Skip to main content
Top
Published in: Sports Medicine 2/2018

01-02-2018 | Systematic Review

Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis

Authors: Manoel E. Lixandrão, Carlos Ugrinowitsch, Ricardo Berton, Felipe C. Vechin, Miguel S. Conceição, Felipe Damas, Cleiton A. Libardi, Hamilton Roschel

Published in: Sports Medicine | Issue 2/2018

Login to get access

Abstract

Background

Low-load resistance training (< 50% of one-repetition maximum [1RM]) associated with blood-flow restriction (BFR-RT) has been thought to promote increases in muscle strength and mass. However, it remains unclear if the magnitude of these adaptations is similar to conventional high-load resistance training (> 65% 1RM; HL-RT).

Objective

To compare the effects of HL- versus BFR-RT on muscle adaptations using a systematic review and meta-analysis procedure.

Methods

Studies were identified via electronic databases based on the following inclusion criteria: (a) pre- and post-training assessment of muscular strength; (b) pre- and post-training assessment of muscle hypertrophy; (c) comparison of HL-RT vs. BFR-RT; (d) score ≥ 4 on PEDro scale; (e) means and standard deviations (or standard errors) are reported from absolute values or allow estimation from graphs. If this last criterion was not met, data were directly requested from the authors.

Results

The main results showed higher increases in muscle strength for HL- as compared with BFR-RT, even when considering test specificity, absolute occlusion pressure, cuff width, and occlusion pressure prescription. Regarding the hypertrophic response, results revealed similar effects between HL- and BFR-RT, regardless of the absolute occlusion pressure, cuff width, and occlusion pressure prescription.

Conclusions

Based on the present data, maximum muscle strength may be optimized by specific training methods (i.e., HL-RT) while both HL- and BFR-RT seem equally effective in increasing muscle mass. Importantly, BFR-RT is a valid and effective approach for increasing muscle strength in a wide spectrum of ages and physical capacity, although it may seem particularly of interest for those individuals with physical limitations to engage in HL-RT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coffey TH. Delorme method of restoration of muscle power by heavy resistance exercises. Treat Serv Bull. 1946;1(2):8–11.PubMed Coffey TH. Delorme method of restoration of muscle power by heavy resistance exercises. Treat Serv Bull. 1946;1(2):8–11.PubMed
2.
go back to reference Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60. doi:10.1007/s00421-002-0681-6.CrossRefPubMed Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60. doi:10.​1007/​s00421-002-0681-6.CrossRefPubMed
3.
go back to reference Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.CrossRefPubMed Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.CrossRefPubMed
6.
go back to reference Lixandrao ME, Ugrinowitsch C, Laurentino G, et al. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol. 2015;115(12):2471–80. doi:10.1007/s00421-015-3253-2.CrossRefPubMed Lixandrao ME, Ugrinowitsch C, Laurentino G, et al. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol. 2015;115(12):2471–80. doi:10.​1007/​s00421-015-3253-2.CrossRefPubMed
7.
go back to reference Vechin FC, Libardi CA, Conceicao MS, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):1071–6. doi:10.1519/JSC.0000000000000703.CrossRefPubMed Vechin FC, Libardi CA, Conceicao MS, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):1071–6. doi:10.​1519/​JSC.​0000000000000703​.CrossRefPubMed
11.
go back to reference Kubo K, Komuro T, Ishiguro N, et al. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech. 2006;22(2):112–9.CrossRefPubMed Kubo K, Komuro T, Ishiguro N, et al. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech. 2006;22(2):112–9.CrossRefPubMed
13.
go back to reference Yasuda T, Ogasawara R, Sakamaki M, et al. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol. 2011;111(10):2525–33. doi:10.1007/s00421-011-1873-8.CrossRefPubMed Yasuda T, Ogasawara R, Sakamaki M, et al. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol. 2011;111(10):2525–33. doi:10.​1007/​s00421-011-1873-8.CrossRefPubMed
14.
17.
go back to reference Ozaki H, Yasuda T, Ogasawara R, et al. Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions. Eur J Appl Physiol. 2013;113(1):167–74. doi:10.1007/s00421-012-2422-9.CrossRefPubMed Ozaki H, Yasuda T, Ogasawara R, et al. Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions. Eur J Appl Physiol. 2013;113(1):167–74. doi:10.​1007/​s00421-012-2422-9.CrossRefPubMed
18.
go back to reference Thiebaud RS, Loenneke JP, Fahs CA, et al. The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clin Physiol Funct Imaging. 2013;33(5):344–52. doi:10.1111/cpf.12033.CrossRefPubMed Thiebaud RS, Loenneke JP, Fahs CA, et al. The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clin Physiol Funct Imaging. 2013;33(5):344–52. doi:10.​1111/​cpf.​12033.CrossRefPubMed
19.
22.
go back to reference Loenneke JP, Kim D, Fahs CA, et al. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve. 2014;. doi:10.1002/mus.24448. Loenneke JP, Kim D, Fahs CA, et al. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve. 2014;. doi:10.​1002/​mus.​24448.
25.
go back to reference Verhagen AP, de Vet HC, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):1235–41.CrossRefPubMed Verhagen AP, de Vet HC, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):1235–41.CrossRefPubMed
27.
go back to reference Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci. 2016. doi:10.1080/02640414.2016.1210197. Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci. 2016. doi:10.​1080/​02640414.​2016.​1210197.
28.
go back to reference Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). 2000;88(6):2097–106.CrossRef Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). 2000;88(6):2097–106.CrossRef
30.
go back to reference Becker R, Awiszus F. Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle. Muscle Nerve. 2001;24(5):667–72.CrossRefPubMed Becker R, Awiszus F. Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle. Muscle Nerve. 2001;24(5):667–72.CrossRefPubMed
31.
go back to reference Moore DR, Burgomaster KA, Schofield LM, et al. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol. 2004;92(4–5):399–406. doi:10.1007/s00421-004-1072-y.PubMed Moore DR, Burgomaster KA, Schofield LM, et al. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol. 2004;92(4–5):399–406. doi:10.​1007/​s00421-004-1072-y.PubMed
36.
go back to reference Crenshaw AG, Hargens AR, Gershuni DH, et al. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand. 1988;59(4):447–51.CrossRefPubMed Crenshaw AG, Hargens AR, Gershuni DH, et al. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand. 1988;59(4):447–51.CrossRefPubMed
37.
40.
go back to reference McCall GE, Byrnes WC, Dickinson A, et al. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol (1985). 1996;81(5):2004–12.CrossRef McCall GE, Byrnes WC, Dickinson A, et al. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol (1985). 1996;81(5):2004–12.CrossRef
41.
42.
go back to reference Cumming KT, Paulsen G, Wernbom M, et al. Acute response and subcellular movement of HSP27, alphaB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiol (Oxf). 2014;211(4):634–46. doi:10.1111/apha.12305.CrossRefPubMed Cumming KT, Paulsen G, Wernbom M, et al. Acute response and subcellular movement of HSP27, alphaB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiol (Oxf). 2014;211(4):634–46. doi:10.​1111/​apha.​12305.CrossRefPubMed
44.
go back to reference Yasuda T, Abe T, Sato Y, et al. Muscle fiber cross-section area is increased after two weeks of twice daily KAATSU-resistance training. Int J Kaatsu Train Res. 2005;1:65–70.CrossRef Yasuda T, Abe T, Sato Y, et al. Muscle fiber cross-section area is increased after two weeks of twice daily KAATSU-resistance training. Int J Kaatsu Train Res. 2005;1:65–70.CrossRef
Metadata
Title
Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis
Authors
Manoel E. Lixandrão
Carlos Ugrinowitsch
Ricardo Berton
Felipe C. Vechin
Miguel S. Conceição
Felipe Damas
Cleiton A. Libardi
Hamilton Roschel
Publication date
01-02-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 2/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-017-0795-y

Other articles of this Issue 2/2018

Sports Medicine 2/2018 Go to the issue