Skip to main content
Top
Published in: Respiratory Research 1/2009

Open Access 01-12-2009 | Research

PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

Authors: Sara S Roscioni, Loes EM Kistemaker, Mark H Menzen, Carolina RS Elzinga, Reinoud Gosens, Andrew J Halayko, Herman Meurs, Martina Schmidt

Published in: Respiratory Research | Issue 1/2009

Login to get access

Abstract

Background

Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8). IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP) effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response.

Methods

IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases), U0126 (extracellular signal-regulated kinases ERK1/2) and Rp-8-CPT-cAMPS (PKA). The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used.

Results

The β2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP-loading of Rap1, but not of Rap2. Treatment of the cells with toxin B-1470 and U0126 significantly reduced bradykinin-induced IL-8 release alone or in combination with the activators of PKA and Epac. Interestingly, inhibition of PKA by Rp-8-CPT-cAMPS and silencing of Epac1 and Epac2 expression by specific siRNAs largely decreased activation of Rap1 and the augmentation of bradykinin-induced IL-8 release by both PKA and Epac.

Conclusion

Collectively, our data suggest that PKA, Epac1 and Epac2 act in concert to modulate inflammatory properties of airway smooth muscle via signaling to the Ras-like GTPase Rap1 and to ERK1/2.
Literature
1.
go back to reference Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM: Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 2000, 161:1720–1745.CrossRefPubMed Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM: Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 2000, 161:1720–1745.CrossRefPubMed
2.
go back to reference Jeffery PK: Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 2001, 164:S28-S38.CrossRefPubMed Jeffery PK: Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 2001, 164:S28-S38.CrossRefPubMed
4.
go back to reference Halayko AJ, Solway J: Molecular mechanisms of phenotypic plasticity in smooth muscle cells. J Appl Physiol 2001, 90:358–368.PubMed Halayko AJ, Solway J: Molecular mechanisms of phenotypic plasticity in smooth muscle cells. J Appl Physiol 2001, 90:358–368.PubMed
5.
go back to reference Panettieri RA Jr: Airway smooth muscle: immunomodulatory cells that modulate airway remodeling? Respir Physiol Neurobiol 2003, 137:277–293.CrossRefPubMed Panettieri RA Jr: Airway smooth muscle: immunomodulatory cells that modulate airway remodeling? Respir Physiol Neurobiol 2003, 137:277–293.CrossRefPubMed
6.
go back to reference Pang L, Knox AJ: Bradykinin stimulates IL-8 production in cultured human airway smooth muscle cells: role of cyclooxygenase products. J Immunol 1998, 161:2509–2515.PubMed Pang L, Knox AJ: Bradykinin stimulates IL-8 production in cultured human airway smooth muscle cells: role of cyclooxygenase products. J Immunol 1998, 161:2509–2515.PubMed
7.
go back to reference Baggiolini M, Dewald B, Moser B: Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol 1994, 55:97–179.CrossRefPubMed Baggiolini M, Dewald B, Moser B: Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol 1994, 55:97–179.CrossRefPubMed
8.
go back to reference Kunkel SL, Standiford T, Kasahara K, Strieter RM: Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp Lung Res 1991, 17:17–23.CrossRefPubMed Kunkel SL, Standiford T, Kasahara K, Strieter RM: Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp Lung Res 1991, 17:17–23.CrossRefPubMed
9.
go back to reference Shute J: Interleukin-8 is a potent eosinophil chemo-attractant. Clin Exp Allergy 1994, 24:203–206.CrossRefPubMed Shute J: Interleukin-8 is a potent eosinophil chemo-attractant. Clin Exp Allergy 1994, 24:203–206.CrossRefPubMed
10.
go back to reference Richman-Eisenstat JB, Jorens PG, Hebert CA, Ueki I, Nadel JA: Interleukin-8: an important chemoattractant in sputum of patients with chronic inflammatory airway diseases. Am J Physiol 1993, 264:L413-L418.PubMed Richman-Eisenstat JB, Jorens PG, Hebert CA, Ueki I, Nadel JA: Interleukin-8: an important chemoattractant in sputum of patients with chronic inflammatory airway diseases. Am J Physiol 1993, 264:L413-L418.PubMed
11.
go back to reference Shute JK, Vrugt B, Lindley IJ, Holgate ST, Bron A, Aalbers R, Djukanovic R: Free and complexed interleukin-8 in blood and bronchial mucosa in asthma. Am J Respir Crit Care Med 1997, 155:1877–1883.CrossRefPubMed Shute JK, Vrugt B, Lindley IJ, Holgate ST, Bron A, Aalbers R, Djukanovic R: Free and complexed interleukin-8 in blood and bronchial mucosa in asthma. Am J Respir Crit Care Med 1997, 155:1877–1883.CrossRefPubMed
12.
go back to reference Marini M, Vittori E, Hollemborg J, Mattoli S: Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol 1992, 89:1001–1009.CrossRefPubMed Marini M, Vittori E, Hollemborg J, Mattoli S: Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol 1992, 89:1001–1009.CrossRefPubMed
13.
go back to reference Chanez P, Enander I, Jones I, Godard P, Bousquet J: Interleukin 8 in bronchoalveolar lavage of asthmatic and chronic bronchitis patients. Int Arch Allergy Immunol 1996, 111:83–88.CrossRefPubMed Chanez P, Enander I, Jones I, Godard P, Bousquet J: Interleukin 8 in bronchoalveolar lavage of asthmatic and chronic bronchitis patients. Int Arch Allergy Immunol 1996, 111:83–88.CrossRefPubMed
14.
go back to reference Tanino M, Betsuyaku T, Takeyabu K, Tanino Y, Yamaguchi E, Miyamoto K, Nishimura M: Increased levels of interleukin-8 in BAL fluid from smokers susceptible to pulmonary emphysema. Thorax 2002, 57:405–411.CrossRefPubMedPubMedCentral Tanino M, Betsuyaku T, Takeyabu K, Tanino Y, Yamaguchi E, Miyamoto K, Nishimura M: Increased levels of interleukin-8 in BAL fluid from smokers susceptible to pulmonary emphysema. Thorax 2002, 57:405–411.CrossRefPubMedPubMedCentral
15.
go back to reference Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N: Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 1997, 112:505–510.CrossRefPubMed Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N: Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 1997, 112:505–510.CrossRefPubMed
16.
go back to reference Gompertz S, O'Brien C, Bayley DL, Hill SL, Stockley RA: Changes in bronchial inflammation during acute exacerbations of chronic bronchitis. Eur Respir J 2001, 17:1112–1119.CrossRefPubMed Gompertz S, O'Brien C, Bayley DL, Hill SL, Stockley RA: Changes in bronchial inflammation during acute exacerbations of chronic bronchitis. Eur Respir J 2001, 17:1112–1119.CrossRefPubMed
17.
go back to reference Fong CY, Pang L, Holland E, Knox AJ: TGF-beta1 stimulates IL-8 release, COX-2 expression, and PGE(2) release in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2000, 279:L201-L207.PubMed Fong CY, Pang L, Holland E, Knox AJ: TGF-beta1 stimulates IL-8 release, COX-2 expression, and PGE(2) release in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2000, 279:L201-L207.PubMed
18.
go back to reference Hayashi R, Yamashita N, Matsui S, Fujita T, Araya J, Sassa K, Arai N, Yoshida Y, Kashii T, Maruyama M, Sugiyama E, Kobayashi M: Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK- and p38 MAPK-dependent mechanisms. Eur Respir J 2000, 16:452–458.CrossRefPubMed Hayashi R, Yamashita N, Matsui S, Fujita T, Araya J, Sassa K, Arai N, Yoshida Y, Kashii T, Maruyama M, Sugiyama E, Kobayashi M: Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK- and p38 MAPK-dependent mechanisms. Eur Respir J 2000, 16:452–458.CrossRefPubMed
19.
go back to reference Christiansen SC, Proud D, Sarnoff RB, Juergens U, Cochrane CG, Zuraw BL: Elevation of tissue kallikrein and kinin in the airways of asthmatic subjects after endobronchial allergen challenge. Am Rev Respir Dis 1992, 145:900–905.CrossRefPubMed Christiansen SC, Proud D, Sarnoff RB, Juergens U, Cochrane CG, Zuraw BL: Elevation of tissue kallikrein and kinin in the airways of asthmatic subjects after endobronchial allergen challenge. Am Rev Respir Dis 1992, 145:900–905.CrossRefPubMed
20.
go back to reference Pyne NJ, Tolan D, Pyne S: Bradykinin stimulates cAMP synthesis via mitogen-activated protein kinase-dependent regulation of cytosolic phospholipase A2 and prostaglandin E2 release in airway smooth muscle. Biochem J 1997,328(Pt 2):689–694.CrossRefPubMedPubMedCentral Pyne NJ, Tolan D, Pyne S: Bradykinin stimulates cAMP synthesis via mitogen-activated protein kinase-dependent regulation of cytosolic phospholipase A2 and prostaglandin E2 release in airway smooth muscle. Biochem J 1997,328(Pt 2):689–694.CrossRefPubMedPubMedCentral
21.
go back to reference Zhu YM, Bradbury DA, Pang L, Knox AJ: Transcriptional regulation of interleukin (IL)-8 by bradykinin in human airway smooth muscle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independent activation of NF-kappaB. J Biol Chem 2003, 278:29366–29375.CrossRefPubMed Zhu YM, Bradbury DA, Pang L, Knox AJ: Transcriptional regulation of interleukin (IL)-8 by bradykinin in human airway smooth muscle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independent activation of NF-kappaB. J Biol Chem 2003, 278:29366–29375.CrossRefPubMed
22.
go back to reference Huang CD, Tliba O, Panettieri RA Jr, Amrani Y: Bradykinin induces interleukin-6 production in human airway smooth muscle cells: modulation by Th2 cytokines and dexamethasone. Am J Respir Cell Mol Biol 2003, 28:330–338.CrossRefPubMed Huang CD, Tliba O, Panettieri RA Jr, Amrani Y: Bradykinin induces interleukin-6 production in human airway smooth muscle cells: modulation by Th2 cytokines and dexamethasone. Am J Respir Cell Mol Biol 2003, 28:330–338.CrossRefPubMed
23.
go back to reference Kaur M, Holden NS, Wilson SM, Sukkar MB, Chung KF, Barnes PJ, Newton R, Giembycz MA: Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A. Am J Physiol Lung Cell Mol Physiol 2008, 295:L505-L514.CrossRefPubMed Kaur M, Holden NS, Wilson SM, Sukkar MB, Chung KF, Barnes PJ, Newton R, Giembycz MA: Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A. Am J Physiol Lung Cell Mol Physiol 2008, 295:L505-L514.CrossRefPubMed
25.
go back to reference Roscioni SS, Elzinga CR, Schmidt M: Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008, 377:345–357.CrossRefPubMed Roscioni SS, Elzinga CR, Schmidt M: Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008, 377:345–357.CrossRefPubMed
26.
go back to reference Rangarajan S, Enserink JM, Kuiperij HB, de RJ, Price LS, Schwede F, Bos JL: Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J Cell Biol 2003, 160:487–493.CrossRefPubMedPubMedCentral Rangarajan S, Enserink JM, Kuiperij HB, de RJ, Price LS, Schwede F, Bos JL: Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J Cell Biol 2003, 160:487–493.CrossRefPubMedPubMedCentral
27.
go back to reference Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN: Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 2005, 105:1950–1955.CrossRefPubMed Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN: Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 2005, 105:1950–1955.CrossRefPubMed
28.
go back to reference Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S: Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 2001, 276:46046–46053.CrossRefPubMed Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S: Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 2001, 276:46046–46053.CrossRefPubMed
29.
go back to reference Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S: Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 2002, 277:50497–50502.CrossRefPubMed Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S: Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 2002, 277:50497–50502.CrossRefPubMed
30.
go back to reference Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD: The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 2005, 437:574–578.CrossRefPubMedPubMedCentral Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD: The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 2005, 437:574–578.CrossRefPubMedPubMedCentral
31.
go back to reference Fang Y, Olah ME: Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Ther 2007, 322:1189–1200.CrossRefPubMed Fang Y, Olah ME: Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Ther 2007, 322:1189–1200.CrossRefPubMed
32.
go back to reference Kiermayer S, Biondi RM, Imig J, Plotz G, Haupenthal J, Zeuzem S, Piiper A: Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 2005, 16:5639–5648.CrossRefPubMedPubMedCentral Kiermayer S, Biondi RM, Imig J, Plotz G, Haupenthal J, Zeuzem S, Piiper A: Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 2005, 16:5639–5648.CrossRefPubMedPubMedCentral
33.
go back to reference Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJ: Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 2006, 26:2130–2145.CrossRefPubMedPubMedCentral Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJ: Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 2006, 26:2130–2145.CrossRefPubMedPubMedCentral
34.
go back to reference Haag S, Warnken M, Juergens UR, Racke K: Role of Epac1 in mediating anti-proliferative effects of prostanoid EP(2) receptors and cAMP in human lung fibroblasts. Naunyn Schmiedebergs Arch Pharmacol 2008,378(6):617–30.CrossRefPubMed Haag S, Warnken M, Juergens UR, Racke K: Role of Epac1 in mediating anti-proliferative effects of prostanoid EP(2) receptors and cAMP in human lung fibroblasts. Naunyn Schmiedebergs Arch Pharmacol 2008,378(6):617–30.CrossRefPubMed
35.
go back to reference Huang SK, Wettlaufer SH, Chung J, Peters-Golden M: Prostaglandin E2 Inhibits Specific Lung Fibroblast Functions Via Selective Actions of PKA and Epac-1. Am J Respir Cell Mol Biol 2008. 2008–0080OC Huang SK, Wettlaufer SH, Chung J, Peters-Golden M: Prostaglandin E2 Inhibits Specific Lung Fibroblast Functions Via Selective Actions of PKA and Epac-1. Am J Respir Cell Mol Biol 2008. 2008–0080OC
36.
go back to reference Huston E, Lynch MJ, Mohamed A, Collins DM, Hill EV, MacLeod R, Krause E, Baillie GS, Houslay MD: EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation. Proc Natl Acad Sci USA 2008, 105:12791–12796.CrossRefPubMedPubMedCentral Huston E, Lynch MJ, Mohamed A, Collins DM, Hill EV, MacLeod R, Krause E, Baillie GS, Houslay MD: EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation. Proc Natl Acad Sci USA 2008, 105:12791–12796.CrossRefPubMedPubMedCentral
37.
go back to reference Petersen RK, Madsen L, Pedersen LM, Hallenborg P, Hagland H, Viste K, Doskeland SO, Kristiansen K: Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol 2008, 28:3804–3816.CrossRefPubMedPubMedCentral Petersen RK, Madsen L, Pedersen LM, Hallenborg P, Hagland H, Viste K, Doskeland SO, Kristiansen K: Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol 2008, 28:3804–3816.CrossRefPubMedPubMedCentral
38.
go back to reference Hochbaum D, Hong K, Barila G, Ribeiro-Neto F, Altschuler DL: Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis. J Biol Chem 2008, 283:4464–4468.CrossRefPubMed Hochbaum D, Hong K, Barila G, Ribeiro-Neto F, Altschuler DL: Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis. J Biol Chem 2008, 283:4464–4468.CrossRefPubMed
39.
go back to reference Kassel KM, Wyatt TA, Panettieri RA Jr, Toews ML: Inhibition of human airway smooth muscle cell proliferation by beta 2-adrenergic receptors and cAMP is PKA independent: evidence for EPAC involvement. Am J Physiol Lung Cell Mol Physiol 2008, 294:L131-L138.CrossRefPubMed Kassel KM, Wyatt TA, Panettieri RA Jr, Toews ML: Inhibition of human airway smooth muscle cell proliferation by beta 2-adrenergic receptors and cAMP is PKA independent: evidence for EPAC involvement. Am J Physiol Lung Cell Mol Physiol 2008, 294:L131-L138.CrossRefPubMed
40.
go back to reference Kooistra MRH, Corada M, Dejana E, Bos JL: Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Letters 2005, 579:4966–4972.CrossRefPubMed Kooistra MRH, Corada M, Dejana E, Bos JL: Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Letters 2005, 579:4966–4972.CrossRefPubMed
41.
go back to reference Gosens R, Stelmack GL, Dueck G, McNeill KD, Yamasaki A, Gerthoffer WT, Unruh H, Gounni AS, Zaagsma J, Halayko AJ: Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006, 291:L523-L534.CrossRefPubMed Gosens R, Stelmack GL, Dueck G, McNeill KD, Yamasaki A, Gerthoffer WT, Unruh H, Gounni AS, Zaagsma J, Halayko AJ: Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006, 291:L523-L534.CrossRefPubMed
42.
go back to reference Gosens R, Dueck G, Gerthoffer WT, Unruh H, Zaagsma J, Meurs H, Halayko AJ: p42/p44 MAP kinase activation is localized to caveolae-free membrane domains in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2007, 292:L1163-L1172.CrossRefPubMed Gosens R, Dueck G, Gerthoffer WT, Unruh H, Zaagsma J, Meurs H, Halayko AJ: p42/p44 MAP kinase activation is localized to caveolae-free membrane domains in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2007, 292:L1163-L1172.CrossRefPubMed
43.
go back to reference Genth H, Huelsenbeck J, Hartmann B, Hofmann F, Just I, Gerhard R: Cellular stability of Rho-GTPases glucosylated by Clostridium difficile toxin B. FEBS Lett 2006, 580:3565–3569.CrossRefPubMed Genth H, Huelsenbeck J, Hartmann B, Hofmann F, Just I, Gerhard R: Cellular stability of Rho-GTPases glucosylated by Clostridium difficile toxin B. FEBS Lett 2006, 580:3565–3569.CrossRefPubMed
44.
go back to reference Nunes RO, Schmidt M, Dueck G, Baarsma H, Halayko AJ, Kerstjens HA, Meurs H, Gosens R: GSK-3/beta-catenin signaling axis in airway smooth muscle: role in mitogenic signaling. Am J Physiol Lung Cell Mol Physiol 2008, 294:L1110-L1118.CrossRefPubMed Nunes RO, Schmidt M, Dueck G, Baarsma H, Halayko AJ, Kerstjens HA, Meurs H, Gosens R: GSK-3/beta-catenin signaling axis in airway smooth muscle: role in mitogenic signaling. Am J Physiol Lung Cell Mol Physiol 2008, 294:L1110-L1118.CrossRefPubMed
45.
go back to reference Schmidt M, Evellin S, Weernink PA, von DF, Rehmann H, Lomasney JW, Jakobs KH: A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 2001, 3:1020–1024.CrossRefPubMed Schmidt M, Evellin S, Weernink PA, von DF, Rehmann H, Lomasney JW, Jakobs KH: A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 2001, 3:1020–1024.CrossRefPubMed
46.
go back to reference Holz GG, Chepurny OG, Schwede F: Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 2008, 20:10–20.CrossRefPubMed Holz GG, Chepurny OG, Schwede F: Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 2008, 20:10–20.CrossRefPubMed
47.
go back to reference Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang XB, Christensen AE, Schwede F, Genieser HG, Bos JL, Doskeland SO, Beavo JA, Butt E: Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods 2008, 5:277–278.CrossRefPubMed Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang XB, Christensen AE, Schwede F, Genieser HG, Bos JL, Doskeland SO, Beavo JA, Butt E: Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods 2008, 5:277–278.CrossRefPubMed
48.
go back to reference Laxman S, Riechers A, Sadilek M, Schwede F, Beavo JA: Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci USA 2006, 103:19194–19199.CrossRefPubMedPubMedCentral Laxman S, Riechers A, Sadilek M, Schwede F, Beavo JA: Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci USA 2006, 103:19194–19199.CrossRefPubMedPubMedCentral
49.
go back to reference Smolenski A, Bachmann C, Reinhard K, Hõnig-Liedl P, Jarchau T, Hoschuetzky H, Walter U: Analysis and regulation of vasodilator-stimulated phosphoprotein serin 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 1998, 273:20029–20035.CrossRefPubMed Smolenski A, Bachmann C, Reinhard K, Hõnig-Liedl P, Jarchau T, Hoschuetzky H, Walter U: Analysis and regulation of vasodilator-stimulated phosphoprotein serin 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 1998, 273:20029–20035.CrossRefPubMed
50.
go back to reference Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM: A family of cAMP-binding proteins that directly activate Rap1. Science 1998, 282:2275–2279.CrossRefPubMed Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM: A family of cAMP-binding proteins that directly activate Rap1. Science 1998, 282:2275–2279.CrossRefPubMed
51.
go back to reference Stork PJ, Schmitt JM: Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002, 12:258–266.CrossRefPubMed Stork PJ, Schmitt JM: Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002, 12:258–266.CrossRefPubMed
52.
go back to reference Schmidt M, Voss M, Thiel M, Bauer B, Grannass A, Tapp E, Cool RH, de GJ, von Eichel-Streiber C, Jakobs KH: Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridium difficile toxin B-1470 in HEK-293 cells. Restoration by Ral GTPases. J Biol Chem 1998, 273:7413–7422.CrossRefPubMed Schmidt M, Voss M, Thiel M, Bauer B, Grannass A, Tapp E, Cool RH, de GJ, von Eichel-Streiber C, Jakobs KH: Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridium difficile toxin B-1470 in HEK-293 cells. Restoration by Ral GTPases. J Biol Chem 1998, 273:7413–7422.CrossRefPubMed
53.
go back to reference Enserink JM, Christensen AE, de RJ, van TM, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL: A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002, 4:901–906.CrossRefPubMed Enserink JM, Christensen AE, de RJ, van TM, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL: A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002, 4:901–906.CrossRefPubMed
54.
go back to reference Obara Y, Labudda K, Dillon TJ, Stork PJ: PKA phosphorylation of Src mediates Rap1 activation in NGF and cAMP signaling in PC12 cells. J Cell Sci 2004, 117:6085–6094.CrossRefPubMed Obara Y, Labudda K, Dillon TJ, Stork PJ: PKA phosphorylation of Src mediates Rap1 activation in NGF and cAMP signaling in PC12 cells. J Cell Sci 2004, 117:6085–6094.CrossRefPubMed
55.
go back to reference Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998, 273:18623–18632.CrossRefPubMed Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998, 273:18623–18632.CrossRefPubMed
57.
58.
go back to reference Paegelow I, Werner H, Vietinghoff G, Wartner U: Release of cytokines from isolated lung strips by bradykinin. Inflamm Res 1995, 44:306–311.CrossRefPubMed Paegelow I, Werner H, Vietinghoff G, Wartner U: Release of cytokines from isolated lung strips by bradykinin. Inflamm Res 1995, 44:306–311.CrossRefPubMed
59.
go back to reference Ammit AJ, Hoffman RK, Amrani Y, Lazaar AL, Hay DW, Torphy TJ, Penn RB, Panettieri RA Jr: Tumor necrosis factor-alpha-induced secretion of RANTES and interleukin-6 from human airway smooth-muscle cells. Modulation by cyclic adenosine monophosphate. Am J Respir Cell Mol Biol 2000, 23:794–802.CrossRefPubMed Ammit AJ, Hoffman RK, Amrani Y, Lazaar AL, Hay DW, Torphy TJ, Penn RB, Panettieri RA Jr: Tumor necrosis factor-alpha-induced secretion of RANTES and interleukin-6 from human airway smooth-muscle cells. Modulation by cyclic adenosine monophosphate. Am J Respir Cell Mol Biol 2000, 23:794–802.CrossRefPubMed
60.
go back to reference Knox AJ, Corbett L, Stocks J, Holland E, Zhu YM, Pang L: Human airway smooth muscle cells secrete vascular endothelial growth factor: up-regulation by bradykinin via a protein kinase C and prostanoid-dependent mechanism. FASEB J 2001, 15:2480–2488.CrossRefPubMed Knox AJ, Corbett L, Stocks J, Holland E, Zhu YM, Pang L: Human airway smooth muscle cells secrete vascular endothelial growth factor: up-regulation by bradykinin via a protein kinase C and prostanoid-dependent mechanism. FASEB J 2001, 15:2480–2488.CrossRefPubMed
61.
62.
go back to reference Stevens PA, Pyne S, Grady M, Pyne NJ: Bradykinin-dependent activation of adenylate cyclase activity and cyclic AMP accumulation in tracheal smooth muscle occurs via protein kinase C-dependent and -independent pathways. Biochem J 1994,297(Pt 1):233–239.CrossRefPubMedPubMedCentral Stevens PA, Pyne S, Grady M, Pyne NJ: Bradykinin-dependent activation of adenylate cyclase activity and cyclic AMP accumulation in tracheal smooth muscle occurs via protein kinase C-dependent and -independent pathways. Biochem J 1994,297(Pt 1):233–239.CrossRefPubMedPubMedCentral
63.
go back to reference Pyne NJ, Moughal N, Stevens PA, Tolan D, Pyne S: Protein kinase C-dependent cyclic AMP formation in airway smooth muscle: the role of type II adenylate cyclase and the blockade of extracellular-signal-regulated kinase-2 (ERK-2) activation. Biochem J 1994,304(Pt 2):611–616.CrossRefPubMedPubMedCentral Pyne NJ, Moughal N, Stevens PA, Tolan D, Pyne S: Protein kinase C-dependent cyclic AMP formation in airway smooth muscle: the role of type II adenylate cyclase and the blockade of extracellular-signal-regulated kinase-2 (ERK-2) activation. Biochem J 1994,304(Pt 2):611–616.CrossRefPubMedPubMedCentral
64.
go back to reference de RJ, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL: Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396:474–477.CrossRef de RJ, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL: Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998, 396:474–477.CrossRef
65.
go back to reference Schmitt JM, Stork PJ: PKA phosphorylation of Src mediates cAMP's inhibition of cell growth via Rap1. Mol Cell 2002, 9:85–94.CrossRefPubMed Schmitt JM, Stork PJ: PKA phosphorylation of Src mediates cAMP's inhibition of cell growth via Rap1. Mol Cell 2002, 9:85–94.CrossRefPubMed
66.
go back to reference McAvoy T, Zhou MM, Greengard P, Nairn AC: Phosphorylation of Rap1GAP, a striatally enriched protein, by protein kinase A controls Rap1 activity and dendritic spine morphology. Proc Natl Acad Sci USA 2009, 106:3531–3536.CrossRefPubMedPubMedCentral McAvoy T, Zhou MM, Greengard P, Nairn AC: Phosphorylation of Rap1GAP, a striatally enriched protein, by protein kinase A controls Rap1 activity and dendritic spine morphology. Proc Natl Acad Sci USA 2009, 106:3531–3536.CrossRefPubMedPubMedCentral
67.
go back to reference Mayr B, Montminy M: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001, 2:599–609.CrossRefPubMed Mayr B, Montminy M: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001, 2:599–609.CrossRefPubMed
68.
go back to reference Borland G, Bird RJ, Palmer TM, Yarwood SJ: Activation of protein kinase C alpha by EPAC1 is required for the ERK- and C/EBPbeta-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells. J Biol Chem 2009,284(26):17391–403.CrossRefPubMedPubMedCentral Borland G, Bird RJ, Palmer TM, Yarwood SJ: Activation of protein kinase C alpha by EPAC1 is required for the ERK- and C/EBPbeta-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells. J Biol Chem 2009,284(26):17391–403.CrossRefPubMedPubMedCentral
69.
go back to reference Niimura M, Miki T, Shibasaki T, Fujimoto W, Iwanaga T, Seino S: Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol 2009, 219:652–658.CrossRefPubMed Niimura M, Miki T, Shibasaki T, Fujimoto W, Iwanaga T, Seino S: Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol 2009, 219:652–658.CrossRefPubMed
70.
go back to reference Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA: The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 2006, 281:2506–2514.CrossRefPubMed Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA: The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 2006, 281:2506–2514.CrossRefPubMed
71.
go back to reference Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJ: Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 2006, 26:2130–2145.CrossRefPubMedPubMedCentral Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJ: Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 2006, 26:2130–2145.CrossRefPubMedPubMedCentral
72.
go back to reference Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X, Houslay MD, Baillie GS, Zaccolo M: Protein kinase A Type I and II define distinct intracellular signaling compartments. Circ Res 2008, 103:836–844.CrossRefPubMed Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X, Houslay MD, Baillie GS, Zaccolo M: Protein kinase A Type I and II define distinct intracellular signaling compartments. Circ Res 2008, 103:836–844.CrossRefPubMed
73.
go back to reference Dodge-Kafka KLSJ, Pare GC, Michel JJC, Langeberg LK, Kapiloff MS, Scott JD: The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 2005, 437:574–578.CrossRefPubMedPubMedCentral Dodge-Kafka KLSJ, Pare GC, Michel JJC, Langeberg LK, Kapiloff MS, Scott JD: The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 2005, 437:574–578.CrossRefPubMedPubMedCentral
74.
go back to reference Nijholt IM, Dolga AM, Ostroveanu A, Luiten PGM, Schmidt M, Eisel ULM: Neuronal AKAP150 coordinates PKA and Epac mediated PKB/Akt phosphorylation. Cell Signal 2008, 20:1715–1724.CrossRefPubMed Nijholt IM, Dolga AM, Ostroveanu A, Luiten PGM, Schmidt M, Eisel ULM: Neuronal AKAP150 coordinates PKA and Epac mediated PKB/Akt phosphorylation. Cell Signal 2008, 20:1715–1724.CrossRefPubMed
Metadata
Title
PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells
Authors
Sara S Roscioni
Loes EM Kistemaker
Mark H Menzen
Carolina RS Elzinga
Reinoud Gosens
Andrew J Halayko
Herman Meurs
Martina Schmidt
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2009
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-10-88

Other articles of this Issue 1/2009

Respiratory Research 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine