Skip to main content
Top
Published in: Sports Medicine 2/2018

01-02-2018 | Review Article

Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature

Authors: Jules Opplert, Nicolas Babault

Published in: Sports Medicine | Issue 2/2018

Login to get access

Abstract

Stretching has long been used in many physical activities to increase range of motion (ROM) around a joint. Stretching also has other acute effects on the neuromuscular system. For instance, significant reductions in maximal voluntary strength, muscle power or evoked contractile properties have been recorded immediately after a single bout of static stretching, raising interest in other stretching modalities. Thus, the effects of dynamic stretching on subsequent muscular performance have been questioned. This review aimed to investigate performance and physiological alterations following dynamic stretching. There is a substantial amount of evidence pointing out the positive effects on ROM and subsequent performance (force, power, sprint and jump). The larger ROM would be mainly attributable to reduced stiffness of the muscle–tendon unit, while the improved muscular performance to temperature and potentiation-related mechanisms caused by the voluntary contraction associated with dynamic stretching. Therefore, if the goal of a warm-up is to increase joint ROM and to enhance muscle force and/or power, dynamic stretching seems to be a suitable alternative to static stretching. Nevertheless, numerous studies reporting no alteration or even performance impairment have highlighted possible mitigating factors (such as stretch duration, amplitude or velocity). Accordingly, ballistic stretching, a form of dynamic stretching with greater velocities, would be less beneficial than controlled dynamic stretching. Notwithstanding, the literature shows that inconsistent description of stretch procedures has been an important deterrent to reaching a clear consensus. In this review, we highlight the need for future studies reporting homogeneous, clearly described stretching protocols, and propose a clarified stretching terminology and methodology.
Literature
1.
go back to reference Bishop D. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003;33:439–54.PubMedCrossRef Bishop D. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003;33:439–54.PubMedCrossRef
2.
go back to reference Young WB, Behm DG. Should static stretching be used during a warm-up for strength and power activities? Strength Cond J. 2002;24:33–7.CrossRef Young WB, Behm DG. Should static stretching be used during a warm-up for strength and power activities? Strength Cond J. 2002;24:33–7.CrossRef
3.
go back to reference Bandy WD, Irion JM, Briggler M. The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Phys Ther. 1997;77:1090–6.PubMedCrossRef Bandy WD, Irion JM, Briggler M. The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Phys Ther. 1997;77:1090–6.PubMedCrossRef
4.
go back to reference Wiemann K, Hahn K. Influences of strength, stretching acid circulatory exercises on flexibility parameters of the human hamstrings. Int J Sports Med. 1997;18:340–6.PubMedCrossRef Wiemann K, Hahn K. Influences of strength, stretching acid circulatory exercises on flexibility parameters of the human hamstrings. Int J Sports Med. 1997;18:340–6.PubMedCrossRef
5.
go back to reference Power K, Behm D, Cahill F, Carroll M, Young W. An acute bout of static stretching: effects on force and jumping performance. Med Sci Sport Exerc. 2004;36:1389–96.CrossRef Power K, Behm D, Cahill F, Carroll M, Young W. An acute bout of static stretching: effects on force and jumping performance. Med Sci Sport Exerc. 2004;36:1389–96.CrossRef
6.
go back to reference Wilson GJ, Wood GA, Elliott BC. The relationship between stiffness of the musculature and static flexibility: an alternative explanation for the occurrence of muscular injury. Int J Sports Med. 1991;12:403–7.PubMedCrossRef Wilson GJ, Wood GA, Elliott BC. The relationship between stiffness of the musculature and static flexibility: an alternative explanation for the occurrence of muscular injury. Int J Sports Med. 1991;12:403–7.PubMedCrossRef
7.
go back to reference Wilson GJ, Elliott BC, Wood GA. Stretch shorten cycle performance enhancement through flexibility training. Med Sci Sport Exerc. 1992;24:116–23.CrossRef Wilson GJ, Elliott BC, Wood GA. Stretch shorten cycle performance enhancement through flexibility training. Med Sci Sport Exerc. 1992;24:116–23.CrossRef
8.
go back to reference Opplert J, Genty J-B, Babault N. Do stretch durations affect muscle mechanical and neurophysiological properties? Int J Sports Med. 2016;37:673–9.PubMedCrossRef Opplert J, Genty J-B, Babault N. Do stretch durations affect muscle mechanical and neurophysiological properties? Int J Sports Med. 2016;37:673–9.PubMedCrossRef
9.
go back to reference Magnusson SP, Simonsen EB, Aagaard P, Sørensen H, Kjaer M. A mechanism for altered flexibility in human skeletal muscle. J Physiol. 1996;497(Pt 1):291–8.PubMedPubMedCentralCrossRef Magnusson SP, Simonsen EB, Aagaard P, Sørensen H, Kjaer M. A mechanism for altered flexibility in human skeletal muscle. J Physiol. 1996;497(Pt 1):291–8.PubMedPubMedCentralCrossRef
10.
go back to reference Avela J, Kyro H. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol. 1999;86:1283–91.PubMedCrossRef Avela J, Kyro H. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol. 1999;86:1283–91.PubMedCrossRef
11.
go back to reference Babault N, Kouassi BYL, Desbrosses K. Acute effects of 15 min static or contract-relax stretching modalities on plantar flexors neuromuscular properties. J Sci Med Sport Sports Med Aust. 2010;13:247–52.CrossRef Babault N, Kouassi BYL, Desbrosses K. Acute effects of 15 min static or contract-relax stretching modalities on plantar flexors neuromuscular properties. J Sci Med Sport Sports Med Aust. 2010;13:247–52.CrossRef
12.
go back to reference Behm DG, Chaouachi A. A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol. 2011;111:2633–51.PubMedCrossRef Behm DG, Chaouachi A. A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol. 2011;111:2633–51.PubMedCrossRef
13.
go back to reference Cramer JT, Beck TW, Housh TJ, Massey LL, Marek SM, Danglemeier S, et al. Acute effects of static stretching on characteristics of the isokinetic angle—torque relationship, surface electromyography, and mechanomyography. J Sports Sci. 2007;25:687–98.PubMedCrossRef Cramer JT, Beck TW, Housh TJ, Massey LL, Marek SM, Danglemeier S, et al. Acute effects of static stretching on characteristics of the isokinetic angle—torque relationship, surface electromyography, and mechanomyography. J Sports Sci. 2007;25:687–98.PubMedCrossRef
14.
go back to reference Fowles JR, Sale DG, Mac Dougall JD. Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol. 2000;89:1179–88.PubMedCrossRef Fowles JR, Sale DG, Mac Dougall JD. Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol. 2000;89:1179–88.PubMedCrossRef
15.
go back to reference Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sport Exerc. 2012;44:154–64.CrossRef Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sport Exerc. 2012;44:154–64.CrossRef
16.
go back to reference Kay AD, Blazevich AJ. Isometric contractions reduce plantar flexor moment, Achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch. J Appl Physiol. 2009;107:1181–9.PubMedCrossRef Kay AD, Blazevich AJ. Isometric contractions reduce plantar flexor moment, Achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch. J Appl Physiol. 2009;107:1181–9.PubMedCrossRef
17.
go back to reference Kay AD, Blazevich AJ. Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol. 2009;106:1249–56.PubMedCrossRef Kay AD, Blazevich AJ. Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol. 2009;106:1249–56.PubMedCrossRef
18.
go back to reference Weir DE, Tingley J, Elder GCB. Acute passive stretching alters the mechanical properties of human plantar flexors and the optimal angle for maximal voluntary contraction. Eur J Appl Physiol. 2005;93:614–23.PubMedCrossRef Weir DE, Tingley J, Elder GCB. Acute passive stretching alters the mechanical properties of human plantar flexors and the optimal angle for maximal voluntary contraction. Eur J Appl Physiol. 2005;93:614–23.PubMedCrossRef
19.
go back to reference Winchester JB, Nelson AG, Kokkonen J. A single 30-s stretch is sufficient to inhibit maximal voluntary strength. Res Q Exerc Sport. 2009;80:257–61.PubMedCrossRef Winchester JB, Nelson AG, Kokkonen J. A single 30-s stretch is sufficient to inhibit maximal voluntary strength. Res Q Exerc Sport. 2009;80:257–61.PubMedCrossRef
20.
go back to reference Behm DG, Bambury A, Cahill F, Power K. Effect of acute static stretching on force, balance, reaction time, and movement time. Med Sci Sport Exerc. 2004;36:1397–402.CrossRef Behm DG, Bambury A, Cahill F, Power K. Effect of acute static stretching on force, balance, reaction time, and movement time. Med Sci Sport Exerc. 2004;36:1397–402.CrossRef
21.
go back to reference Cornwell A, Nelson AG, Sidaway B. Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex. Eur J Appl Physiol. 2002;86:428–34.PubMedCrossRef Cornwell A, Nelson AG, Sidaway B. Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex. Eur J Appl Physiol. 2002;86:428–34.PubMedCrossRef
22.
go back to reference Knudson D, Noffal G. Time course of stretch-induced isometric strength deficits. Eur J Appl Physiol. 2005;94:348–51.PubMedCrossRef Knudson D, Noffal G. Time course of stretch-induced isometric strength deficits. Eur J Appl Physiol. 2005;94:348–51.PubMedCrossRef
23.
go back to reference Kokkonen J, Nelson AG, Cornwell A. Acute muscle stretching inhibits maximal strength performance. Res Q Exerc Sport. 1998;69:411–5.PubMedCrossRef Kokkonen J, Nelson AG, Cornwell A. Acute muscle stretching inhibits maximal strength performance. Res Q Exerc Sport. 1998;69:411–5.PubMedCrossRef
24.
go back to reference Maisetti O, Sastre J, Lecompte J, Portero P. Differential effects of an acute bout of passive stretching on maximal voluntary torque and the rate of torque development of the calf muscle-tendon unit. Isokinet Exerc Sci. 2007;15:11–7. Maisetti O, Sastre J, Lecompte J, Portero P. Differential effects of an acute bout of passive stretching on maximal voluntary torque and the rate of torque development of the calf muscle-tendon unit. Isokinet Exerc Sci. 2007;15:11–7.
25.
go back to reference McHugh MP, Nesse M. Effect of stretching on strength loss and pain after eccentric exercise. Med Sci Sport Exerc. 2008;40:566–73.CrossRef McHugh MP, Nesse M. Effect of stretching on strength loss and pain after eccentric exercise. Med Sci Sport Exerc. 2008;40:566–73.CrossRef
26.
go back to reference Ogura Y, Miyahara Y, Naito H, Katamoto S, Aoki J. Duration of static stretching influences muscle force production in hamstring muscles. J Strength Cond Res. 2007;21:788–92.PubMed Ogura Y, Miyahara Y, Naito H, Katamoto S, Aoki J. Duration of static stretching influences muscle force production in hamstring muscles. J Strength Cond Res. 2007;21:788–92.PubMed
27.
go back to reference Viale F, Nana-Ibrahim S, Martin RJF. Effect of active recovery on acute strength deficits induced by passive stretching. J Strength Cond Res. 2007;21:1233–7.PubMed Viale F, Nana-Ibrahim S, Martin RJF. Effect of active recovery on acute strength deficits induced by passive stretching. J Strength Cond Res. 2007;21:1233–7.PubMed
28.
go back to reference Young W, Elias G, Power J. Effects of static stretching volume and intensity on plantar flexor explosive force production and range of motion. J Sports Med Phys Fitness. 2006;46:403–11.PubMed Young W, Elias G, Power J. Effects of static stretching volume and intensity on plantar flexor explosive force production and range of motion. J Sports Med Phys Fitness. 2006;46:403–11.PubMed
29.
go back to reference Wallmann HW, Christensen SD, Perry C, Hoover DL. The acute effects of various types of stretching static, dynamic, ballistic, and no stretch of the iliopsoas on 40-yard sprint times in recreational runners. Int J Sports Phys Ther. 2012;7:540–7.PubMedPubMedCentral Wallmann HW, Christensen SD, Perry C, Hoover DL. The acute effects of various types of stretching static, dynamic, ballistic, and no stretch of the iliopsoas on 40-yard sprint times in recreational runners. Int J Sports Phys Ther. 2012;7:540–7.PubMedPubMedCentral
30.
go back to reference Cè E, Longo S, Rampichini S, Devoto M, Limonta E, Venturelli M, et al. Stretch-induced changes in tension generation process and stiffness are not accompanied by alterations in muscle architecture of the middle and distal portions of the two gastrocnemii. J Electromyogr Kinesiol. 2015;25:469–78.PubMedCrossRef Cè E, Longo S, Rampichini S, Devoto M, Limonta E, Venturelli M, et al. Stretch-induced changes in tension generation process and stiffness are not accompanied by alterations in muscle architecture of the middle and distal portions of the two gastrocnemii. J Electromyogr Kinesiol. 2015;25:469–78.PubMedCrossRef
31.
go back to reference Herda TJ, Costa PB, Walter AA, Ryan ED, Cramer JT. The time course of the effects of constant-angle and constant-torque stretching on the muscle–tendon unit. Scand J Med Sci Sports. 2014;24:62–7.PubMedCrossRef Herda TJ, Costa PB, Walter AA, Ryan ED, Cramer JT. The time course of the effects of constant-angle and constant-torque stretching on the muscle–tendon unit. Scand J Med Sci Sports. 2014;24:62–7.PubMedCrossRef
32.
go back to reference Matsuo S, Suzuki S, Iwata M, Banno Y, Asai Y, Tsuchida W, et al. Acute effects of different stretching durations on passive torque, mobility, and isometric muscle force. J Strength Cond Res. 2013;27:3367–76.PubMedCrossRef Matsuo S, Suzuki S, Iwata M, Banno Y, Asai Y, Tsuchida W, et al. Acute effects of different stretching durations on passive torque, mobility, and isometric muscle force. J Strength Cond Res. 2013;27:3367–76.PubMedCrossRef
33.
go back to reference Mizuno T, Matsumoto M, Umemura Y. Viscoelasticity of the muscle–tendon unit is returned more rapidly than range of motion after stretching. Scand J Med Sci Sports. 2013;23:23–30.PubMedCrossRef Mizuno T, Matsumoto M, Umemura Y. Viscoelasticity of the muscle–tendon unit is returned more rapidly than range of motion after stretching. Scand J Med Sci Sports. 2013;23:23–30.PubMedCrossRef
34.
go back to reference Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol. 2008;586:97–106.PubMedCrossRef Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol. 2008;586:97–106.PubMedCrossRef
35.
go back to reference Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J Orthop Res. 2011;29:1759–63.PubMedCrossRef Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J Orthop Res. 2011;29:1759–63.PubMedCrossRef
36.
go back to reference Ryan ED, Beck TW, Herda TJ, Hull HR, Hartman MJ, Costa PB, et al. The time course of musculotendinous stiffness responses following different durations of passive stretching. J Orthop Sports Phys Ther. 2008;38:632–9.PubMedCrossRef Ryan ED, Beck TW, Herda TJ, Hull HR, Hartman MJ, Costa PB, et al. The time course of musculotendinous stiffness responses following different durations of passive stretching. J Orthop Sports Phys Ther. 2008;38:632–9.PubMedCrossRef
37.
go back to reference Ryan ED, Herda TJ, Costa PB, Defreitas JM, Beck TW, Stout J, et al. Determining the minimum number of passive stretches necessary to alter musculotendinous stiffness. J Sports Sci. 2009;27:957–61.PubMedCrossRef Ryan ED, Herda TJ, Costa PB, Defreitas JM, Beck TW, Stout J, et al. Determining the minimum number of passive stretches necessary to alter musculotendinous stiffness. J Sports Sci. 2009;27:957–61.PubMedCrossRef
38.
go back to reference Bacurau RFP, Monteiro GA, Ugrinowitsch C, Tricoli V, Cabral LF, Aoki MS. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res. 2009;23:304–8.PubMedCrossRef Bacurau RFP, Monteiro GA, Ugrinowitsch C, Tricoli V, Cabral LF, Aoki MS. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res. 2009;23:304–8.PubMedCrossRef
39.
go back to reference Ryan ED, Everett KL, Smith DB, Pollner C, Thompson BJ, Sobolewski EJ, et al. Acute effects of different volumes of dynamic stretching on vertical jump performance, flexibility and muscular endurance. Clin Physiol Funct Imaging. 2014;34:485–92.PubMedCrossRef Ryan ED, Everett KL, Smith DB, Pollner C, Thompson BJ, Sobolewski EJ, et al. Acute effects of different volumes of dynamic stretching on vertical jump performance, flexibility and muscular endurance. Clin Physiol Funct Imaging. 2014;34:485–92.PubMedCrossRef
40.
go back to reference Amiri-Khorasani M, Abu Osman NA, Yusof A. Acute effect of static and dynamic stretching on hip dynamic range of motion during instep kicking in professional soccer players. J Strength Cond Res. 2011;25:1647–52.PubMedCrossRef Amiri-Khorasani M, Abu Osman NA, Yusof A. Acute effect of static and dynamic stretching on hip dynamic range of motion during instep kicking in professional soccer players. J Strength Cond Res. 2011;25:1647–52.PubMedCrossRef
41.
go back to reference Herda TJ, Herda ND, Costa PB, Walter-Herda AA, Valdez AM, Cramer JT. The effects of dynamic stretching on the passive properties of the muscle–tendon unit. J Sports Sci. 2012;31:479–87.PubMedCrossRef Herda TJ, Herda ND, Costa PB, Walter-Herda AA, Valdez AM, Cramer JT. The effects of dynamic stretching on the passive properties of the muscle–tendon unit. J Sports Sci. 2012;31:479–87.PubMedCrossRef
42.
go back to reference Paradisis GP, Theodorou ASA, Pappas PT, Zacharogiannis EG, Skordilis EK, Smirniotou AS. Effects of static and dynamic stretching on sprint and jump performance in boys and girls. J Strength Cond Res. 2014;28:154–60.PubMedCrossRef Paradisis GP, Theodorou ASA, Pappas PT, Zacharogiannis EG, Skordilis EK, Smirniotou AS. Effects of static and dynamic stretching on sprint and jump performance in boys and girls. J Strength Cond Res. 2014;28:154–60.PubMedCrossRef
43.
go back to reference Samukawa M, Hattori M, Sugama N, Takeda N. The effects of dynamic stretching on plantar flexor muscle–tendon tissue properties. Man Ther. 2011;16:618–22.PubMedCrossRef Samukawa M, Hattori M, Sugama N, Takeda N. The effects of dynamic stretching on plantar flexor muscle–tendon tissue properties. Man Ther. 2011;16:618–22.PubMedCrossRef
44.
go back to reference Samson M, Button DC, Chaouachi A, Behm DG. Effects of dynamic and static stretching within general and activity specific warm-up protocols. J Sport Sci Med. 2012;11:279–85. Samson M, Button DC, Chaouachi A, Behm DG. Effects of dynamic and static stretching within general and activity specific warm-up protocols. J Sport Sci Med. 2012;11:279–85.
45.
go back to reference Perrier ET, Pavol MJ, Hoffman MA. The acute effects of a warm-up including static or dynamic stretching on countermovement jump height, reaction time, and flexibility. J Strength Cond Res. 2011;25:1925–31.PubMedCrossRef Perrier ET, Pavol MJ, Hoffman MA. The acute effects of a warm-up including static or dynamic stretching on countermovement jump height, reaction time, and flexibility. J Strength Cond Res. 2011;25:1925–31.PubMedCrossRef
46.
go back to reference Curry BS, Chengkalath D, Crouch GJ, Romance M, Manns PJ. Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women. J Strength Cond Res. 2009;23:1811–9.PubMedCrossRef Curry BS, Chengkalath D, Crouch GJ, Romance M, Manns PJ. Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women. J Strength Cond Res. 2009;23:1811–9.PubMedCrossRef
47.
go back to reference Nelson A, Kokkonen J. Acute ballistic muscle stretching inhibits maximal strength performance. Res Q Exerc Sport. 2001;72:415–9.PubMedCrossRef Nelson A, Kokkonen J. Acute ballistic muscle stretching inhibits maximal strength performance. Res Q Exerc Sport. 2001;72:415–9.PubMedCrossRef
48.
go back to reference Beedle BB, Mann CL. A comparison of two warm-ups on joint range of motion. J Strength Cond Res. 2007;21:776–9.PubMed Beedle BB, Mann CL. A comparison of two warm-ups on joint range of motion. J Strength Cond Res. 2007;21:776–9.PubMed
49.
go back to reference Konrad A, Stafilidis S, Tilp M. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. Scand J Med Sci Sports. 2016;27:1070–80. Konrad A, Stafilidis S, Tilp M. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. Scand J Med Sci Sports. 2016;27:1070–80.
50.
go back to reference Zourdos MC, Wilson JM, Sommer BA, Lee S-R, Park Y-M, Henning PC, et al. Effects of dynamic stretching on energy cost and running endurance performance in trained male runners. J Strength Cond Res. 2012;26:335–41.PubMedCrossRef Zourdos MC, Wilson JM, Sommer BA, Lee S-R, Park Y-M, Henning PC, et al. Effects of dynamic stretching on energy cost and running endurance performance in trained male runners. J Strength Cond Res. 2012;26:335–41.PubMedCrossRef
51.
go back to reference Su H, Chang N-J, Wu W-L, Guo L-Y, Chu I-H. Acute effects of foam rolling, static stretching, and dynamic stretching during warm-ups on muscular flexibility and strength in young adults. J Sport Rehabil. 2016;13:1–24. Su H, Chang N-J, Wu W-L, Guo L-Y, Chu I-H. Acute effects of foam rolling, static stretching, and dynamic stretching during warm-ups on muscular flexibility and strength in young adults. J Sport Rehabil. 2016;13:1–24.
52.
go back to reference Mizuno T. Changes in joint range of motion and muscle–tendon unit stiffness after varying amounts of dynamic stretching. J Sports Sci Routledge. 2017;35:2157–63.CrossRef Mizuno T. Changes in joint range of motion and muscle–tendon unit stiffness after varying amounts of dynamic stretching. J Sports Sci Routledge. 2017;35:2157–63.CrossRef
53.
go back to reference Hough PA, Ross EZ, Howatson G. Effects of dynamic and static stretching on vertical jump performance and electromyographic activity. J Strength Cond Res. 2009;23:507–12.PubMedCrossRef Hough PA, Ross EZ, Howatson G. Effects of dynamic and static stretching on vertical jump performance and electromyographic activity. J Strength Cond Res. 2009;23:507–12.PubMedCrossRef
54.
go back to reference Fletcher IM. The effect of different dynamic stretch velocities on jump performance. Eur J Appl Physiol. 2010;109:491–8.PubMedCrossRef Fletcher IM. The effect of different dynamic stretch velocities on jump performance. Eur J Appl Physiol. 2010;109:491–8.PubMedCrossRef
55.
go back to reference Fletcher IM, Jones B. The effect of different warm-up stretch protocols on 20 meter sprint performance in trained rugby union players. J Strength Cond Res. 2004;18:885–8.PubMed Fletcher IM, Jones B. The effect of different warm-up stretch protocols on 20 meter sprint performance in trained rugby union players. J Strength Cond Res. 2004;18:885–8.PubMed
56.
go back to reference Yamaguchi T, Ishii K. Effects of static stretching for 30 seconds and dynamic stretching on leg extension power. J Strength Cond Res. 2005;19:677–83.PubMed Yamaguchi T, Ishii K. Effects of static stretching for 30 seconds and dynamic stretching on leg extension power. J Strength Cond Res. 2005;19:677–83.PubMed
57.
go back to reference Turki O, Chaouachi A, Behm DG, Chtara H, Chtara M, Bishop D, et al. The effect of warm-ups incorporating different volumes of dynamic stretching on 10- and 20-m sprint performance in highly trained male athletes. J Strength Cond Res. 2012;26:63–72.PubMedCrossRef Turki O, Chaouachi A, Behm DG, Chtara H, Chtara M, Bishop D, et al. The effect of warm-ups incorporating different volumes of dynamic stretching on 10- and 20-m sprint performance in highly trained male athletes. J Strength Cond Res. 2012;26:63–72.PubMedCrossRef
58.
go back to reference Sekir U, Arabaci R, Akova B, Kadagan SM. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes. Scand J Med Sci Sports. 2010;20:268–81.PubMedCrossRef Sekir U, Arabaci R, Akova B, Kadagan SM. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes. Scand J Med Sci Sports. 2010;20:268–81.PubMedCrossRef
59.
go back to reference Byrne PJ, Kenny J, O’Rourke B. Acute potentiating effect of depth jumps on sprint performance. J Strength Cond Res. 2014;28:610–5.PubMedCrossRef Byrne PJ, Kenny J, O’Rourke B. Acute potentiating effect of depth jumps on sprint performance. J Strength Cond Res. 2014;28:610–5.PubMedCrossRef
60.
go back to reference Kruse NT, Barr MW, Gilders RM, Kushnick MR, Rana SR. Using a practical approach for determining the most effective stretching strategy in female college division I volleyball players. J Strength Cond Res. 2013;27:3060–7.PubMedCrossRef Kruse NT, Barr MW, Gilders RM, Kushnick MR, Rana SR. Using a practical approach for determining the most effective stretching strategy in female college division I volleyball players. J Strength Cond Res. 2013;27:3060–7.PubMedCrossRef
61.
go back to reference Leone DCPG, Pezarat P, Valamatos MJ, Fernandes O, Freitas S, Moraes AC. Upper body force production after a low-volume static and dynamic stretching. Eur J Sport Sci. 2014;14:69–75.PubMedCrossRef Leone DCPG, Pezarat P, Valamatos MJ, Fernandes O, Freitas S, Moraes AC. Upper body force production after a low-volume static and dynamic stretching. Eur J Sport Sci. 2014;14:69–75.PubMedCrossRef
62.
go back to reference Pappas P, Paradisis GP, Exell TA, Smirniotou A, Tsolakis C, Arampatzis A. Acute effects of stretching on leg and vertical stiffness during treadmill running. J Strength Cond Res. 2017. doi:10.1519/JSC.0000000000001777. Pappas P, Paradisis GP, Exell TA, Smirniotou A, Tsolakis C, Arampatzis A. Acute effects of stretching on leg and vertical stiffness during treadmill running. J Strength Cond Res. 2017. doi:10.​1519/​JSC.​0000000000001777​.
63.
go back to reference Little T, Williams AG. Effects of differential stretching protocols during warm-ups on high-speed motor capacities in professional soccer players. J Strength Cond Res. 2006;20:203–7.PubMed Little T, Williams AG. Effects of differential stretching protocols during warm-ups on high-speed motor capacities in professional soccer players. J Strength Cond Res. 2006;20:203–7.PubMed
64.
go back to reference Gelen E. Acute effects of different warm-up methods on sprint, slalom dribbling, and penalty kick performance in soccer players. J Strength Cond Res. 2010;24:950–6.PubMedCrossRef Gelen E. Acute effects of different warm-up methods on sprint, slalom dribbling, and penalty kick performance in soccer players. J Strength Cond Res. 2010;24:950–6.PubMedCrossRef
65.
go back to reference Chatzopoulos D, Galazoulas C, Patikas D, Kotzamanidis C. Acute effects of static and dynamic stretching on balance, agility, reaction time and movement time. J Sports Sci. 2014;13:403–9. Chatzopoulos D, Galazoulas C, Patikas D, Kotzamanidis C. Acute effects of static and dynamic stretching on balance, agility, reaction time and movement time. J Sports Sci. 2014;13:403–9.
66.
go back to reference McMillian DJ, Moore JH, Hatler BS, Taylor DC. Dynamic vs. static-stretching warm up: the effect on power and agility performance. J Strength Cond Res. 2006;20:492–9.PubMed McMillian DJ, Moore JH, Hatler BS, Taylor DC. Dynamic vs. static-stretching warm up: the effect on power and agility performance. J Strength Cond Res. 2006;20:492–9.PubMed
67.
go back to reference Haddad M, Dridi A, Chtara M, Chaouachi A, Wong DP, Behm D, et al. Static stretching can impair explosive performance for at least 24 hours. J Strength Cond Res. 2014;28:140–6.PubMedCrossRef Haddad M, Dridi A, Chtara M, Chaouachi A, Wong DP, Behm D, et al. Static stretching can impair explosive performance for at least 24 hours. J Strength Cond Res. 2014;28:140–6.PubMedCrossRef
68.
go back to reference Duncan MJ, Woodfield LA. Acute effects of warm up protocol on flexibility and vertical jump in children. J Exerc Physiol. 2006;9:9–16. Duncan MJ, Woodfield LA. Acute effects of warm up protocol on flexibility and vertical jump in children. J Exerc Physiol. 2006;9:9–16.
69.
go back to reference Van Gelder LH, Bartz SD. The effect of acute stretching on agility performance. J Strength Cond Res. 2011;25:3014–21.PubMedCrossRef Van Gelder LH, Bartz SD. The effect of acute stretching on agility performance. J Strength Cond Res. 2011;25:3014–21.PubMedCrossRef
70.
go back to reference Fattahi-Bafghi A, Amiri-Khorasani M. Sustaining effect of different stretching methods on power and agility after warm-up exercise in soccer players. World Appl Sci J. 2013;21:520–5. Fattahi-Bafghi A, Amiri-Khorasani M. Sustaining effect of different stretching methods on power and agility after warm-up exercise in soccer players. World Appl Sci J. 2013;21:520–5.
71.
go back to reference Werstein KM, Lund RJ. The effects of two stretching protocols on the reactive strength index in female soccer and rugby players. J Strength Cond Res. 2012;26:1564–7.PubMedCrossRef Werstein KM, Lund RJ. The effects of two stretching protocols on the reactive strength index in female soccer and rugby players. J Strength Cond Res. 2012;26:1564–7.PubMedCrossRef
72.
go back to reference Fletcher IM, Monte-Colombo MM. An investigation into the effects of different warm-up modalities on specific motor skills related to soccer performance. J Strength Cond Res. 2010;24:2096–101.PubMedCrossRef Fletcher IM, Monte-Colombo MM. An investigation into the effects of different warm-up modalities on specific motor skills related to soccer performance. J Strength Cond Res. 2010;24:2096–101.PubMedCrossRef
73.
go back to reference Pearce AJ, Kidgell DJ, Zois J, Carlson JS. Effects of secondary warm up following stretching. Eur J Appl Physiol. 2009;105:175–83 (Springer-Verlag).PubMedCrossRef Pearce AJ, Kidgell DJ, Zois J, Carlson JS. Effects of secondary warm up following stretching. Eur J Appl Physiol. 2009;105:175–83 (Springer-Verlag).PubMedCrossRef
74.
go back to reference Manoel ME, Harris-Love MO, Danoff JV, Miller TA. Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women. J Strength Cond Res. 2008;22:1528–34.PubMedCrossRef Manoel ME, Harris-Love MO, Danoff JV, Miller TA. Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women. J Strength Cond Res. 2008;22:1528–34.PubMedCrossRef
75.
go back to reference Holt BW, Lambourne K. The impact of different warm-up protocols on vertical jump performance in male collegiate athletes. J Strength Cond Res. 2008;22:226–9.PubMedCrossRef Holt BW, Lambourne K. The impact of different warm-up protocols on vertical jump performance in male collegiate athletes. J Strength Cond Res. 2008;22:226–9.PubMedCrossRef
76.
go back to reference Fletcher IM, Anness R. The acute effects of combined static and dynamic stretch protocols on fifty-meter sprint performance in track-and-field athletes. J Strength Cond Res. 2007;21:784–7.PubMed Fletcher IM, Anness R. The acute effects of combined static and dynamic stretch protocols on fifty-meter sprint performance in track-and-field athletes. J Strength Cond Res. 2007;21:784–7.PubMed
77.
go back to reference Faigenbaum AD, McFarland JE, Schwerdtman JA, Ratamess NA, Kang J, Hoffman JR. Dynamic warm-up protocols, with and without a weighted vest, and fitness performance in high school female athletes. J Athl Train. 2006;41:357–63.PubMedPubMedCentral Faigenbaum AD, McFarland JE, Schwerdtman JA, Ratamess NA, Kang J, Hoffman JR. Dynamic warm-up protocols, with and without a weighted vest, and fitness performance in high school female athletes. J Athl Train. 2006;41:357–63.PubMedPubMedCentral
78.
go back to reference Faigenbaum AD, Bellucci M, Bernieri A, Bakker B, Hoorens K. Acute effects of different warm-up protocols on fitness performance in children. J Strength Cond Res. 2005;19:376–81.PubMed Faigenbaum AD, Bellucci M, Bernieri A, Bakker B, Hoorens K. Acute effects of different warm-up protocols on fitness performance in children. J Strength Cond Res. 2005;19:376–81.PubMed
79.
go back to reference Carvalho FLP, Carvalho MCGA, Simão R, Gomes TM, Costa PB, Neto LB, et al. Acute effects of a warm-up including active, passive, and dynamic stretching on vertical jump performance. J Strength Cond Res. 2012;26:2447–52.PubMedCrossRef Carvalho FLP, Carvalho MCGA, Simão R, Gomes TM, Costa PB, Neto LB, et al. Acute effects of a warm-up including active, passive, and dynamic stretching on vertical jump performance. J Strength Cond Res. 2012;26:2447–52.PubMedCrossRef
80.
go back to reference Morrin N, Redding E. Acute effects of warm-up stretch protocols on balance, vertical jump height, and range of motion in dancers. J Dance Med Sci. 2013;17:34–40.PubMedCrossRef Morrin N, Redding E. Acute effects of warm-up stretch protocols on balance, vertical jump height, and range of motion in dancers. J Dance Med Sci. 2013;17:34–40.PubMedCrossRef
81.
go back to reference Needham RA, Morse CI, Degens H. The acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. J Strength Cond Res. 2009;23:2614–20.PubMedCrossRef Needham RA, Morse CI, Degens H. The acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. J Strength Cond Res. 2009;23:2614–20.PubMedCrossRef
82.
go back to reference Taylor K-L, Sheppard JM, Lee H, Plummer N. Negative effect of static stretching restored when combined with a sport specific warm-up component. J Sci Med Sport. 2009;12:657–61.PubMedCrossRef Taylor K-L, Sheppard JM, Lee H, Plummer N. Negative effect of static stretching restored when combined with a sport specific warm-up component. J Sci Med Sport. 2009;12:657–61.PubMedCrossRef
83.
go back to reference Amiri-Khorasani M, Calleja-Gonzalez J, Mogharabi-Manzari M. Acute effect of different combined stretching methods on acceleration and speed in soccer players. J Hum Kinet. 2016;50:179–86.PubMedPubMedCentralCrossRef Amiri-Khorasani M, Calleja-Gonzalez J, Mogharabi-Manzari M. Acute effect of different combined stretching methods on acceleration and speed in soccer players. J Hum Kinet. 2016;50:179–86.PubMedPubMedCentralCrossRef
84.
go back to reference Franco BL, Signorelli GR, Trajano GS, Costa PB, de Oliveira CG. Acute effects of three different stretching protocols on the wingate test performance. J Sports Sci Med. 2012;11:1–7.PubMedPubMedCentral Franco BL, Signorelli GR, Trajano GS, Costa PB, de Oliveira CG. Acute effects of three different stretching protocols on the wingate test performance. J Sports Sci Med. 2012;11:1–7.PubMedPubMedCentral
85.
go back to reference Fattahi-Bafghi A, Amiri-Khorasani M. Effects of static and dynamic stretching during warm-up on vertical jump in Soccer players. Int J Sport Stud. 2012;2:484–8. Fattahi-Bafghi A, Amiri-Khorasani M. Effects of static and dynamic stretching during warm-up on vertical jump in Soccer players. Int J Sport Stud. 2012;2:484–8.
86.
go back to reference Sá MA, Neto GR, Costa PB, Gomes TM, Bentes CM, Brown AF, et al. Acute effects of different stretching techniques on the number of repetitions in a single lower body resistance training session. J Hum Kinet. 2015;45:177–85.PubMedPubMedCentralCrossRef Sá MA, Neto GR, Costa PB, Gomes TM, Bentes CM, Brown AF, et al. Acute effects of different stretching techniques on the number of repetitions in a single lower body resistance training session. J Hum Kinet. 2015;45:177–85.PubMedPubMedCentralCrossRef
87.
go back to reference Ayala F, Moreno-Pérez V, Vera-Garcia FJ, Moya M, Sanz-Rivas D, Fernandez-Fernandez J. Acute and time-course effects of traditional and dynamic warm-up routines in young elite junior tennis players. PLoS One. 2016;11:1–14 (Sampaio J, editor; Routledge Academic). Ayala F, Moreno-Pérez V, Vera-Garcia FJ, Moya M, Sanz-Rivas D, Fernandez-Fernandez J. Acute and time-course effects of traditional and dynamic warm-up routines in young elite junior tennis players. PLoS One. 2016;11:1–14 (Sampaio J, editor; Routledge Academic).
88.
go back to reference Alemdaroğlu U, Köklü Y, Koz M. The acute effect of different stretching methods on sprint performance in taekwondo practitioners. J Sports Med Phys Fitness. 2017;57:1104–10.PubMed Alemdaroğlu U, Köklü Y, Koz M. The acute effect of different stretching methods on sprint performance in taekwondo practitioners. J Sports Med Phys Fitness. 2017;57:1104–10.PubMed
89.
go back to reference Costa PB, Herda TJ, Herda AA, Cramer JT. Effects of dynamic stretching on strength, muscle imbalance, and muscle activation. Med Sci Sport Exerc. 2014;46:586–93.CrossRef Costa PB, Herda TJ, Herda AA, Cramer JT. Effects of dynamic stretching on strength, muscle imbalance, and muscle activation. Med Sci Sport Exerc. 2014;46:586–93.CrossRef
90.
go back to reference Samuel MN, Holcomb WR, Guadagnoli MA, Rubley MD, Wallmann H. Acute effects of static and ballistic stretching on measures of strength and power. J Strength Cond Res. 2008;22:1422–8.PubMedCrossRef Samuel MN, Holcomb WR, Guadagnoli MA, Rubley MD, Wallmann H. Acute effects of static and ballistic stretching on measures of strength and power. J Strength Cond Res. 2008;22:1422–8.PubMedCrossRef
91.
go back to reference Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2016;41:1–11.PubMedCrossRef Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2016;41:1–11.PubMedCrossRef
92.
go back to reference Unick J, Kieffer HS, Cheesman W, Feeney A. The acute effects of static and ballistic stretching on vertical jump performance in trained women. J Strength Cond Res. 2005;19:206–12.PubMed Unick J, Kieffer HS, Cheesman W, Feeney A. The acute effects of static and ballistic stretching on vertical jump performance in trained women. J Strength Cond Res. 2005;19:206–12.PubMed
93.
go back to reference Bandy WD, Irion JM, Briggler M. The effect of static stretch and dynamic range of motion training on the flexibility of the hamstring muscles. J Orthop Sports Phys Ther. 1998;27:295–300.PubMedCrossRef Bandy WD, Irion JM, Briggler M. The effect of static stretch and dynamic range of motion training on the flexibility of the hamstring muscles. J Orthop Sports Phys Ther. 1998;27:295–300.PubMedCrossRef
94.
go back to reference Alter MJ. Sports Stretch. Champaign, IL: Human Kinetics; 1997. Alter MJ. Sports Stretch. Champaign, IL: Human Kinetics; 1997.
95.
go back to reference Jaggers JR, Swank AM, Frost KL, Lee CD. The acute effects of dynamic and ballistic stretching on vertical jump height, force, and power. J Strength Cond Res. 2008;22:1844–9.PubMedCrossRef Jaggers JR, Swank AM, Frost KL, Lee CD. The acute effects of dynamic and ballistic stretching on vertical jump height, force, and power. J Strength Cond Res. 2008;22:1844–9.PubMedCrossRef
96.
go back to reference Smith CA. The warm-up procedure: to stretch or not to stretch. A brief review. J Orthop Sports Phys Ther. 1994;19:12–7.PubMedCrossRef Smith CA. The warm-up procedure: to stretch or not to stretch. A brief review. J Orthop Sports Phys Ther. 1994;19:12–7.PubMedCrossRef
97.
go back to reference Yamaguchi T, Ishii K. An optimal protocol for dynamic stretching to improve explosive performance. J Phys Fit Sport Med. 2014;3:121–9.CrossRef Yamaguchi T, Ishii K. An optimal protocol for dynamic stretching to improve explosive performance. J Phys Fit Sport Med. 2014;3:121–9.CrossRef
98.
go back to reference Cohen J. Statistical power analysis for the behavioural sciences. Stat Power Anal Behav Sci. 1988;L. Erbaum:14–68. Cohen J. Statistical power analysis for the behavioural sciences. Stat Power Anal Behav Sci. 1988;L. Erbaum:14–68.
99.
go back to reference Murphy JC, Nagle E, Robertson RJ, Mccrory JL. Effect of single set dynamic and static stretching exercise on jump height in college age recreational athletes. Int J Exerc Sci. 2010;3:214–24. Murphy JC, Nagle E, Robertson RJ, Mccrory JL. Effect of single set dynamic and static stretching exercise on jump height in college age recreational athletes. Int J Exerc Sci. 2010;3:214–24.
100.
go back to reference Behm DG, Plewe S, Grage P, Rabbani A, Beigi HT, Byrne JM, et al. Relative static stretch-induced impairments and dynamic stretch-induced enhancements are similar in young and middle-aged men. Appl Physiol Nutr Metab. 2011;36:790–7.PubMedCrossRef Behm DG, Plewe S, Grage P, Rabbani A, Beigi HT, Byrne JM, et al. Relative static stretch-induced impairments and dynamic stretch-induced enhancements are similar in young and middle-aged men. Appl Physiol Nutr Metab. 2011;36:790–7.PubMedCrossRef
101.
go back to reference Barroso R, Tricoli V, dos Santos Gil S, Ugrinowitsch C, Roschel H. Maximal strength, number of repetitions, and total volume are differently affected by static-, ballistic-, and proprioceptive neuromuscular facilitation stretching. J Strength Cond Res. 2012;26:2432–7.PubMedCrossRef Barroso R, Tricoli V, dos Santos Gil S, Ugrinowitsch C, Roschel H. Maximal strength, number of repetitions, and total volume are differently affected by static-, ballistic-, and proprioceptive neuromuscular facilitation stretching. J Strength Cond Res. 2012;26:2432–7.PubMedCrossRef
102.
go back to reference Aguilar AJ, DiStefano LJ, Brown CN, Herman DC, Guskiewicz KM, Padua DA. A dynamic warm-up model increases quadriceps strength and hamstring flexibility. J Strength Cond Res. 2012;26:1130–41.PubMedCrossRef Aguilar AJ, DiStefano LJ, Brown CN, Herman DC, Guskiewicz KM, Padua DA. A dynamic warm-up model increases quadriceps strength and hamstring flexibility. J Strength Cond Res. 2012;26:1130–41.PubMedCrossRef
103.
go back to reference Hayes PR, Walker A. Pre-exercise stretching does not impact upon running economy. J Strength Cond Res. 2007;21:1227–32.PubMed Hayes PR, Walker A. Pre-exercise stretching does not impact upon running economy. J Strength Cond Res. 2007;21:1227–32.PubMed
104.
go back to reference O’Sullivan K, Murray E, Sainsbury D. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects. BMC Musculoskelet Disord. 2009;10:37.PubMedPubMedCentralCrossRef O’Sullivan K, Murray E, Sainsbury D. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects. BMC Musculoskelet Disord. 2009;10:37.PubMedPubMedCentralCrossRef
105.
go back to reference Magnusson SP, Simonsen EB, Dyhre-Poulsen P, Aagaard P, Mohr T, Kjaer M. Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Scand J Med Sci Sports. 1996;6:323–8.PubMedCrossRef Magnusson SP, Simonsen EB, Dyhre-Poulsen P, Aagaard P, Mohr T, Kjaer M. Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Scand J Med Sci Sports. 1996;6:323–8.PubMedCrossRef
106.
go back to reference Magnusson SP, Simonsen EB, Aagaard P, Gleim GW, McHugh MP, Kjaer M. Viscoelastic response to repeated static stretching in the human hamstring muscle. Scand J Med Sci Sports. 1995;5:342–7.PubMedCrossRef Magnusson SP, Simonsen EB, Aagaard P, Gleim GW, McHugh MP, Kjaer M. Viscoelastic response to repeated static stretching in the human hamstring muscle. Scand J Med Sci Sports. 1995;5:342–7.PubMedCrossRef
107.
go back to reference Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol. 2001;90:520–7.PubMedCrossRef Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol. 2001;90:520–7.PubMedCrossRef
108.
go back to reference Fletcher IM, Monte-Colombo MM. An investigation into the possible physiological mechanisms associated with changes in performance related to acute responses to different preactivity stretch modalities. Appl Physiol Nutr Metab. 2010;35:27–34.PubMedCrossRef Fletcher IM, Monte-Colombo MM. An investigation into the possible physiological mechanisms associated with changes in performance related to acute responses to different preactivity stretch modalities. Appl Physiol Nutr Metab. 2010;35:27–34.PubMedCrossRef
109.
go back to reference Herda TJ, Cramer JTJ, Ryan EED, McHugh MP, Stout JJR. Acute effects of static versus dynamic stretching on isometric peak torque, electromyography, and mechanomyography of the biceps femoris muscle. J Strength Cond Res. 2008;22:809–17.PubMedCrossRef Herda TJ, Cramer JTJ, Ryan EED, McHugh MP, Stout JJR. Acute effects of static versus dynamic stretching on isometric peak torque, electromyography, and mechanomyography of the biceps femoris muscle. J Strength Cond Res. 2008;22:809–17.PubMedCrossRef
111.
go back to reference Mahieu NN, McNair P, De Muynck M, Stevens V, Blanckaert I, Smits N, et al. Effect of static and ballistic stretching on the muscle–tendon tissue properties. Med Sci Sport Exerc. 2007;39:494–501.CrossRef Mahieu NN, McNair P, De Muynck M, Stevens V, Blanckaert I, Smits N, et al. Effect of static and ballistic stretching on the muscle–tendon tissue properties. Med Sci Sport Exerc. 2007;39:494–501.CrossRef
112.
go back to reference Guissard N, Duchateau J, Hainaut K. Muscle stretching and motoneuron excitability. Eur J Appl Physiol. 1988;58:47–52.CrossRef Guissard N, Duchateau J, Hainaut K. Muscle stretching and motoneuron excitability. Eur J Appl Physiol. 1988;58:47–52.CrossRef
113.
go back to reference Bradley PS, Olsen PD, Portas MD. The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance. J Strength Cond Res. 2007;21:223–6.PubMedCrossRef Bradley PS, Olsen PD, Portas MD. The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance. J Strength Cond Res. 2007;21:223–6.PubMedCrossRef
114.
go back to reference Torres EM, Kraemer WJ, Vingren JL, Volek JS, Hatfield DL, Spiering BA, et al. Effects of stretching on upper-body muscular performance. J Strength Cond Res. 2008;22:1279–85.PubMedCrossRef Torres EM, Kraemer WJ, Vingren JL, Volek JS, Hatfield DL, Spiering BA, et al. Effects of stretching on upper-body muscular performance. J Strength Cond Res. 2008;22:1279–85.PubMedCrossRef
115.
go back to reference Christensen BK, Nordstrom BJ. The effects of proprioceptive neuromuscular facilitation and dynamic stretching techniques on vertical jump performance. J Strength Cond Res. 2008;22:1826–31.PubMedCrossRef Christensen BK, Nordstrom BJ. The effects of proprioceptive neuromuscular facilitation and dynamic stretching techniques on vertical jump performance. J Strength Cond Res. 2008;22:1826–31.PubMedCrossRef
116.
go back to reference Siatras T, Papadopoulos G, Mameletzi D, Gerodimos V, Kellis S. Static and dynamic acute stretching effect on gymnasts’ speed in vaulting. Pediatr Exerc Sci. 2003;15:383–91.CrossRef Siatras T, Papadopoulos G, Mameletzi D, Gerodimos V, Kellis S. Static and dynamic acute stretching effect on gymnasts’ speed in vaulting. Pediatr Exerc Sci. 2003;15:383–91.CrossRef
117.
go back to reference Dalrymple KJ, Davis SE, Dwyer GB, Moir GL. Effect of static and dynamic stretching on vertical jump performance in collegiate women volleyball players. J Strength Cond Res. 2010;24:149–55.PubMedCrossRef Dalrymple KJ, Davis SE, Dwyer GB, Moir GL. Effect of static and dynamic stretching on vertical jump performance in collegiate women volleyball players. J Strength Cond Res. 2010;24:149–55.PubMedCrossRef
118.
go back to reference Pagaduan JC, Pojskić H, Užičanin E, Babajić F. Effect of various warm-up protocols on jump performance in college football players. J Hum Kinet. 2012;35:127–32.PubMedPubMedCentralCrossRef Pagaduan JC, Pojskić H, Užičanin E, Babajić F. Effect of various warm-up protocols on jump performance in college football players. J Hum Kinet. 2012;35:127–32.PubMedPubMedCentralCrossRef
119.
go back to reference Ayala F, De Ste Croix M, Sainz De Baranda P, Santonja F. Acute effects of static and dynamic stretching on hamstring eccentric isokinetic strength and unilateral hamstring to quadriceps strength ratios. J Sports Sci. 2013;31:831–9.PubMedCrossRef Ayala F, De Ste Croix M, Sainz De Baranda P, Santonja F. Acute effects of static and dynamic stretching on hamstring eccentric isokinetic strength and unilateral hamstring to quadriceps strength ratios. J Sports Sci. 2013;31:831–9.PubMedCrossRef
120.
go back to reference Kendall BJ. The acute effects of static stretching compared to dynamic stretching with and without an active warm up on anaerobic performance. Int J Exerc Sci. 2017;10:53–61.PubMedPubMedCentral Kendall BJ. The acute effects of static stretching compared to dynamic stretching with and without an active warm up on anaerobic performance. Int J Exerc Sci. 2017;10:53–61.PubMedPubMedCentral
121.
go back to reference Clark L, O’Leary CB, Hong J, Lockard M. The acute effects of stretching on presynaptic inhibition and peak power. J Sports Med Phys Fitness. 2014;54:605–10.PubMed Clark L, O’Leary CB, Hong J, Lockard M. The acute effects of stretching on presynaptic inhibition and peak power. J Sports Med Phys Fitness. 2014;54:605–10.PubMed
122.
go back to reference Chatzopoulos DE, Yiannakos A, Kotzamanidou M, Bassa E. Warm-up protocols for high school students. Percept Mot Skills. 2015;121:1–13.PubMedCrossRef Chatzopoulos DE, Yiannakos A, Kotzamanidou M, Bassa E. Warm-up protocols for high school students. Percept Mot Skills. 2015;121:1–13.PubMedCrossRef
123.
go back to reference Vetter RE. Effects of six warm-up protocols on sprint and jump performance. J Strength Cond Res. 2007;21:819–23.PubMed Vetter RE. Effects of six warm-up protocols on sprint and jump performance. J Strength Cond Res. 2007;21:819–23.PubMed
124.
go back to reference Beedle B, Rytter SJ, Healy RC, Ward TR. Pretesting static and dynamic stretching does not affect maximal strength. J Strength Cond Res. 2008;22:1838–43.PubMedCrossRef Beedle B, Rytter SJ, Healy RC, Ward TR. Pretesting static and dynamic stretching does not affect maximal strength. J Strength Cond Res. 2008;22:1838–43.PubMedCrossRef
125.
go back to reference Turki O, Chaouachi A, Drinkwater EJ, Chtara M, Chamari K, Amri M, et al. Ten minutes of dynamic stretching is sufficient to potentiate vertical jump performance characteristics. J Strength Cond Res. 2011;25:2453–63.PubMedCrossRef Turki O, Chaouachi A, Drinkwater EJ, Chtara M, Chamari K, Amri M, et al. Ten minutes of dynamic stretching is sufficient to potentiate vertical jump performance characteristics. J Strength Cond Res. 2011;25:2453–63.PubMedCrossRef
126.
go back to reference Papadopoulos G, Siatras T, Kellis S. The effect of static and dynamic stretching exercises on the maximal isokinetic strength of the knee extensors and flexors. Isokinet Exerc Sci. 2005;13:285–91. Papadopoulos G, Siatras T, Kellis S. The effect of static and dynamic stretching exercises on the maximal isokinetic strength of the knee extensors and flexors. Isokinet Exerc Sci. 2005;13:285–91.
127.
go back to reference Knudson D, Bennett K, Corn R, Leick D, Smith C. Acute effects of stretching are not evident in the kinematics of the vertical jump. J Strength Cond Res. 2001;15:98–101.PubMed Knudson D, Bennett K, Corn R, Leick D, Smith C. Acute effects of stretching are not evident in the kinematics of the vertical jump. J Strength Cond Res. 2001;15:98–101.PubMed
128.
go back to reference Mizuno T, Umemura Y. Dynamic stretching does not change the stiffness of the muscle–tendon unit. Int J Sports Med. 2016;37:1044–50.PubMedCrossRef Mizuno T, Umemura Y. Dynamic stretching does not change the stiffness of the muscle–tendon unit. Int J Sports Med. 2016;37:1044–50.PubMedCrossRef
129.
go back to reference Yamaguchi T, Takizawa K, Shibata K. Acute effect of dynamic stretching on endurance running performance in well-trained male runners. J Strength Cond Res. 2015;29:3045–52.PubMedCrossRef Yamaguchi T, Takizawa K, Shibata K. Acute effect of dynamic stretching on endurance running performance in well-trained male runners. J Strength Cond Res. 2015;29:3045–52.PubMedCrossRef
130.
go back to reference Weerapong P, Hume PA, Kolt GS. Stretching: mechanisms and benefits for sport performance and injury prevention. Phys Ther Rev Taylor Francis. 2004;9:189–206.CrossRef Weerapong P, Hume PA, Kolt GS. Stretching: mechanisms and benefits for sport performance and injury prevention. Phys Ther Rev Taylor Francis. 2004;9:189–206.CrossRef
131.
go back to reference Taylor DC, Dalton JD, Seaber AV, Garrett WE. Viscoelastic properties of muscle–tendon units. The biomechanical effects of stretching. Am J Sports Med. 1990;18:300–9.PubMedCrossRef Taylor DC, Dalton JD, Seaber AV, Garrett WE. Viscoelastic properties of muscle–tendon units. The biomechanical effects of stretching. Am J Sports Med. 1990;18:300–9.PubMedCrossRef
132.
go back to reference Kubo K, Kanehisa H, Fukunaga T. Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol. 2003;88:520–6.PubMedCrossRef Kubo K, Kanehisa H, Fukunaga T. Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol. 2003;88:520–6.PubMedCrossRef
133.
go back to reference Riemann BL, DeMont RG, Ryu K, Lephart SM. The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness. J Athl Train. 2001;36:369–75 (National Athletic Trainers Association).PubMedPubMedCentral Riemann BL, DeMont RG, Ryu K, Lephart SM. The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness. J Athl Train. 2001;36:369–75 (National Athletic Trainers Association).PubMedPubMedCentral
134.
go back to reference Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. Scand J Med Sci Sports. 1998;8:65–77 (Blackwell Publishing Ltd).PubMedCrossRef Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. Scand J Med Sci Sports. 1998;8:65–77 (Blackwell Publishing Ltd).PubMedCrossRef
135.
go back to reference Handrakis JP, Southard VN, Abreu JM, Aloisa M, Doyen MR, Echevarria LM, et al. Static stretching does not impair performance in active middle-aged adults. J Strength Cond Res. 2010;24:825–30.PubMedCrossRef Handrakis JP, Southard VN, Abreu JM, Aloisa M, Doyen MR, Echevarria LM, et al. Static stretching does not impair performance in active middle-aged adults. J Strength Cond Res. 2010;24:825–30.PubMedCrossRef
136.
go back to reference Egan AD, Cramer JT, Massey LL, Marek SM. Acute effects of static stretching on peak torque and mean power output in national collegiate athletic association division I women’s basketball player. J Strength Cond Res. 2006;20:778–82.PubMed Egan AD, Cramer JT, Massey LL, Marek SM. Acute effects of static stretching on peak torque and mean power output in national collegiate athletic association division I women’s basketball player. J Strength Cond Res. 2006;20:778–82.PubMed
137.
go back to reference Chaouachi A, Castagna C, Chtara M, Brughelli M, Turki O, Galy O, et al. Effect of warm-ups involving static or dynamic stretching on agility, sprinting, and jumping performance in trained individuals. J Strength Cond Res. 2010;24:2001–11.PubMedCrossRef Chaouachi A, Castagna C, Chtara M, Brughelli M, Turki O, Galy O, et al. Effect of warm-ups involving static or dynamic stretching on agility, sprinting, and jumping performance in trained individuals. J Strength Cond Res. 2010;24:2001–11.PubMedCrossRef
138.
go back to reference Babault N, Bazine W, Deley G, Paizis C, Lattier G. Direct relation of acute effects of static stretching on isokinetic torque production with initial flexibility level. Int J Sports Physiol Perform. 2015;10:117–9.PubMedCrossRef Babault N, Bazine W, Deley G, Paizis C, Lattier G. Direct relation of acute effects of static stretching on isokinetic torque production with initial flexibility level. Int J Sports Physiol Perform. 2015;10:117–9.PubMedCrossRef
139.
go back to reference Hirata K, Miyamoto-Mikami E, Kanehisa H, Miyamoto N. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol. 2016;116:911–8.PubMedCrossRef Hirata K, Miyamoto-Mikami E, Kanehisa H, Miyamoto N. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol. 2016;116:911–8.PubMedCrossRef
140.
go back to reference Bouvier T, Opplert J, Cometti C, Babault N. Acute effects of static stretching on muscle–tendon mechanics of quadriceps and plantar flexor muscles. Eur J Appl Physiol. 2017;117:1309–15.PubMedCrossRef Bouvier T, Opplert J, Cometti C, Babault N. Acute effects of static stretching on muscle–tendon mechanics of quadriceps and plantar flexor muscles. Eur J Appl Physiol. 2017;117:1309–15.PubMedCrossRef
141.
go back to reference Lima CD, Brown LE, Wong MA, Leyva WD, Pinto RS, Cadore EL, et al. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res. 2016;30:3220–7.PubMedCrossRef Lima CD, Brown LE, Wong MA, Leyva WD, Pinto RS, Cadore EL, et al. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res. 2016;30:3220–7.PubMedCrossRef
142.
go back to reference Moran DS, Mendal L. Core temperature measurement: methods and current insights. Sports Med. 2002;32:879–85.PubMedCrossRef Moran DS, Mendal L. Core temperature measurement: methods and current insights. Sports Med. 2002;32:879–85.PubMedCrossRef
143.
go back to reference Buchthal F, Kaiser E, Knappeis GG. Elasticity, viscosity and plasticity in the cross striated muscle fibre. Acta Physiol Scand. 1944;8:16–37.CrossRef Buchthal F, Kaiser E, Knappeis GG. Elasticity, viscosity and plasticity in the cross striated muscle fibre. Acta Physiol Scand. 1944;8:16–37.CrossRef
144.
go back to reference Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech. 2001;16:87–101.CrossRef Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech. 2001;16:87–101.CrossRef
145.
go back to reference Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M. Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports. 1997;7:195–202.PubMedCrossRef Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M. Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports. 1997;7:195–202.PubMedCrossRef
146.
go back to reference Nordez A, Cornu C, McNair P. Acute effects of static stretching on passive stiffness of the hamstring muscles calculated using different mathematical models. Clin Biomech. 2006;21:755–60.CrossRef Nordez A, Cornu C, McNair P. Acute effects of static stretching on passive stiffness of the hamstring muscles calculated using different mathematical models. Clin Biomech. 2006;21:755–60.CrossRef
147.
go back to reference Nordez A, McNair PJ, Casari P, Cornu C. The effect of angular velocity and cycle on the dissipative properties of the knee during passive cyclic stretching: a matter of viscosity or solid friction. Clin Biomech. 2009;24:77–81.CrossRef Nordez A, McNair PJ, Casari P, Cornu C. The effect of angular velocity and cycle on the dissipative properties of the knee during passive cyclic stretching: a matter of viscosity or solid friction. Clin Biomech. 2009;24:77–81.CrossRef
148.
go back to reference Blazevich AJ, Cannavan D, Waugh CM, Fath F, Miller SC, Kay AD. Neuromuscular factors influencing the maximum stretch limit of the human plantar flexors. J Appl Physiol. 2012;113:1446–55.PubMedCrossRef Blazevich AJ, Cannavan D, Waugh CM, Fath F, Miller SC, Kay AD. Neuromuscular factors influencing the maximum stretch limit of the human plantar flexors. J Appl Physiol. 2012;113:1446–55.PubMedCrossRef
149.
go back to reference Abellaneda S, Guissard N, Duchateau J. The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J Appl Physiol. 2009;106:169–77.PubMedCrossRef Abellaneda S, Guissard N, Duchateau J. The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J Appl Physiol. 2009;106:169–77.PubMedCrossRef
150.
go back to reference Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39:147–66.PubMedCrossRef Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39:147–66.PubMedCrossRef
151.
go back to reference Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30:138–43.PubMedCrossRef Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30:138–43.PubMedCrossRef
152.
go back to reference Maloney SJ, Turner AN, Fletcher IM. Ballistic exercise as a pre-activation stimulus: a review of the literature and practical applications. Sports Med. 2014;44:1347–59. Maloney SJ, Turner AN, Fletcher IM. Ballistic exercise as a pre-activation stimulus: a review of the literature and practical applications. Sports Med. 2014;44:1347–59.
153.
go back to reference Henneman E, Somjen G, David A. Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 1965;28:599–620.PubMedCrossRef Henneman E, Somjen G, David A. Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 1965;28:599–620.PubMedCrossRef
154.
go back to reference Baudry S, Duchateau J. Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol. 2007;102:1394–401.PubMedCrossRef Baudry S, Duchateau J. Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol. 2007;102:1394–401.PubMedCrossRef
155.
go back to reference Cè E, Rampichini S, Maggioni MA, Veicsteinas A, Merati G. Effects of passive stretching on post-activation potentiation and fibre conduction velocity of biceps brachii muscle. Sport Sci Health. 2009;4:43–50.CrossRef Cè E, Rampichini S, Maggioni MA, Veicsteinas A, Merati G. Effects of passive stretching on post-activation potentiation and fibre conduction velocity of biceps brachii muscle. Sport Sci Health. 2009;4:43–50.CrossRef
156.
go back to reference Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol Cell Physiol. 1993;264:1085–95.CrossRef Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol Cell Physiol. 1993;264:1085–95.CrossRef
157.
go back to reference Rassier DE, MacIntosh BR. Coexistence of potentiation and fatigue in skeletal muscle. Brazilian J Med Biol Res. 2000;33:499–508.CrossRef Rassier DE, MacIntosh BR. Coexistence of potentiation and fatigue in skeletal muscle. Brazilian J Med Biol Res. 2000;33:499–508.CrossRef
158.
go back to reference Yamaguchi T, Ishii K, Yamanaka M, Yasuda K. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension. J Strength Cond Res. 2007;21:1238–44.PubMed Yamaguchi T, Ishii K, Yamanaka M, Yasuda K. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension. J Strength Cond Res. 2007;21:1238–44.PubMed
159.
go back to reference Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol. 2002;92:2309–18. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol. 2002;92:2309–18.
160.
go back to reference Zehr EP. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol. 2002;86:455–68.PubMedCrossRef Zehr EP. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol. 2002;86:455–68.PubMedCrossRef
161.
go back to reference Vujnovich AL, Dawson NJ. The effect of therapeutic muscle stretch on neural processing. J Orthop Sport Phys Ther. 1994;20:145–53.CrossRef Vujnovich AL, Dawson NJ. The effect of therapeutic muscle stretch on neural processing. J Orthop Sport Phys Ther. 1994;20:145–53.CrossRef
162.
163.
go back to reference Fetz EE, Jankowska E, Johannisson T, Lipski J. Autogenetic inhibition of motoneurones by impulses in group Ia muscle spindle afferents. J Physiol. 1979;293:173–95.PubMedPubMedCentralCrossRef Fetz EE, Jankowska E, Johannisson T, Lipski J. Autogenetic inhibition of motoneurones by impulses in group Ia muscle spindle afferents. J Physiol. 1979;293:173–95.PubMedPubMedCentralCrossRef
164.
go back to reference Guissard N, Duchateau J, Hainaut K. Mechanisms of decreased motoneurone excitation during passive muscle stretching. Exp Brain Res. 2001;137:163–9.PubMedCrossRef Guissard N, Duchateau J, Hainaut K. Mechanisms of decreased motoneurone excitation during passive muscle stretching. Exp Brain Res. 2001;137:163–9.PubMedCrossRef
165.
go back to reference Coxon JP, Stinear JW, Byblow WD. Amplitude of muscle stretch modulates corticomotor gain during passive movement. Brain Res. 2005;1031:109–17.PubMedCrossRef Coxon JP, Stinear JW, Byblow WD. Amplitude of muscle stretch modulates corticomotor gain during passive movement. Brain Res. 2005;1031:109–17.PubMedCrossRef
Metadata
Title
Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature
Authors
Jules Opplert
Nicolas Babault
Publication date
01-02-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 2/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-017-0797-9

Other articles of this Issue 2/2018

Sports Medicine 2/2018 Go to the issue