Skip to main content
Top
Published in: Sports Medicine 1/2018

01-01-2018 | Review Article

Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance

Authors: Danielle Logue, Sharon M. Madigan, Eamonn Delahunt, Mirjam Heinen, Sarah-Jane Mc Donnell, Clare A. Corish

Published in: Sports Medicine | Issue 1/2018

Login to get access

Abstract

In a high-performance sports environment, athletes can present with low energy availability (LEA) for a variety of reasons, ranging from not consuming enough food for their specific energy requirements to disordered eating behaviors. Both male and female high-performance athletes are at risk of LEA. Longstanding LEA can cause unfavorable physiological and psychological outcomes which have the potential to impair an athlete’s health and sports performance. This narrative review summarizes the prevalence of LEA and its associations with athlete health and sports performance. It is evident in the published scientific literature that the methods used to determine LEA and its associated health outcomes vary. This contributes to poor recognition of the condition and its sequelae. This review also identifies interventions designed to improve health outcomes in athletes with LEA and indicates areas which warrant further investigation. While return-to-play guidelines have been developed for healthcare professionals to manage LEA in athletes, behavioral interventions to prevent the condition and manage its associated negative health and performance outcomes are required.
Literature
1.
go back to reference Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29(Suppl 1):S7–15.PubMedCrossRef Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29(Suppl 1):S7–15.PubMedCrossRef
2.
go back to reference Melin A, Tornberg AB, Skouby S, et al. Energy availability and the female athlete triad in elite endurance athletes. Scand J Med Sci Sports. 2015;25(5):610–22.PubMedCrossRef Melin A, Tornberg AB, Skouby S, et al. Energy availability and the female athlete triad in elite endurance athletes. Scand J Med Sci Sports. 2015;25(5):610–22.PubMedCrossRef
3.
go back to reference Nattiv A, Loucks AB, Manore MM, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.PubMedCrossRef Nattiv A, Loucks AB, Manore MM, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.PubMedCrossRef
4.
go back to reference De Souza MJ, Nattiv A, Joy E, et al. 2014 Female Athlete Triad Coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, CA, May 2012, and 2nd International Conference held in Indianapolis, IN, May 2013. Clin J Sport Med. 2014;24(2):96–119.PubMed De Souza MJ, Nattiv A, Joy E, et al. 2014 Female Athlete Triad Coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, CA, May 2012, and 2nd International Conference held in Indianapolis, IN, May 2013. Clin J Sport Med. 2014;24(2):96–119.PubMed
5.
go back to reference Otis CL, Drinkwater B, Johnson M, et al. American College of Sports Medicine position stand. The Female Athlete Triad. Med Sci Sports Exerc. 1997;29(5):i–ix.PubMedCrossRef Otis CL, Drinkwater B, Johnson M, et al. American College of Sports Medicine position stand. The Female Athlete Triad. Med Sci Sports Exerc. 1997;29(5):i–ix.PubMedCrossRef
6.
go back to reference Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7.PubMedCrossRef Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7.PubMedCrossRef
7.
go back to reference Tenforde AS, Barrack MT, Nattiv A, et al. Parallels with the female athlete triad in male athletes. Sports Med. 2016;46(2):171–82.PubMedCrossRef Tenforde AS, Barrack MT, Nattiv A, et al. Parallels with the female athlete triad in male athletes. Sports Med. 2016;46(2):171–82.PubMedCrossRef
8.
go back to reference Slater J, Brown R, McLay-Cooke R, et al. Low energy availability in exercising women: historical perspectives and future directions. Sports Med. 2017;47(2):207–20.PubMedCrossRef Slater J, Brown R, McLay-Cooke R, et al. Low energy availability in exercising women: historical perspectives and future directions. Sports Med. 2017;47(2):207–20.PubMedCrossRef
9.
go back to reference Mountjoy M, Sundgot-Borgen J, Burke L, et al. Authors’ 2015 additions to the IOC consensus statement: Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2015;49(7):417–20.PubMedCrossRef Mountjoy M, Sundgot-Borgen J, Burke L, et al. Authors’ 2015 additions to the IOC consensus statement: Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2015;49(7):417–20.PubMedCrossRef
11.
go back to reference Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol. 1998;84(1):37–46.PubMedCrossRef Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol. 1998;84(1):37–46.PubMedCrossRef
12.
go back to reference Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.PubMedCrossRef Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.PubMedCrossRef
13.
go back to reference Loucks AB. Physical health of the female athlete: observations, effects, and causes of reproductive disorders. Can J Appl Physiol. 2001;26(Suppl):S176–85.PubMedCrossRef Loucks AB. Physical health of the female athlete: observations, effects, and causes of reproductive disorders. Can J Appl Physiol. 2001;26(Suppl):S176–85.PubMedCrossRef
14.
go back to reference Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.PubMedCrossRef Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.PubMedCrossRef
15.
go back to reference Bullen BA, Skrinar GS, Beitins IZ, et al. Induction of menstrual disorders by strenuous exercise in untrained women. N Engl J Med. 1985;312(21):1349–53.PubMedCrossRef Bullen BA, Skrinar GS, Beitins IZ, et al. Induction of menstrual disorders by strenuous exercise in untrained women. N Engl J Med. 1985;312(21):1349–53.PubMedCrossRef
16.
go back to reference Williams NI, Helmreich DL, Parfitt DB, et al. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab. 2001;86(11):5184–93.PubMedCrossRef Williams NI, Helmreich DL, Parfitt DB, et al. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab. 2001;86(11):5184–93.PubMedCrossRef
17.
go back to reference Williams NI, Leidy HJ, Hill BR, et al. Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. Am J Physiol Endocrinol Metab. 2015;308(1):E29–39.PubMedCrossRef Williams NI, Leidy HJ, Hill BR, et al. Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. Am J Physiol Endocrinol Metab. 2015;308(1):E29–39.PubMedCrossRef
18.
go back to reference Reed JL, De Souza MJ, Williams NI. Changes in energy availability across the season in Division I female soccer players. J Sports Sci. 2013;31(3):314–24.PubMedCrossRef Reed JL, De Souza MJ, Williams NI. Changes in energy availability across the season in Division I female soccer players. J Sports Sci. 2013;31(3):314–24.PubMedCrossRef
19.
go back to reference Viner RT, Harris M, Berning JR, et al. Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. Int J Sport Nutr Exerc Metab. 2015;25(6):594–602.PubMedCrossRef Viner RT, Harris M, Berning JR, et al. Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. Int J Sport Nutr Exerc Metab. 2015;25(6):594–602.PubMedCrossRef
20.
go back to reference Koehler K, Achtzehn S, Braun H, et al. Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes. Appl Physiol Nutr Metab. 2013;38(7):725–33.PubMedCrossRef Koehler K, Achtzehn S, Braun H, et al. Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes. Appl Physiol Nutr Metab. 2013;38(7):725–33.PubMedCrossRef
21.
go back to reference Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45(5):985–96.PubMedCrossRef Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45(5):985–96.PubMedCrossRef
22.
go back to reference Woodruff SJ, Meloche RD. Energy availability of female varsity volleyball players. Int J Sport Nutr Exerc Metab. 2013;23(1):24–30.PubMedCrossRef Woodruff SJ, Meloche RD. Energy availability of female varsity volleyball players. Int J Sport Nutr Exerc Metab. 2013;23(1):24–30.PubMedCrossRef
23.
go back to reference Vanheest JL, Rodgers CD, Mahoney CE, et al. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exerc. 2014;46(1):156–66.PubMedCrossRef Vanheest JL, Rodgers CD, Mahoney CE, et al. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exerc. 2014;46(1):156–66.PubMedCrossRef
24.
go back to reference Muia EN, Wright HH, Onywera VO, et al. Adolescent elite Kenyan runners are at risk for energy deficiency, menstrual dysfunction and disordered eating. J Sports Sci. 2016;34(7):598–606.PubMedCrossRef Muia EN, Wright HH, Onywera VO, et al. Adolescent elite Kenyan runners are at risk for energy deficiency, menstrual dysfunction and disordered eating. J Sports Sci. 2016;34(7):598–606.PubMedCrossRef
25.
go back to reference Silva MR, Paiva T. Low energy availability and low body fat of female gymnasts before an international competition. Eur J Sport Sci. 2015;15(7):591–9.PubMedCrossRef Silva MR, Paiva T. Low energy availability and low body fat of female gymnasts before an international competition. Eur J Sport Sci. 2015;15(7):591–9.PubMedCrossRef
26.
go back to reference Dolan E, O’Connor H, McGoldrick A, et al. Nutritional, lifestyle, and weight control practices of professional jockeys. J Sports Sci. 2011;29(8):791–9.PubMedCrossRef Dolan E, O’Connor H, McGoldrick A, et al. Nutritional, lifestyle, and weight control practices of professional jockeys. J Sports Sci. 2011;29(8):791–9.PubMedCrossRef
27.
go back to reference Doyle-Lucas AF, Akers JD, Davy BM. Energetic efficiency, menstrual irregularity, and bone mineral density in elite professional female ballet dancers. J Dance Med Sci. 2010;14(4):146–54.PubMed Doyle-Lucas AF, Akers JD, Davy BM. Energetic efficiency, menstrual irregularity, and bone mineral density in elite professional female ballet dancers. J Dance Med Sci. 2010;14(4):146–54.PubMed
28.
go back to reference Hoch AZ, Pajewski NM, Moraski L, et al. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med. 2009;19(5):421–8.PubMedPubMedCentralCrossRef Hoch AZ, Pajewski NM, Moraski L, et al. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med. 2009;19(5):421–8.PubMedPubMedCentralCrossRef
29.
go back to reference Thong FS, McLean C, Graham TE. Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors. J Appl Physiol. 2000;88(6):2037–44.PubMedCrossRef Thong FS, McLean C, Graham TE. Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors. J Appl Physiol. 2000;88(6):2037–44.PubMedCrossRef
30.
go back to reference De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83(12):4220–32.PubMed De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab. 1998;83(12):4220–32.PubMed
31.
go back to reference Magkos F, Yannakoulia M. Methodology of dietary assessment in athletes: concepts and pitfalls. Curr Opin Clin Nutr Metab Care. 2003;6(5):539–49.PubMedCrossRef Magkos F, Yannakoulia M. Methodology of dietary assessment in athletes: concepts and pitfalls. Curr Opin Clin Nutr Metab Care. 2003;6(5):539–49.PubMedCrossRef
32.
go back to reference Reed JL, De Souza MJ, Kindler JM, et al. Nutritional practices associated with low energy availability in Division I female soccer players. J Sports Sci. 2014;32(16):1499–509.PubMedCrossRef Reed JL, De Souza MJ, Kindler JM, et al. Nutritional practices associated with low energy availability in Division I female soccer players. J Sports Sci. 2014;32(16):1499–509.PubMedCrossRef
33.
go back to reference Burke L, Deakin V. Clinical sports nutrition. North Ryde: McGraw-Hill Education; 2015. Burke L, Deakin V. Clinical sports nutrition. North Ryde: McGraw-Hill Education; 2015.
34.
go back to reference Schaal K, Tiollier E, Le Meur Y, et al. Elite synchronized swimmers display decreased energy availability during intensified training. Scand J Med Sci Sports. 2016;1(27):925–34. Schaal K, Tiollier E, Le Meur Y, et al. Elite synchronized swimmers display decreased energy availability during intensified training. Scand J Med Sci Sports. 2016;1(27):925–34.
35.
go back to reference Koehler K, Hoerner NR, Gibbs JC, et al. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J Sports Sci. 2016;34(20):1921–9.PubMedCrossRef Koehler K, Hoerner NR, Gibbs JC, et al. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J Sports Sci. 2016;34(20):1921–9.PubMedCrossRef
36.
go back to reference Hagmar M, Berglund B, Brismar K, et al. Body composition and endocrine profile of male Olympic athletes striving for leanness. Clin J Sport Med. 2013;23(3):197–201.PubMedCrossRef Hagmar M, Berglund B, Brismar K, et al. Body composition and endocrine profile of male Olympic athletes striving for leanness. Clin J Sport Med. 2013;23(3):197–201.PubMedCrossRef
37.
go back to reference Melin A, Tornberg AB, Skouby S, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48(7):540–5.PubMedCrossRef Melin A, Tornberg AB, Skouby S, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48(7):540–5.PubMedCrossRef
38.
go back to reference McNulty KY, Adams CH, Anderson JM, et al. Development and validation of a screening tool to identify eating disorders in female athletes. J Am Diet Assoc. 2001;101(8):886–92 (quiz 93–4).PubMedCrossRef McNulty KY, Adams CH, Anderson JM, et al. Development and validation of a screening tool to identify eating disorders in female athletes. J Am Diet Assoc. 2001;101(8):886–92 (quiz 93–4).PubMedCrossRef
40.
go back to reference De Souza MJ, Hontscharuk R, Olmsted M, et al. Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite. 2007;48(3):359–67.PubMedCrossRef De Souza MJ, Hontscharuk R, Olmsted M, et al. Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite. 2007;48(3):359–67.PubMedCrossRef
41.
go back to reference Byrne S, McLean N. Elite athletes: effects of the pressure to be thin. J Sci Med Sport. 2002;5(2):80–94.PubMedCrossRef Byrne S, McLean N. Elite athletes: effects of the pressure to be thin. J Sci Med Sport. 2002;5(2):80–94.PubMedCrossRef
42.
go back to reference Sundgot-Borgen J, Torstveit MK. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin J Sport Med. 2004;14(1):25–32.PubMedCrossRef Sundgot-Borgen J, Torstveit MK. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin J Sport Med. 2004;14(1):25–32.PubMedCrossRef
43.
go back to reference Sundgot-Borgen J, Torstveit MK. Aspects of disordered eating continuum in elite high-intensity sports. Scand J Med Sci Sport. 2010;20(2):112–21.CrossRef Sundgot-Borgen J, Torstveit MK. Aspects of disordered eating continuum in elite high-intensity sports. Scand J Med Sci Sport. 2010;20(2):112–21.CrossRef
44.
go back to reference Goltz FR, Stenzel LM, Schneider CD. Disordered eating behaviors and body image in male athletes. Rev Bras Psiquiatr. 2013;35(3):237–42.PubMedCrossRef Goltz FR, Stenzel LM, Schneider CD. Disordered eating behaviors and body image in male athletes. Rev Bras Psiquiatr. 2013;35(3):237–42.PubMedCrossRef
45.
go back to reference Torstveit MK, Rosenvinge JH, Sundgot-Borgen J. Prevalence of eating disorders and the predictive power of risk models in female elite athletes: a controlled study. Scand J Med Sci Sports. 2008;18(1):108–18.PubMedCrossRef Torstveit MK, Rosenvinge JH, Sundgot-Borgen J. Prevalence of eating disorders and the predictive power of risk models in female elite athletes: a controlled study. Scand J Med Sci Sports. 2008;18(1):108–18.PubMedCrossRef
46.
go back to reference Gibbs JC, Williams NI, Mallinson RJ, et al. Effect of high dietary restraint on energy availability and menstrual status. Med Sci Sports Exerc. 2013;45(9):1790–7.PubMedCrossRef Gibbs JC, Williams NI, Mallinson RJ, et al. Effect of high dietary restraint on energy availability and menstrual status. Med Sci Sports Exerc. 2013;45(9):1790–7.PubMedCrossRef
47.
go back to reference Schaal K, Van Loan MD, Casazza GA. Reduced catecholamine response to exercise in amenorrheic athletes. Med Sci Sports Exerc. 2011;43(1):34–43.PubMedCrossRef Schaal K, Van Loan MD, Casazza GA. Reduced catecholamine response to exercise in amenorrheic athletes. Med Sci Sports Exerc. 2011;43(1):34–43.PubMedCrossRef
48.
go back to reference Martinsen M, Holme I, Pensgaard AM, et al. The development of the brief eating disorder in athletes questionnaire. Med Sci Sports Exerc. 2014;46(8):1666–75.PubMedCrossRef Martinsen M, Holme I, Pensgaard AM, et al. The development of the brief eating disorder in athletes questionnaire. Med Sci Sports Exerc. 2014;46(8):1666–75.PubMedCrossRef
49.
go back to reference Warren MP. Endocrine manifestations of eating disorders. J Clin Endocrinol Metab. 2011;96(2):333–43.PubMedCrossRef Warren MP. Endocrine manifestations of eating disorders. J Clin Endocrinol Metab. 2011;96(2):333–43.PubMedCrossRef
50.
go back to reference Hilton LK, Loucks AB. Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. Am J Physiol Endocrinol Metab. 2000;278(1):E43–9.PubMedCrossRef Hilton LK, Loucks AB. Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. Am J Physiol Endocrinol Metab. 2000;278(1):E43–9.PubMedCrossRef
51.
go back to reference Scheid JL, De Souza MJ, Leidy HJ, et al. Ghrelin but not peptide YY is related to change in body weight and energy availability. Med Sci Sports Exerc. 2011;43(11):2063–71.PubMedCrossRef Scheid JL, De Souza MJ, Leidy HJ, et al. Ghrelin but not peptide YY is related to change in body weight and energy availability. Med Sci Sports Exerc. 2011;43(11):2063–71.PubMedCrossRef
52.
go back to reference Hill BR, De Souza MJ, Wagstaff DA, et al. The impact of weight loss on the 24-h profile of circulating peptide YY and its association with 24-h ghrelin in normal weight premenopausal women. Peptides. 2013;49:81–90.PubMedPubMedCentralCrossRef Hill BR, De Souza MJ, Wagstaff DA, et al. The impact of weight loss on the 24-h profile of circulating peptide YY and its association with 24-h ghrelin in normal weight premenopausal women. Peptides. 2013;49:81–90.PubMedPubMedCentralCrossRef
53.
go back to reference Leidy HJ, Gardner JK, Frye BR, et al. Circulating ghrelin is sensitive to changes in body weight during a diet and exercise program in normal-weight young women. J Clin Endocrinol Metab. 2004;89(6):2659–64.PubMedCrossRef Leidy HJ, Gardner JK, Frye BR, et al. Circulating ghrelin is sensitive to changes in body weight during a diet and exercise program in normal-weight young women. J Clin Endocrinol Metab. 2004;89(6):2659–64.PubMedCrossRef
54.
go back to reference Leidy HJ, Dougherty KA, Frye BR, et al. Twenty-four-hour ghrelin is elevated after calorie restriction and exercise training in non-obese women. Obesity (Silver Spring). 2007;15(2):446–55.CrossRef Leidy HJ, Dougherty KA, Frye BR, et al. Twenty-four-hour ghrelin is elevated after calorie restriction and exercise training in non-obese women. Obesity (Silver Spring). 2007;15(2):446–55.CrossRef
55.
go back to reference Melin A, Tornberg AB, Skouby S, et al. Low-energy density and high fiber intake are dietary concerns in female endurance athletes. Scand J Med Sci Sports. 2016;26(9):1060–71.PubMedCrossRef Melin A, Tornberg AB, Skouby S, et al. Low-energy density and high fiber intake are dietary concerns in female endurance athletes. Scand J Med Sci Sports. 2016;26(9):1060–71.PubMedCrossRef
56.
go back to reference Burke LM, Hawley JA, Wong SH, et al. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17–27.PubMedCrossRef Burke LM, Hawley JA, Wong SH, et al. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17–27.PubMedCrossRef
57.
go back to reference Lagowska K, Kapczuk K. Testosterone concentrations in female athletes and ballet dancers with menstrual disorders. Eur J Sport Sci. 2016;16(4):490–7.PubMedCrossRef Lagowska K, Kapczuk K. Testosterone concentrations in female athletes and ballet dancers with menstrual disorders. Eur J Sport Sci. 2016;16(4):490–7.PubMedCrossRef
58.
go back to reference Poslusna K, Ruprich J, de Vries JH, et al. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br J Nutr. 2009;101(Suppl 2):S73–85.PubMedCrossRef Poslusna K, Ruprich J, de Vries JH, et al. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br J Nutr. 2009;101(Suppl 2):S73–85.PubMedCrossRef
59.
go back to reference Dwyer J, Eisenberg A, Prelack K, et al. Eating attitudes and food intakes of elite adolescent female figure skaters: a cross sectional study. J Int Soc Sports Nutr. 2012;9(1):53.PubMedPubMedCentralCrossRef Dwyer J, Eisenberg A, Prelack K, et al. Eating attitudes and food intakes of elite adolescent female figure skaters: a cross sectional study. J Int Soc Sports Nutr. 2012;9(1):53.PubMedPubMedCentralCrossRef
60.
61.
go back to reference Hoch AZ, Papanek P, Szabo A, et al. Association between the female athlete triad and endothelial dysfunction in dancers. Clin J Sport Med. 2011;21(2):119–25.PubMedPubMedCentralCrossRef Hoch AZ, Papanek P, Szabo A, et al. Association between the female athlete triad and endothelial dysfunction in dancers. Clin J Sport Med. 2011;21(2):119–25.PubMedPubMedCentralCrossRef
62.
go back to reference Lagowska K, Kapczuk K, Friebe Z, et al. Effects of dietary intervention in young female athletes with menstrual disorders. J Int Soc Sports Nutr. 2014;11:21.PubMedPubMedCentralCrossRef Lagowska K, Kapczuk K, Friebe Z, et al. Effects of dietary intervention in young female athletes with menstrual disorders. J Int Soc Sports Nutr. 2014;11:21.PubMedPubMedCentralCrossRef
63.
go back to reference Hackney AC. Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Investig. 2008;31(10):932–8.CrossRef Hackney AC. Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Investig. 2008;31(10):932–8.CrossRef
64.
go back to reference Hagmar M, Berglund B, Brismar K, et al. Hyperandrogenism may explain reproductive dysfunction in olympic athletes. Med Sci Sports Exerc. 2009;41(6):1241–8.PubMedCrossRef Hagmar M, Berglund B, Brismar K, et al. Hyperandrogenism may explain reproductive dysfunction in olympic athletes. Med Sci Sports Exerc. 2009;41(6):1241–8.PubMedCrossRef
65.
go back to reference Cashman KD. Diet, nutrition, and bone health. J Nutr. 2007;137(11 Suppl):2507s–12s.PubMed Cashman KD. Diet, nutrition, and bone health. J Nutr. 2007;137(11 Suppl):2507s–12s.PubMed
66.
go back to reference Nana A, Slater GJ, Hopkins WG, et al. Importance of standardized DXA protocol for assessing physique changes in athletes. Int J Sport Nutr Exerc Metab. 2016;26(3):259–67.PubMedCrossRef Nana A, Slater GJ, Hopkins WG, et al. Importance of standardized DXA protocol for assessing physique changes in athletes. Int J Sport Nutr Exerc Metab. 2016;26(3):259–67.PubMedCrossRef
67.
go back to reference Barrack MT, Rauh MJ, Barkai H-S, et al. Dietary restraint and low bone mass in female adolescent endurance runners. Am J Clin Nutr. 2008;87(1):36–43.PubMed Barrack MT, Rauh MJ, Barkai H-S, et al. Dietary restraint and low bone mass in female adolescent endurance runners. Am J Clin Nutr. 2008;87(1):36–43.PubMed
68.
go back to reference Barrack MT, Rauh MJ, Nichols JF. Prevalence of and traits associated with low BMD among female adolescent runners. Med Sci Sports Exerc. 2008;40(12):2015–21.PubMedCrossRef Barrack MT, Rauh MJ, Nichols JF. Prevalence of and traits associated with low BMD among female adolescent runners. Med Sci Sports Exerc. 2008;40(12):2015–21.PubMedCrossRef
69.
go back to reference Tenforde AS, Fredericson M, Sayres LC, et al. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med. 2015;43(6):1494–504.PubMedCrossRef Tenforde AS, Fredericson M, Sayres LC, et al. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med. 2015;43(6):1494–504.PubMedCrossRef
70.
go back to reference Duckham RL, Peirce N, Meyer C, et al. Risk factors for stress fracture in female endurance athletes: a cross-sectional study. BMJ Open. 2012;2(6):e001920.PubMedPubMedCentralCrossRef Duckham RL, Peirce N, Meyer C, et al. Risk factors for stress fracture in female endurance athletes: a cross-sectional study. BMJ Open. 2012;2(6):e001920.PubMedPubMedCentralCrossRef
71.
go back to reference Mallinson RJ, Williams NI, Hill BR, et al. Body composition and reproductive function exert unique influences on indices of bone health in exercising women. Bone. 2013;56(1):91–100.PubMedCrossRef Mallinson RJ, Williams NI, Hill BR, et al. Body composition and reproductive function exert unique influences on indices of bone health in exercising women. Bone. 2013;56(1):91–100.PubMedCrossRef
72.
go back to reference Vanderschueren D, Laurent MR, Claessens F, et al. Sex steroid actions in male bone. Endo Rev. 2014;35(6):906–60.CrossRef Vanderschueren D, Laurent MR, Claessens F, et al. Sex steroid actions in male bone. Endo Rev. 2014;35(6):906–60.CrossRef
73.
go back to reference Moran JM, Martin RR, Pedrera-Canal M, et al. Low testosterone levels are associated with poor peripheral bone mineral density and quantitative bone ultrasound at phalanges and calcaneus in healthy elderly men. Biol Res Nurs. 2015;17(2):169–74.PubMedCrossRef Moran JM, Martin RR, Pedrera-Canal M, et al. Low testosterone levels are associated with poor peripheral bone mineral density and quantitative bone ultrasound at phalanges and calcaneus in healthy elderly men. Biol Res Nurs. 2015;17(2):169–74.PubMedCrossRef
74.
go back to reference Dolan E, McGoldrick A, Davenport C, et al. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys. J Bone Miner Metab. 2012;30(5):534–42.PubMedCrossRef Dolan E, McGoldrick A, Davenport C, et al. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys. J Bone Miner Metab. 2012;30(5):534–42.PubMedCrossRef
75.
go back to reference Pepper M, Akuthota V, McCarty EC. The pathophysiology of stress fractures. Clin Sports Med. 2006;25(1):1–16, vii.PubMedCrossRef Pepper M, Akuthota V, McCarty EC. The pathophysiology of stress fractures. Clin Sports Med. 2006;25(1):1–16, vii.PubMedCrossRef
76.
go back to reference Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 2010;45(3):243–52.PubMedPubMedCentralCrossRef Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 2010;45(3):243–52.PubMedPubMedCentralCrossRef
77.
go back to reference Thein-Nissenbaum JM, Rauh MJ, Carr KE, et al. Associations between disordered eating, menstrual dysfunction, and musculoskeletal injury among high school athletes. J Orthop Sports Phys Ther. 2011;41(2):60–9.PubMedCrossRef Thein-Nissenbaum JM, Rauh MJ, Carr KE, et al. Associations between disordered eating, menstrual dysfunction, and musculoskeletal injury among high school athletes. J Orthop Sports Phys Ther. 2011;41(2):60–9.PubMedCrossRef
78.
go back to reference Thein-Nissenbaum JM, Rauh MJ, Carr KE, et al. Menstrual irregularity and musculoskeletal injury in female high school athletes. J Athl Train. 2012;47(1):74–82.PubMedPubMedCentralCrossRef Thein-Nissenbaum JM, Rauh MJ, Carr KE, et al. Menstrual irregularity and musculoskeletal injury in female high school athletes. J Athl Train. 2012;47(1):74–82.PubMedPubMedCentralCrossRef
79.
go back to reference Tenforde AS, Sayres LC, McCurdy ML, et al. Overuse injuries in high school runners: lifetime prevalence and prevention strategies. PM R. 2011;3(2):125–31 (quiz 31).PubMedCrossRef Tenforde AS, Sayres LC, McCurdy ML, et al. Overuse injuries in high school runners: lifetime prevalence and prevention strategies. PM R. 2011;3(2):125–31 (quiz 31).PubMedCrossRef
80.
go back to reference Beals KA, Manore MM. Disorders of the female athlete triad among collegiate athletes. Int J Sport Nutr Exerc Metab. 2002;12(3):281–93.PubMedCrossRef Beals KA, Manore MM. Disorders of the female athlete triad among collegiate athletes. Int J Sport Nutr Exerc Metab. 2002;12(3):281–93.PubMedCrossRef
81.
go back to reference Palmer-Green D, Fuller C, Jaques R, et al. The Injury/Illness Performance Project (IIPP): a novel epidemiological approach for recording the consequences of sports injuries and illnesses. J Sports Med (Hindawi Publ Corp). 2013;2013:523974. Palmer-Green D, Fuller C, Jaques R, et al. The Injury/Illness Performance Project (IIPP): a novel epidemiological approach for recording the consequences of sports injuries and illnesses. J Sports Med (Hindawi Publ Corp). 2013;2013:523974.
82.
go back to reference Walsh NP, Gleeson M, Pyne DB, et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev. 2011;17:64–103.PubMed Walsh NP, Gleeson M, Pyne DB, et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev. 2011;17:64–103.PubMed
83.
go back to reference Gleeson M, Pyne DB. Respiratory inflammation and infections in high-performance athletes. Immunol Cell Biol. 2016;94(2):124–31.PubMedCrossRef Gleeson M, Pyne DB. Respiratory inflammation and infections in high-performance athletes. Immunol Cell Biol. 2016;94(2):124–31.PubMedCrossRef
84.
85.
go back to reference Raysmith BP, Drew MK. Performance success or failure is influenced by weeks lost to injury and illness in elite Australian track and field athletes: a 5-year prospective study. J Sci Med Sport. 2016;19(10):778–83.PubMedCrossRef Raysmith BP, Drew MK. Performance success or failure is influenced by weeks lost to injury and illness in elite Australian track and field athletes: a 5-year prospective study. J Sci Med Sport. 2016;19(10):778–83.PubMedCrossRef
86.
go back to reference Flierl MA, Rittirsch D, Huber-Lang M, et al. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening Pandora’s box? Mol Med. 2008;14(3–4):195–204.PubMed Flierl MA, Rittirsch D, Huber-Lang M, et al. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening Pandora’s box? Mol Med. 2008;14(3–4):195–204.PubMed
87.
go back to reference Zouhal H, Jacob C, Delamarche P, et al. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38(5):401–23.PubMedCrossRef Zouhal H, Jacob C, Delamarche P, et al. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38(5):401–23.PubMedCrossRef
88.
go back to reference Abedelmalek S, Chtourou H, Souissi N, et al. Caloric restriction effect on proinflammatory cytokines, growth hormone, and steroid hormone concentrations during exercise in judokas. Oxid Med Cell Longev. 2015;2015:809492.PubMedPubMedCentralCrossRef Abedelmalek S, Chtourou H, Souissi N, et al. Caloric restriction effect on proinflammatory cytokines, growth hormone, and steroid hormone concentrations during exercise in judokas. Oxid Med Cell Longev. 2015;2015:809492.PubMedPubMedCentralCrossRef
89.
go back to reference Shimizu K, Aizawa K, Suzuki N, et al. Influences of weight loss on monocytes and T-cell subpopulations in male judo athletes. J Strength Cond Res. 2011;25(7):1943–50.PubMedCrossRef Shimizu K, Aizawa K, Suzuki N, et al. Influences of weight loss on monocytes and T-cell subpopulations in male judo athletes. J Strength Cond Res. 2011;25(7):1943–50.PubMedCrossRef
90.
go back to reference Imai T, Seki S, Dobashi H, et al. Effect of weight loss on T-cell receptor-mediated T-cell function in elite athletes. Med Sci Sports Exerc. 2002;34(2):245–50.PubMedCrossRef Imai T, Seki S, Dobashi H, et al. Effect of weight loss on T-cell receptor-mediated T-cell function in elite athletes. Med Sci Sports Exerc. 2002;34(2):245–50.PubMedCrossRef
91.
go back to reference Kowatari K, Umeda T, Shimoyama T, et al. Exercise training and energy restriction decrease neutrophil phagocytic activity in judoists. Med Sci Sports Exerc. 2001;33(4):519–24.PubMedCrossRef Kowatari K, Umeda T, Shimoyama T, et al. Exercise training and energy restriction decrease neutrophil phagocytic activity in judoists. Med Sci Sports Exerc. 2001;33(4):519–24.PubMedCrossRef
92.
go back to reference Suzuki M, Nakaji S, Umeda T, et al. Effects of weight reduction on neutrophil phagocytic activity and oxidative burst activity in female judoists. Luminescence. 2003;18(4):214–7.PubMedCrossRef Suzuki M, Nakaji S, Umeda T, et al. Effects of weight reduction on neutrophil phagocytic activity and oxidative burst activity in female judoists. Luminescence. 2003;18(4):214–7.PubMedCrossRef
93.
go back to reference Yaegaki M, Umeda T, Takahashi I, et al. Change in the capability of reactive oxygen species production by neutrophils following weight reduction in female judoists. Br J Sports Med. 2007;41(5):322–7.PubMedPubMedCentralCrossRef Yaegaki M, Umeda T, Takahashi I, et al. Change in the capability of reactive oxygen species production by neutrophils following weight reduction in female judoists. Br J Sports Med. 2007;41(5):322–7.PubMedPubMedCentralCrossRef
94.
go back to reference Tsai ML, Chou KM, Chang CK, et al. Changes of mucosal immunity and antioxidation activity in elite male Taiwanese taekwondo athletes associated with intensive training and rapid weight loss. Br J Sports Med. 2011;45(9):729–34.PubMedCrossRef Tsai ML, Chou KM, Chang CK, et al. Changes of mucosal immunity and antioxidation activity in elite male Taiwanese taekwondo athletes associated with intensive training and rapid weight loss. Br J Sports Med. 2011;45(9):729–34.PubMedCrossRef
95.
go back to reference Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev. 1998;62(1):71–109.PubMedPubMedCentral Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev. 1998;62(1):71–109.PubMedPubMedCentral
96.
go back to reference Tsai ML, Ko MH, Chang CK, et al. Impact of intense training and rapid weight changes on salivary parameters in elite female Taekwondo athletes. Scand J Med Sci Sports. 2011;21(6):758–64.PubMedCrossRef Tsai ML, Ko MH, Chang CK, et al. Impact of intense training and rapid weight changes on salivary parameters in elite female Taekwondo athletes. Scand J Med Sci Sports. 2011;21(6):758–64.PubMedCrossRef
97.
go back to reference Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101(16):1899–906.PubMedCrossRef Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101(16):1899–906.PubMedCrossRef
98.
go back to reference Dusting GJ, Fennessy P, Yin ZL, et al. Nitric oxide in atherosclerosis: vascular protector or villain? Clin Exp Pharmacol Physiol Suppl. 1998;25:S34–41.PubMedCrossRef Dusting GJ, Fennessy P, Yin ZL, et al. Nitric oxide in atherosclerosis: vascular protector or villain? Clin Exp Pharmacol Physiol Suppl. 1998;25:S34–41.PubMedCrossRef
99.
go back to reference Zeni Hoch A, Dempsey RL, Carrera GF, et al. Is there an association between athletic amenorrhea and endothelial cell dysfunction? Med Sci Sports Exerc. 2003;35(3):377–83.PubMedCrossRef Zeni Hoch A, Dempsey RL, Carrera GF, et al. Is there an association between athletic amenorrhea and endothelial cell dysfunction? Med Sci Sports Exerc. 2003;35(3):377–83.PubMedCrossRef
100.
go back to reference Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, et al. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab. 2005;90(3):1354–9.PubMedCrossRef Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, et al. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab. 2005;90(3):1354–9.PubMedCrossRef
101.
go back to reference Misra M, Miller KK, Tsai P, et al. Uncoupling of cardiovascular risk markers in adolescent girls with anorexia nervosa. J Pediatr. 2006;149(6):763–9.PubMedCrossRef Misra M, Miller KK, Tsai P, et al. Uncoupling of cardiovascular risk markers in adolescent girls with anorexia nervosa. J Pediatr. 2006;149(6):763–9.PubMedCrossRef
102.
go back to reference Ohwada R, Hotta M, Oikawa S, et al. Etiology of hypercholesterolemia in patients with anorexia nervosa. Int J Eat Disord. 2006;39(7):598–601.PubMedCrossRef Ohwada R, Hotta M, Oikawa S, et al. Etiology of hypercholesterolemia in patients with anorexia nervosa. Int J Eat Disord. 2006;39(7):598–601.PubMedCrossRef
103.
go back to reference Filaire E, Maso F, Degoutte F, et al. Food restriction, performance, psychological state and lipid values in judo athletes. Int J Sports Med. 2001;22(6):454–9.PubMedCrossRef Filaire E, Maso F, Degoutte F, et al. Food restriction, performance, psychological state and lipid values in judo athletes. Int J Sports Med. 2001;22(6):454–9.PubMedCrossRef
104.
go back to reference Fogelholm M. Effects of bodyweight reduction on sports performance. Sports Med. 1994;18(4):249–67.PubMedCrossRef Fogelholm M. Effects of bodyweight reduction on sports performance. Sports Med. 1994;18(4):249–67.PubMedCrossRef
105.
106.
go back to reference Lacey JM. Disordered eating among athletes: a comprehensive guide for health professionals. Middletown: American Library Association CHOICE; 2005. p. 2021. Lacey JM. Disordered eating among athletes: a comprehensive guide for health professionals. Middletown: American Library Association CHOICE; 2005. p. 2021.
107.
go back to reference Armstrong LE, VanHeest JL. The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology. Sports Med. 2002;32(3):185–209.PubMedCrossRef Armstrong LE, VanHeest JL. The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology. Sports Med. 2002;32(3):185–209.PubMedCrossRef
108.
go back to reference Mackinnon LT. Overtraining effects on immunity and performance in athletes. Immunol Cell Biol. 2000;78(5):502–9.PubMedCrossRef Mackinnon LT. Overtraining effects on immunity and performance in athletes. Immunol Cell Biol. 2000;78(5):502–9.PubMedCrossRef
109.
go back to reference Garthe I, Raastad T, Refsnes PE, et al. Effect of nutritional intervention on body composition and performance in elite athletes. Eur J Sport Sci. 2013;13(3):295–303.PubMedCrossRef Garthe I, Raastad T, Refsnes PE, et al. Effect of nutritional intervention on body composition and performance in elite athletes. Eur J Sport Sci. 2013;13(3):295–303.PubMedCrossRef
110.
go back to reference Cialdella-Kam L, Guebels CP, Maddalozzo GF, et al. Dietary intervention restored menses in female athletes with exercise-associated menstrual dysfunction with limited impact on bone and muscle health. Nutrients. 2014;6(8):3018–39.PubMedPubMedCentralCrossRef Cialdella-Kam L, Guebels CP, Maddalozzo GF, et al. Dietary intervention restored menses in female athletes with exercise-associated menstrual dysfunction with limited impact on bone and muscle health. Nutrients. 2014;6(8):3018–39.PubMedPubMedCentralCrossRef
111.
go back to reference Guebels CP, Kam LC, Maddalozzo GF, et al. Active women before/after an intervention designed to restore menstrual function: resting metabolic rate and comparison of four methods to quantify energy expenditure and energy availability. Int J Sport Nutr Exerc Metab. 2014;24(1):37–46.PubMedCrossRef Guebels CP, Kam LC, Maddalozzo GF, et al. Active women before/after an intervention designed to restore menstrual function: resting metabolic rate and comparison of four methods to quantify energy expenditure and energy availability. Int J Sport Nutr Exerc Metab. 2014;24(1):37–46.PubMedCrossRef
112.
go back to reference Dueck CA, Matt KS, Manore MM, et al. Treatment of athletic amenorrhea with a diet and training intervention program. Int J Sport Nutr. 1996;6(1):24–40.PubMedCrossRef Dueck CA, Matt KS, Manore MM, et al. Treatment of athletic amenorrhea with a diet and training intervention program. Int J Sport Nutr. 1996;6(1):24–40.PubMedCrossRef
113.
go back to reference Molina-Lopez J, Molina JM, Chirosa LJ, et al. Implementation of a nutrition education program in a handball team; consequences on nutritional status. Nutr Hosp. 2013;28(4):1065–76.PubMed Molina-Lopez J, Molina JM, Chirosa LJ, et al. Implementation of a nutrition education program in a handball team; consequences on nutritional status. Nutr Hosp. 2013;28(4):1065–76.PubMed
114.
go back to reference Valliant MW, Emplaincourt HP, Wenzel RK, et al. Nutrition education by a registered dietitian improves dietary intake and nutrition knowledge of a NCAA female volleyball team. Nutrients. 2012;4(6):506–16.PubMedPubMedCentralCrossRef Valliant MW, Emplaincourt HP, Wenzel RK, et al. Nutrition education by a registered dietitian improves dietary intake and nutrition knowledge of a NCAA female volleyball team. Nutrients. 2012;4(6):506–16.PubMedPubMedCentralCrossRef
115.
go back to reference Day J, Wengreen H, Heath E, et al. Prevalence of low energy availability in collegiate female runners and implementation of nutrition education intervention. Sports Nutr Ther. 2015;1:101. Day J, Wengreen H, Heath E, et al. Prevalence of low energy availability in collegiate female runners and implementation of nutrition education intervention. Sports Nutr Ther. 2015;1:101.
116.
go back to reference Garthe I, Raastad T, Sundgot-Borgen J. Long-term effect of nutritional counselling on desired gain in body mass and lean body mass in elite athletes. Appl Physiol Nutr Metab. 2011;36(4):547–54.PubMedCrossRef Garthe I, Raastad T, Sundgot-Borgen J. Long-term effect of nutritional counselling on desired gain in body mass and lean body mass in elite athletes. Appl Physiol Nutr Metab. 2011;36(4):547–54.PubMedCrossRef
117.
go back to reference Kopp-Woodroffe SA, Manore MM, Dueck CA, et al. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr. 1999;9(1):70–88.PubMedCrossRef Kopp-Woodroffe SA, Manore MM, Dueck CA, et al. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr. 1999;9(1):70–88.PubMedCrossRef
118.
go back to reference Slater J, McLay-Cooke R, Brown R, et al. Female recreational exercisers at risk for low energy availability. Int J Sport Nutr Exerc Metab. 2016;26(5):421–7.PubMedCrossRef Slater J, McLay-Cooke R, Brown R, et al. Female recreational exercisers at risk for low energy availability. Int J Sport Nutr Exerc Metab. 2016;26(5):421–7.PubMedCrossRef
Metadata
Title
Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance
Authors
Danielle Logue
Sharon M. Madigan
Eamonn Delahunt
Mirjam Heinen
Sarah-Jane Mc Donnell
Clare A. Corish
Publication date
01-01-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 1/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-017-0790-3

Other articles of this Issue 1/2018

Sports Medicine 1/2018 Go to the issue