Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2010

Open Access 01-12-2010 | Research article

Effectiveness of strategies to increase the validity of findings from association studies: size vs. replication

Authors: Rolf Weitkunat, Etienne Kaelin, Grégory Vuillaume, Gerd Kallischnigg

Published in: BMC Medical Research Methodology | Issue 1/2010

Login to get access

Abstract

Background

The capacity of multiple comparisons to produce false positive findings in genetic association studies is abundantly clear. To address this issue, the concept of false positive report probability (FPRP) measures "the probability of no true association between a genetic variant and disease given a statistically significant finding". This concept involves the notion of prior probability of an association between a genetic variant and a disease, making it difficult to achieve acceptable levels for the FPRP when the prior probability is low. Increasing the sample size is of limited efficiency to improve the situation.

Methods

To further clarify this problem, the concept of true report probability (TRP) is introduced by analogy to the positive predictive value (PPV) of diagnostic testing. The approach is extended to consider the effects of replication studies. The formula for the TRP after k replication studies is mathematically derived and shown to be only dependent on prior probability, alpha, power, and number of replication studies.

Results

Case-control association studies are used to illustrate the TRP concept for replication strategies. Based on power considerations, a relationship is derived between TRP after k replication studies and sample size of each individual study. That relationship enables study designers optimization of study plans. Further, it is demonstrated that replication is efficient in increasing the TRP even in the case of low prior probability of an association and without requiring very large sample sizes for each individual study.

Conclusions

True report probability is a comprehensive and straightforward concept for assessing the validity of positive statistical testing results in association studies. By its extension to replication strategies it can be demonstrated in a transparent manner that replication is highly effective in distinguishing spurious from true associations. Based on the generalized TRP method for replication designs, optimal research strategy and sample size planning become possible.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hoover RN: The evolution of epidemiologic research: from cottage industry to "big" science. Epidemiology. 2007, 18 (1): 13-17. 10.1097/01.ede.0000249532.81073.b2.CrossRefPubMed Hoover RN: The evolution of epidemiologic research: from cottage industry to "big" science. Epidemiology. 2007, 18 (1): 13-17. 10.1097/01.ede.0000249532.81073.b2.CrossRefPubMed
2.
go back to reference Lay JO, Borgmann S, Wilkins CL: Problems with the "omics". Trends Analytical Chem. 2006, 25: 1046-1056. 10.1016/j.trac.2006.10.007.CrossRef Lay JO, Borgmann S, Wilkins CL: Problems with the "omics". Trends Analytical Chem. 2006, 25: 1046-1056. 10.1016/j.trac.2006.10.007.CrossRef
3.
go back to reference Ioannidis JP: Commentary: grading the credibility of molecular evidence for complex diseases. Int J Epidemiol. 2006, 35 (3): 572-578. 10.1093/ije/dyl003. discussion 593-576CrossRefPubMed Ioannidis JP: Commentary: grading the credibility of molecular evidence for complex diseases. Int J Epidemiol. 2006, 35 (3): 572-578. 10.1093/ije/dyl003. discussion 593-576CrossRefPubMed
4.
go back to reference Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG: Replication validity of genetic association studies. Nat Genet. 2001, 29 (3): 306-309. 10.1038/ng749.CrossRefPubMed Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG: Replication validity of genetic association studies. Nat Genet. 2001, 29 (3): 306-309. 10.1038/ng749.CrossRefPubMed
5.
go back to reference Boffetta P, McLaughlin JK, La Vecchia C, Tarone RE, Lipworth L, Blot WJ: False-positive results in cancer epidemiology: a plea for epistemological modesty. J Natl Cancer Inst. 2008, 100 (14): 988-995. 10.1093/jnci/djn191.CrossRefPubMedPubMedCentral Boffetta P, McLaughlin JK, La Vecchia C, Tarone RE, Lipworth L, Blot WJ: False-positive results in cancer epidemiology: a plea for epistemological modesty. J Natl Cancer Inst. 2008, 100 (14): 988-995. 10.1093/jnci/djn191.CrossRefPubMedPubMedCentral
6.
go back to reference Thomas DC, Clayton DG: Betting odds and genetic associations. J Natl Cancer Inst. 2004, 96 (6): 421-423. 10.1093/jnci/djh094.CrossRefPubMed Thomas DC, Clayton DG: Betting odds and genetic associations. J Natl Cancer Inst. 2004, 96 (6): 421-423. 10.1093/jnci/djh094.CrossRefPubMed
7.
go back to reference Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K: A comprehensive review of genetic association studies. Genet Med. 2002, 4 (2): 45-61. 10.1097/00125817-200203000-00002.CrossRefPubMed Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K: A comprehensive review of genetic association studies. Genet Med. 2002, 4 (2): 45-61. 10.1097/00125817-200203000-00002.CrossRefPubMed
8.
go back to reference Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN: Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003, 33 (2): 177-182. 10.1038/ng1071.CrossRefPubMed Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN: Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003, 33 (2): 177-182. 10.1038/ng1071.CrossRefPubMed
9.
go back to reference Pharoah PD, Dunning AM, Ponder BA, Easton DF: Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004, 4 (11): 850-860. 10.1038/nrc1476.CrossRefPubMed Pharoah PD, Dunning AM, Ponder BA, Easton DF: Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004, 4 (11): 850-860. 10.1038/nrc1476.CrossRefPubMed
10.
go back to reference Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N: Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004, 96 (6): 434-442. 10.1093/jnci/djh075.CrossRefPubMed Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N: Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004, 96 (6): 434-442. 10.1093/jnci/djh075.CrossRefPubMed
11.
go back to reference Dube MP, Schmidt S, Hauser E, Darabi H, Li J, Barhdadi A, Wang X, Sha Q, Zhang Z, Wang T, et al: Multistage designs in the genomic era: providing balance in complex disease studies. Genet Epidemiol. 2007, S118-123. 10.1002/gepi.20288. 31 Suppl 1 Dube MP, Schmidt S, Hauser E, Darabi H, Li J, Barhdadi A, Wang X, Sha Q, Zhang Z, Wang T, et al: Multistage designs in the genomic era: providing balance in complex disease studies. Genet Epidemiol. 2007, S118-123. 10.1002/gepi.20288. 31 Suppl 1
12.
go back to reference Ziegler A, Konig IR, Thompson JR: Biostatistical aspects of genome-wide association studies. Biom J. 2008, 50 (1): 8-28. 10.1002/bimj.200710398.CrossRefPubMed Ziegler A, Konig IR, Thompson JR: Biostatistical aspects of genome-wide association studies. Biom J. 2008, 50 (1): 8-28. 10.1002/bimj.200710398.CrossRefPubMed
13.
go back to reference Stephens M, Balding DJ: Bayesian statistical methods for genetic association studies. Nat Rev Genet. 2009, 10 (10): 681-690. 10.1038/nrg2615.CrossRefPubMed Stephens M, Balding DJ: Bayesian statistical methods for genetic association studies. Nat Rev Genet. 2009, 10 (10): 681-690. 10.1038/nrg2615.CrossRefPubMed
14.
go back to reference Skol AD, Scott LJ, Abecasis GR, Boehnke M: Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006, 38 (2): 209-213. 10.1038/ng1706.CrossRefPubMed Skol AD, Scott LJ, Abecasis GR, Boehnke M: Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006, 38 (2): 209-213. 10.1038/ng1706.CrossRefPubMed
15.
go back to reference Zehetmayer S, Bauer P, Posch M: Optimized multi-stage designs controlling the false discovery or the family-wise error rate. Stat Med. 2008, 27 (21): 4145-4160. 10.1002/sim.3300.CrossRefPubMed Zehetmayer S, Bauer P, Posch M: Optimized multi-stage designs controlling the false discovery or the family-wise error rate. Stat Med. 2008, 27 (21): 4145-4160. 10.1002/sim.3300.CrossRefPubMed
16.
go back to reference Khoury MJ, Little J, Gwinn M, Ioannidis JP: On the synthesis and interpretation of consistent but weak gene-disease associations in the era of genome-wide association studies. Int J Epidemiol. 2007, 36 (2): 439-445. 10.1093/ije/dyl253.CrossRefPubMed Khoury MJ, Little J, Gwinn M, Ioannidis JP: On the synthesis and interpretation of consistent but weak gene-disease associations in the era of genome-wide association studies. Int J Epidemiol. 2007, 36 (2): 439-445. 10.1093/ije/dyl253.CrossRefPubMed
Metadata
Title
Effectiveness of strategies to increase the validity of findings from association studies: size vs. replication
Authors
Rolf Weitkunat
Etienne Kaelin
Grégory Vuillaume
Gerd Kallischnigg
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2010
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-10-47

Other articles of this Issue 1/2010

BMC Medical Research Methodology 1/2010 Go to the issue