. 10.1111/j.2006.0906-7590.04596.x.CrossRef Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, et al: Novel methods improve prediction of species' distributions from occurrence data. Ecography. 2006, 29: 129-151. 10.1111/j.2006.0906-7590.04596.x.CrossRef
22.
go back to reference Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R: A comparative evaluation of presence-only methods for modelling species distribution. Divers Distrib. 2007, 13: 397-405. 10.1111/j.1472-4642.2007.00346.x.CrossRef Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R: A comparative evaluation of presence-only methods for modelling species distribution. Divers Distrib. 2007, 13: 397-405. 10.1111/j.1472-4642.2007.00346.x.CrossRef
Metadata
Title
Ecology and geography of hemorrhagic fever with renal syndrome in Changsha, China
Authors
Hong Xiao
Xiaoling Lin
Lidong Gao
Cunrui Huang
Huaiyu Tian
Na Li
Jianxin Qin
Peijuan Zhu
Biyun Chen
Xixing Zhang
Jian Zhao
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2013
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-13-305

Other articles of this Issue 1/2013

BMC Infectious Diseases 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine