Skip to main content
Top
Published in: Sports Medicine 9/2021

01-09-2021 | Systematic Review

Is Pre-season Eccentric Strength Testing During the Nordic Hamstring Exercise Associated with Future Hamstring Strain Injury? A Systematic Review and Meta-analysis

Authors: David A. Opar, Ryan G. Timmins, Fearghal P. Behan, Jack T. Hickey, Nicol van Dyk, Kara Price, Nirav Maniar

Published in: Sports Medicine | Issue 9/2021

Login to get access

Abstract

Background

Interventions utilising the Nordic hamstring exercise (NHE) have resulted in reductions in the incidence of hamstring strain injury (HSI). Subsequently, quantifying eccentric knee flexor strength during performance of the NHE to identify an association with the occurrence of future HSI has become increasingly common; however, the data to date are equivocal.

Objective

To systematically review the association between pre-season eccentric knee flexor strength quantified during performance of the NHE and the occurrence of future HSI.

Design

Systematic review and meta-analysis.

Data sources

CINAHL, Cochrane Library, Medline Complete, Embase, Web of Science and SPORTDiscus databases were searched from January 2013 to January 10, 2020.

Eligibility criteria for selecting studies

Prospective cohort studies which assessed the association between pre-season eccentric knee flexor strength quantified during performance of the NHE and the occurrence of future HSI.

Methods

Following database search, article retrieval and title and abstract screening, articles were assessed for eligibility against pre-defined criteria then assessed for risk of bias. Meta-analysis was used to pool data across studies, with meta-regression utilised where possible.

Results

A total of six articles were included in the meta-analysis, encompassing 1100 participants. Comparison of eccentric knee flexor strength during performance of the NHE in 156 injured participants and the 944 uninjured participants revealed no significant differences, regardless of whether strength was expressed as absolute (N), relative to body mass (N kg−1) or between-limb asymmetry (%). Meta-regression analysis revealed that the observed effect sizes were generally not moderated by age, mass, height, strength, or sport played.

Conclusion

Eccentric knee flexor strength quantified during performance of the NHE during pre-season provides limited information about the occurrence of a future HSI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ekstrand J, Walden M, Hagglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731–7.PubMedCrossRef Ekstrand J, Walden M, Hagglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731–7.PubMedCrossRef
2.
go back to reference Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;41(4):734–41.PubMedCrossRef Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;41(4):734–41.PubMedCrossRef
3.
go back to reference Roe M, Murphy JC, Gissane C, et al. Time to get our four priorities right: an 8-year prospective investigation of 1326 player-seasons to identify the frequency, nature, and burden of time-loss injuries in elite Gaelic football. PeerJ. 2018;6:e4895.PubMedPubMedCentralCrossRef Roe M, Murphy JC, Gissane C, et al. Time to get our four priorities right: an 8-year prospective investigation of 1326 player-seasons to identify the frequency, nature, and burden of time-loss injuries in elite Gaelic football. PeerJ. 2018;6:e4895.PubMedPubMedCentralCrossRef
4.
go back to reference Hallén A, Ekstrand J. Return to play following muscle injuries in professional footballers. J Sports Sci. 2014;32(13):1229–36.PubMedCrossRef Hallén A, Ekstrand J. Return to play following muscle injuries in professional footballers. J Sports Sci. 2014;32(13):1229–36.PubMedCrossRef
5.
go back to reference Ruddy JD, Pietsch S, Maniar N, et al. Session availability as a result of prior injury impacts the risk of subsequent non-contact lower limb injury in elite male Australian footballers. Front Physiol. 2019;10:737.PubMedPubMedCentralCrossRef Ruddy JD, Pietsch S, Maniar N, et al. Session availability as a result of prior injury impacts the risk of subsequent non-contact lower limb injury in elite male Australian footballers. Front Physiol. 2019;10:737.PubMedPubMedCentralCrossRef
6.
go back to reference Hoffman DT, Dwyer DB, Bowe SJ, et al. Is injury associated with team performance in elite Australian football? 20 years of player injury and team performance data that include measures of individual player value. Br J Sports Med. 2020;54(8):475–9.PubMedCrossRef Hoffman DT, Dwyer DB, Bowe SJ, et al. Is injury associated with team performance in elite Australian football? 20 years of player injury and team performance data that include measures of individual player value. Br J Sports Med. 2020;54(8):475–9.PubMedCrossRef
7.
go back to reference Verrall GM, Kalairajah Y, Slavotinek JP, et al. Assessment of player performance following return to sport after hamstring muscle strain injury. J Sci Med Sport. 2006;9(1–2):87–90.PubMedCrossRef Verrall GM, Kalairajah Y, Slavotinek JP, et al. Assessment of player performance following return to sport after hamstring muscle strain injury. J Sci Med Sport. 2006;9(1–2):87–90.PubMedCrossRef
9.
go back to reference van Mechelen W, Hlobil H, Kemper HC. Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Med. 1992;14(2):82–99.PubMedCrossRef van Mechelen W, Hlobil H, Kemper HC. Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Med. 1992;14(2):82–99.PubMedCrossRef
10.
go back to reference Finch C. A new framework for research leading to sports injury prevention. J Sci Med Sport. 2006;9(1–2):3–9.PubMedCrossRef Finch C. A new framework for research leading to sports injury prevention. J Sci Med Sport. 2006;9(1–2):3–9.PubMedCrossRef
11.
go back to reference Green B, Bourne MN, van Dyk N, et al. Recalibrating the risk of hamstring strain injury (HSI)—a 2020 systematic review and meta-analysis of risk factors for index and recurrent HSI in sport. Br J Sports Med. 2020;2020:4. Green B, Bourne MN, van Dyk N, et al. Recalibrating the risk of hamstring strain injury (HSI)—a 2020 systematic review and meta-analysis of risk factors for index and recurrent HSI in sport. Br J Sports Med. 2020;2020:4.
13.
go back to reference van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53(21):1362–70.PubMedCrossRef van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53(21):1362–70.PubMedCrossRef
14.
go back to reference Al Attar WSA, Soomro N, Sinclair PJ, et al. Effect of injury prevention programs that include the nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 2017;47(5):907–16.PubMedCrossRef Al Attar WSA, Soomro N, Sinclair PJ, et al. Effect of injury prevention programs that include the nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 2017;47(5):907–16.PubMedCrossRef
15.
go back to reference Opar DA, Piatkowski T, Williams MD, et al. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636–40.PubMedCrossRef Opar DA, Piatkowski T, Williams MD, et al. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636–40.PubMedCrossRef
16.
go back to reference Opar DA, Williams MD, Timmins RG, et al. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med Sci Sports Exerc. 2015;47(4):857–65.PubMedCrossRef Opar DA, Williams MD, Timmins RG, et al. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med Sci Sports Exerc. 2015;47(4):857–65.PubMedCrossRef
17.
go back to reference Timmins RG, Bourne MN, Shield AJ, et al. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):1524–35.PubMedCrossRef Timmins RG, Bourne MN, Shield AJ, et al. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):1524–35.PubMedCrossRef
18.
go back to reference van Dyk N, Bahr R, Burnett AF, et al. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players. Br J Sports Med. 2017;51(23):1695–702.PubMedCrossRef van Dyk N, Bahr R, Burnett AF, et al. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players. Br J Sports Med. 2017;51(23):1695–702.PubMedCrossRef
19.
go back to reference Bourne MN, Opar DA, Williams MD, et al. Eccentric knee flexor strength and risk of hamstring injuries in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70.PubMedCrossRef Bourne MN, Opar DA, Williams MD, et al. Eccentric knee flexor strength and risk of hamstring injuries in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70.PubMedCrossRef
20.
go back to reference Ruddy JD, Shield AJ, Maniar N, et al. Predictive modeling of hamstring strain injuries in elite Australian footballers. Med Sci Sports Exerc. 2018;50(5):906–14.PubMedCrossRef Ruddy JD, Shield AJ, Maniar N, et al. Predictive modeling of hamstring strain injuries in elite Australian footballers. Med Sci Sports Exerc. 2018;50(5):906–14.PubMedCrossRef
21.
go back to reference Roe M, Delahunt E, McHugh M, et al. Association between eccentric knee flexor strength and hamstring injury risk in 185 elite Gaelic football players. Scand J Med Sci Sports. 2020;30(3):515–22.PubMedCrossRef Roe M, Delahunt E, McHugh M, et al. Association between eccentric knee flexor strength and hamstring injury risk in 185 elite Gaelic football players. Scand J Med Sci Sports. 2020;30(3):515–22.PubMedCrossRef
23.
go back to reference Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–6.PubMedCrossRef Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–6.PubMedCrossRef
24.
go back to reference Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22(4):153–60.PubMedCrossRef Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22(4):153–60.PubMedCrossRef
25.
go back to reference Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):48.CrossRef Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):48.CrossRef
26.
go back to reference R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
28.
go back to reference Petersen J, Thorborg K, Nielsen MB, et al. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.PubMedCrossRef Petersen J, Thorborg K, Nielsen MB, et al. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.PubMedCrossRef
29.
go back to reference van der Horst N, Smits DW, Petersen J, et al. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.PubMedCrossRef van der Horst N, Smits DW, Petersen J, et al. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.PubMedCrossRef
30.
go back to reference Timmins RG, Ruddy JD, Presland J, et al. Architectural changes of the biceps femoris after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508.PubMedCrossRef Timmins RG, Ruddy JD, Presland J, et al. Architectural changes of the biceps femoris after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508.PubMedCrossRef
31.
go back to reference Presland JD, Timmins RG, Bourne MN, et al. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83.PubMedCrossRef Presland JD, Timmins RG, Bourne MN, et al. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83.PubMedCrossRef
32.
go back to reference Pollard CW, Opar DA, Williams MD, et al. Razor hamstring curl and Nordic hamstring exercise architectural adaptations: Impact of exercise selection and intensity. Scand J Med Sci Sports. 2019;29(5):706–15.PubMedCrossRef Pollard CW, Opar DA, Williams MD, et al. Razor hamstring curl and Nordic hamstring exercise architectural adaptations: Impact of exercise selection and intensity. Scand J Med Sci Sports. 2019;29(5):706–15.PubMedCrossRef
33.
go back to reference Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77.PubMedCrossRef Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77.PubMedCrossRef
34.
go back to reference Lacome M, Avrillon S, Cholley Y, et al. Hamstring eccentric strengthening program: does training volume matter? Int J Sports Physiol Perform. 2019;2019:1–27. Lacome M, Avrillon S, Cholley Y, et al. Hamstring eccentric strengthening program: does training volume matter? Int J Sports Physiol Perform. 2019;2019:1–27.
35.
go back to reference Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports. 2018;28(1):88–94.PubMedCrossRef Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports. 2018;28(1):88–94.PubMedCrossRef
36.
go back to reference Ribeiro-Alvares JB, Marques VB, Vaz MA, et al. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32(5):1254–62.PubMedCrossRef Ribeiro-Alvares JB, Marques VB, Vaz MA, et al. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32(5):1254–62.PubMedCrossRef
37.
go back to reference Timmins RG, Bourne MN, Hickey JT, et al. Effect of prior injury on changes to biceps femoris architecture across an Australian Football League season. Med Sci Sports Exerc. 2017;49(10):2102–9.PubMedCrossRef Timmins RG, Bourne MN, Hickey JT, et al. Effect of prior injury on changes to biceps femoris architecture across an Australian Football League season. Med Sci Sports Exerc. 2017;49(10):2102–9.PubMedCrossRef
38.
go back to reference Ruddy JD, Pollard CW, Timmins RG, et al. Running exposure is associated with the risk of hamstring strain injury in elite Australian footballers. Br J Sports Med. 2018;52(14):919–28.PubMedCrossRef Ruddy JD, Pollard CW, Timmins RG, et al. Running exposure is associated with the risk of hamstring strain injury in elite Australian footballers. Br J Sports Med. 2018;52(14):919–28.PubMedCrossRef
39.
go back to reference Duhig S, Shield AJ, Opar D, et al. Effect of high-speed running on hamstring strain injury risk. Br J Sports Med. 2016;50(24):1536–40.PubMedCrossRef Duhig S, Shield AJ, Opar D, et al. Effect of high-speed running on hamstring strain injury risk. Br J Sports Med. 2016;50(24):1536–40.PubMedCrossRef
40.
go back to reference Buchheit M, Cholley Y, Nagel M, et al. The effect of body mass on eccentric knee-flexor strength assessed with an instrumented Nordic hamstring device (NordBord) in football players. Int J Sports Physiol Perform. 2016;11(6):721–6.PubMedCrossRef Buchheit M, Cholley Y, Nagel M, et al. The effect of body mass on eccentric knee-flexor strength assessed with an instrumented Nordic hamstring device (NordBord) in football players. Int J Sports Physiol Perform. 2016;11(6):721–6.PubMedCrossRef
41.
go back to reference Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ. 2016;352:i1981.PubMedCrossRef Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ. 2016;352:i1981.PubMedCrossRef
44.
go back to reference Hickey JT, Hickey PF, Maniar N, et al. A novel apparatus to measure knee flexor strength during various hamstring exercises: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2018;48(2):72–80.PubMedCrossRef Hickey JT, Hickey PF, Maniar N, et al. A novel apparatus to measure knee flexor strength during various hamstring exercises: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2018;48(2):72–80.PubMedCrossRef
45.
go back to reference Hegyi A, Lahti J, Giacomo JP, et al. Impact of hip flexion angle on unilateral and bilateral nordic hamstring exercise torque and high-density electromyography activity. J Orthop Sports Phys Ther. 2019;49(8):584–92.PubMedCrossRef Hegyi A, Lahti J, Giacomo JP, et al. Impact of hip flexion angle on unilateral and bilateral nordic hamstring exercise torque and high-density electromyography activity. J Orthop Sports Phys Ther. 2019;49(8):584–92.PubMedCrossRef
46.
Metadata
Title
Is Pre-season Eccentric Strength Testing During the Nordic Hamstring Exercise Associated with Future Hamstring Strain Injury? A Systematic Review and Meta-analysis
Authors
David A. Opar
Ryan G. Timmins
Fearghal P. Behan
Jack T. Hickey
Nicol van Dyk
Kara Price
Nirav Maniar
Publication date
01-09-2021
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 9/2021
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-021-01474-1

Other articles of this Issue 9/2021

Sports Medicine 9/2021 Go to the issue