Skip to main content
Top
Published in: Sports Medicine 4/2016

01-04-2016 | Systematic Review

Application of Global Positioning System and Microsensor Technology in Competitive Rugby League Match-Play: A Systematic Review and Meta-analysis

Authors: Joanne Hausler, Mark Halaki, Rhonda Orr

Published in: Sports Medicine | Issue 4/2016

Login to get access

Abstract

Background

The use of global positioning system (GPS) devices with the inclusion of microsenor technology in rugby league enables measurement of player activity profiles to understand the demands of match-play and optimise on-field performance.

Objective

The aim of this review was to systematically review the use of GPS and microsensor technology to quantify player activity profiles in match-play, and conduct a meta-analysis of relevant movement variables in order to present the contemporary and emerging themes within rugby league.

Methods

A systematic search of electronic databases (MEDLINE, SPORTDiscus, CINAHL, Web of Science, Scopus, ScienceDirect, EMBASE, and Google Scholar) from the earliest record to February 2015 was conducted. Permutations of key words included GPS, microtechnology, activity profiles, match demands (movement or physical demands), and rugby league. A meta-analysis was conducted to provide a pooled mean and confidence intervals on comparable data from at least three studies.

Results

Twenty-seven studies met the eligibility criteria and included 1270 male participants. The studies reported on GPS use in elite competition (n = 16) with limited representation of other competition standards: sub-elite (n = 6), amateur (n = 1) and junior (n = 3). All studies reported on movement variables (distance, relative distance, speed and accelerations), with studies analysing movement at high speed (n = 18, 66.7 %), evaluating collision or impact variables (n = 15, 55.6 %) and determining the metabolic energy (n = 2, 7.4 %) associated with rugby league match-play. Activity profiles of varying positions, positional groups and levels of rugby league competition were described. Meta-analysis indicated that the total distance covered by backs and adjustables were both greater than forward positions, but adjustables covered greater relative distance than forwards and backs. Speed zones were typically categorised into six speed zones ranging from 0 to 36 km·h−1, or into low- and high-intensity movement. Vast inconsistencies were apparent across studies in categorising movement at high speed, posing difficulties for comparison. Meta-analysis indicated that, although the number of repeated high-intensity effort (RHIE) bouts in elite players were similar to sub-elite (and both greater than juniors), the number of efforts per RHIE were significantly greater in elite than sub-elite players. Differential pacing strategies were adopted according to player selection (whole-match vs. interchange), time period within match-play and match outcome, in order to maintain high-intensity performance or to challenge for a win. Sizeable inconsistencies were also identified in the definitions of reported collisions (classified as mild, moderate and heavy) and impacts (six zone categories provided by manufacturer), making comparisons across studies difficult. Collision profiles were different between competition standard and position where elite players and forwards sustained more moderate- and high-intensity collisions than sub-elite players and backs, respectively. The recent inclusion of GPS-derived metabolic indices to activity profiles has also accentuated the distinctive workloads of positional groups during match-play where adjustables demonstrate the highest energy expenditure and metabolic power.

Conclusions

This review and the results of the meta-analysis have demonstrated that positional groups have varied kinematic and metabolic demands. During match play, forwards sustain the greatest number of collisions and RHIE bouts, outside backs participate in more high-speed running and cover the greatest distance, and adjustables work at high intensity covering the greatest relative distance with the highest metabolic cost. Therefore, specific training for each positional group should address their match requirements. In addition, sub-elite players exhibit lower intensity of play compared with elite players, as indicated by lower relative distance and less number of efforts per RHIE bout despite similarities in total distance covered and number of RHIE bouts. To prepare them for elite-level play, their training should incorporate higher intensity drills in which greater relative distance and number of efforts per RHIE bout are performed. Furthermore, the lack of consistency in the definition of speed zones, high-intensity movement, collisions and impacts, underscores the difficulties encountered in meaningful comparisons of player activity profiles between studies. Consensus of these definitions would facilitate direct comparisons within rugby league.
Literature
1.
go back to reference Schutz Y, Chambaz A. Could a satellite-based navigation system (GPS) be used to assess the physical activity of individuals on earth? Eur J Clin Nutr. 1997;51:338–9.CrossRefPubMed Schutz Y, Chambaz A. Could a satellite-based navigation system (GPS) be used to assess the physical activity of individuals on earth? Eur J Clin Nutr. 1997;51:338–9.CrossRefPubMed
2.
go back to reference Cummins C, Orr R, O’Connor H, et al. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 2013;43:1025–42.CrossRefPubMed Cummins C, Orr R, O’Connor H, et al. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 2013;43:1025–42.CrossRefPubMed
3.
go back to reference McLellan CP, Lovell DI, Gass GC. Performance analysis of elite rugby league match play using global positioning systems. J Strength Cond Res. 2011;25:1703–10.CrossRefPubMed McLellan CP, Lovell DI, Gass GC. Performance analysis of elite rugby league match play using global positioning systems. J Strength Cond Res. 2011;25:1703–10.CrossRefPubMed
4.
go back to reference Waldron M, Twist C, Highton J. Movement and physiological match demands of elite rugby league using portable global positioning systems. J Sports Sci. 2011;29:1223–30.CrossRefPubMed Waldron M, Twist C, Highton J. Movement and physiological match demands of elite rugby league using portable global positioning systems. J Sports Sci. 2011;29:1223–30.CrossRefPubMed
5.
go back to reference Aughey RJ. Applications of GPS technologies to field sports. Int J Sports Physiol Perform. 2011;6:295–310.PubMed Aughey RJ. Applications of GPS technologies to field sports. Int J Sports Physiol Perform. 2011;6:295–310.PubMed
6.
go back to reference McLellan CP, Lovell DI. Neuromuscular responses to impact and collision during elite rugby league match play. J Strength Cond Res. 2012;26:1431–40.CrossRefPubMed McLellan CP, Lovell DI. Neuromuscular responses to impact and collision during elite rugby league match play. J Strength Cond Res. 2012;26:1431–40.CrossRefPubMed
7.
go back to reference Cummins C, Orr R. Analysis of physical collisions in elite national rugby league match play. Int J Sports Physiol Perform. 2015;10:732–9.CrossRefPubMed Cummins C, Orr R. Analysis of physical collisions in elite national rugby league match play. Int J Sports Physiol Perform. 2015;10:732–9.CrossRefPubMed
8.
go back to reference Kempton T, Sirotic AC, Rampinini E. Metabolic power demands of rugby league match-play. Int J Sports Physiol Perform. 2015;10:23–8.CrossRefPubMed Kempton T, Sirotic AC, Rampinini E. Metabolic power demands of rugby league match-play. Int J Sports Physiol Perform. 2015;10:23–8.CrossRefPubMed
9.
go back to reference Gabbett TJ. Relationship between accelerometer load, collisions, and repeated high-intensity effort activity in rugby league players. J Strength Cond Res. 2015;29:3424–31.CrossRefPubMed Gabbett TJ. Relationship between accelerometer load, collisions, and repeated high-intensity effort activity in rugby league players. J Strength Cond Res. 2015;29:3424–31.CrossRefPubMed
10.
go back to reference Gabbett TJ, Jenkins DG, Abernethy B. Physical collisions and injury in professional rugby league match-play. J Sci Med Sport. 2010;14:210–5.CrossRef Gabbett TJ, Jenkins DG, Abernethy B. Physical collisions and injury in professional rugby league match-play. J Sci Med Sport. 2010;14:210–5.CrossRef
11.
go back to reference Weaving D, Marshall P, Earle K, et al. Combining internal- and external-training-load measures in professional rugby league. Int J Sports Physiol Perform. 2014;9:905–12.CrossRefPubMed Weaving D, Marshall P, Earle K, et al. Combining internal- and external-training-load measures in professional rugby league. Int J Sports Physiol Perform. 2014;9:905–12.CrossRefPubMed
12.
go back to reference Sykes D, Nicholas C, Lamb K. An evaluation of the external validity and reliability of a rugby league match simulation protocol. J Sports Sci. 2012;31:48–57.CrossRefPubMed Sykes D, Nicholas C, Lamb K. An evaluation of the external validity and reliability of a rugby league match simulation protocol. J Sports Sci. 2012;31:48–57.CrossRefPubMed
13.
go back to reference Gabbett TJ. Quantifying the physical demands of collision sports: does microsensor technology measure what it claims to measure? J Strength Cond Res. 2013;27:2319–22.CrossRefPubMed Gabbett TJ. Quantifying the physical demands of collision sports: does microsensor technology measure what it claims to measure? J Strength Cond Res. 2013;27:2319–22.CrossRefPubMed
14.
go back to reference Johnston RJ, Watsford ML, Pine MJ. The validity and reliability of 5-Hz global positioning system units to measure team sport movement demands. J Strength Cond Res. 2012;26:758–65.CrossRefPubMed Johnston RJ, Watsford ML, Pine MJ. The validity and reliability of 5-Hz global positioning system units to measure team sport movement demands. J Strength Cond Res. 2012;26:758–65.CrossRefPubMed
15.
go back to reference Waldron M, Highton J, Twist C. The reliability of a rugby league movement-simulation protocol designed to replicate the performance of interchanged players. Int J Sports Physiol Perform. 2013;8:483–9.PubMed Waldron M, Highton J, Twist C. The reliability of a rugby league movement-simulation protocol designed to replicate the performance of interchanged players. Int J Sports Physiol Perform. 2013;8:483–9.PubMed
16.
go back to reference Waldron M, Worsfold P, Twist C. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gates to assess sprint performance variables. J Sports Sci. 2011;29:1613–9.CrossRefPubMed Waldron M, Worsfold P, Twist C. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gates to assess sprint performance variables. J Sports Sci. 2011;29:1613–9.CrossRefPubMed
17.
go back to reference Gray AJ, Jenkins D, Andrews MH. Validity and reliability of GPS for measuring distance travelled in field-based team sports. J Sports Sci. 2010;28:1319–25.CrossRefPubMed Gray AJ, Jenkins D, Andrews MH. Validity and reliability of GPS for measuring distance travelled in field-based team sports. J Sports Sci. 2010;28:1319–25.CrossRefPubMed
18.
go back to reference Jennings D, Cormack S, Coutts AJ. The validity and reliability of GPS units for measuring distance in team sport specific running patterns. Int J Sports Physiol Perform. 2010;5:328–41.PubMed Jennings D, Cormack S, Coutts AJ. The validity and reliability of GPS units for measuring distance in team sport specific running patterns. Int J Sports Physiol Perform. 2010;5:328–41.PubMed
19.
go back to reference Buchheit M, Al Haddad H, Simpson B. Monitoring accelerations with GPS in football: time to slow down? Int J Sports Physiol Perform. 2014;9:442–5.CrossRefPubMed Buchheit M, Al Haddad H, Simpson B. Monitoring accelerations with GPS in football: time to slow down? Int J Sports Physiol Perform. 2014;9:442–5.CrossRefPubMed
20.
go back to reference Aughey RJ, Varley MC. Acceleration profiles in elite Australian soccer. Int J Sports Med. 2013;34:282.CrossRefPubMed Aughey RJ, Varley MC. Acceleration profiles in elite Australian soccer. Int J Sports Med. 2013;34:282.CrossRefPubMed
21.
go back to reference Aughey RJ. Australian football player work rate: evidence of fatigue and pacing? Int J Sports Physiol Perform. 2010;5:394–405.PubMed Aughey RJ. Australian football player work rate: evidence of fatigue and pacing? Int J Sports Physiol Perform. 2010;5:394–405.PubMed
22.
go back to reference Gastin PB, McLean O, Spittle M, et al. Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. J Sci Med Sport. 2013;16:589–93.CrossRefPubMed Gastin PB, McLean O, Spittle M, et al. Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. J Sci Med Sport. 2013;16:589–93.CrossRefPubMed
23.
go back to reference Higham DG, Pyne DB, Anson JM, et al. Movement patterns in rugby sevens: effects of tournament level, fatigue and substitute players. J Sci Med Sport. 2012;15:277–82.CrossRefPubMed Higham DG, Pyne DB, Anson JM, et al. Movement patterns in rugby sevens: effects of tournament level, fatigue and substitute players. J Sci Med Sport. 2012;15:277–82.CrossRefPubMed
24.
go back to reference Jones MR, West DJ, Crewther BT, et al. Quantifying positional and temporal movement patterns in professional rugby union using global positioning system. Eur J Sport Sci. 2015;15(6):488–96.CrossRefPubMed Jones MR, West DJ, Crewther BT, et al. Quantifying positional and temporal movement patterns in professional rugby union using global positioning system. Eur J Sport Sci. 2015;15(6):488–96.CrossRefPubMed
25.
go back to reference Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6:311–21.PubMed Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6:311–21.PubMed
26.
go back to reference Kelly SJ, Murphy AJ, Watsford ML, et al. Reliability and validity of sports accelerometers during static and dynamic testing. Int J Sports Physiol Perform. 2015;10:106–11.CrossRefPubMed Kelly SJ, Murphy AJ, Watsford ML, et al. Reliability and validity of sports accelerometers during static and dynamic testing. Int J Sports Physiol Perform. 2015;10:106–11.CrossRefPubMed
27.
go back to reference Kelly D, Coughlan GF, Green BS, et al. Automatic detection of collisions in elite level rugby union using a wearable sensing device. Sports Eng. 2012;15:81–92.CrossRef Kelly D, Coughlan GF, Green BS, et al. Automatic detection of collisions in elite level rugby union using a wearable sensing device. Sports Eng. 2012;15:81–92.CrossRef
28.
go back to reference Gastin PB, McLean OC, Breed RV, et al. Tackle and impact detection in elite Australian football using wearable microsensor technology. J Sports Sci. 2014;32:947–53.CrossRefPubMed Gastin PB, McLean OC, Breed RV, et al. Tackle and impact detection in elite Australian football using wearable microsensor technology. J Sports Sci. 2014;32:947–53.CrossRefPubMed
29.
go back to reference Chambers R, Gabbett TJ, Cole MH, et al. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015;45:1065–81.CrossRefPubMed Chambers R, Gabbett TJ, Cole MH, et al. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015;45:1065–81.CrossRefPubMed
31.
go back to reference Austin DJ, Kelly SJ. Positional differences in professional rugby league match play through the use of global positioning systems. J Strength Cond Res. 2013;27:14–9.CrossRefPubMed Austin DJ, Kelly SJ. Positional differences in professional rugby league match play through the use of global positioning systems. J Strength Cond Res. 2013;27:14–9.CrossRefPubMed
32.
go back to reference Eaves S, Broad G. A comparative analysis of professional rugby league football playing patterns between Australia and the United Kingdom. Int J Perform Anal Sport. 2007;7:54–66. Eaves S, Broad G. A comparative analysis of professional rugby league football playing patterns between Australia and the United Kingdom. Int J Perform Anal Sport. 2007;7:54–66.
33.
go back to reference Johnston RD, Gabbett TJ, Jenkins DG. Applied sport science of rugby league. Sports Med. 2014;44(8):1087–100.CrossRefPubMed Johnston RD, Gabbett TJ, Jenkins DG. Applied sport science of rugby league. Sports Med. 2014;44(8):1087–100.CrossRefPubMed
34.
go back to reference Di Prampero PE, Fusi S, Sepulcri L. Sprint running: a new energetic approach. J Exp Biol. 2005;208(Pt 14):2809–16.CrossRefPubMed Di Prampero PE, Fusi S, Sepulcri L. Sprint running: a new energetic approach. J Exp Biol. 2005;208(Pt 14):2809–16.CrossRefPubMed
35.
go back to reference Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52:377–84.CrossRefPubMedPubMedCentral Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52:377–84.CrossRefPubMedPubMedCentral
36.
go back to reference Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to meta-analysis. New York: John Wiley & Sons, Ltd; 2009.CrossRef Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to meta-analysis. New York: John Wiley & Sons, Ltd; 2009.CrossRef
39.
go back to reference Austin DJ, Kelly SJ. Professional rugby league positional match-play analysis through the use of global positioning system. J Strength Cond Res. 2014;28:187–93.CrossRefPubMed Austin DJ, Kelly SJ. Professional rugby league positional match-play analysis through the use of global positioning system. J Strength Cond Res. 2014;28:187–93.CrossRefPubMed
40.
go back to reference Black GM, Gabbett TJ. Match intensity and pacing strategies in rugby league: an examination of whole-game and interchange players, and winning and losing teams. J Strength Cond Res. 2014;28:1507–16.CrossRefPubMed Black GM, Gabbett TJ. Match intensity and pacing strategies in rugby league: an examination of whole-game and interchange players, and winning and losing teams. J Strength Cond Res. 2014;28:1507–16.CrossRefPubMed
41.
go back to reference Duffield R, Murphy A, Snape A. Post-match changes in neuromuscular function and the relationship to match demands in amateur rugby league matches. J Sci Med Sport. 2011;15:238–43.CrossRefPubMed Duffield R, Murphy A, Snape A. Post-match changes in neuromuscular function and the relationship to match demands in amateur rugby league matches. J Sci Med Sport. 2011;15:238–43.CrossRefPubMed
42.
go back to reference Gabbett TJ. Influence of playing standard on the physical demands of professional rugby league. J Sports Sci. 2013;31:1125–38.CrossRefPubMed Gabbett TJ. Influence of playing standard on the physical demands of professional rugby league. J Sports Sci. 2013;31:1125–38.CrossRefPubMed
43.
go back to reference Gabbett TJ. Influence of the opposing team on the physical demands of elite rugby league match play. J Strength Cond Res. 2013;27:1629–35.CrossRefPubMed Gabbett TJ. Influence of the opposing team on the physical demands of elite rugby league match play. J Strength Cond Res. 2013;27:1629–35.CrossRefPubMed
44.
go back to reference Gabbett TJ. Influence of playing standard on the physical demands of junior rugby league tournament match-play. J Sci Med Sport. 2014;17:212–7.CrossRefPubMed Gabbett TJ. Influence of playing standard on the physical demands of junior rugby league tournament match-play. J Sci Med Sport. 2014;17:212–7.CrossRefPubMed
45.
go back to reference Gabbett TJ. Effects of physical, technical and tactical factors on final ladder position in semiprofessional rugby league. Int J Sports Physiol Perform. 2014;9:680–8.CrossRefPubMed Gabbett TJ. Effects of physical, technical and tactical factors on final ladder position in semiprofessional rugby league. Int J Sports Physiol Perform. 2014;9:680–8.CrossRefPubMed
46.
go back to reference Gabbett TJ, Jenkins DG, Abernethy B. Physical demands of professional rugby league training and competition using microtechnology. J Sci Med Sport. 2012;15:80–6.CrossRefPubMed Gabbett TJ, Jenkins DG, Abernethy B. Physical demands of professional rugby league training and competition using microtechnology. J Sci Med Sport. 2012;15:80–6.CrossRefPubMed
47.
go back to reference Gabbett TJ, Polley C, Dwyer DB. Influence of field position and phase of play on the physical demands of match-play in professional rugby league forwards. J Sci Med Sport. 2014;17:556–61.CrossRefPubMed Gabbett TJ, Polley C, Dwyer DB. Influence of field position and phase of play on the physical demands of match-play in professional rugby league forwards. J Sci Med Sport. 2014;17:556–61.CrossRefPubMed
48.
go back to reference Gabbett TJ, Seibold AJ. Relationship between tests of physical qualities, team selection, and physical match performance in semiprofessional rugby league players. J Strength Cond Res. 2013;27:3259–65.CrossRefPubMed Gabbett TJ, Seibold AJ. Relationship between tests of physical qualities, team selection, and physical match performance in semiprofessional rugby league players. J Strength Cond Res. 2013;27:3259–65.CrossRefPubMed
49.
go back to reference Gabbett TJ. Influence of ball-in-play time on the activity profiles of rugby league match-play. J Strength Cond Res. 2015;29:716–21.CrossRefPubMed Gabbett TJ. Influence of ball-in-play time on the activity profiles of rugby league match-play. J Strength Cond Res. 2015;29:716–21.CrossRefPubMed
50.
go back to reference Hulin BT, Gabbett TJ, Kearney S, et al. Physical demands of match-play in successful and less-successful elite rugby league teams. Int J Sports Physiol Perform. 2015;10(6):703–10.CrossRefPubMed Hulin BT, Gabbett TJ, Kearney S, et al. Physical demands of match-play in successful and less-successful elite rugby league teams. Int J Sports Physiol Perform. 2015;10(6):703–10.CrossRefPubMed
51.
go back to reference Johnston RD, Gabbett TJ, Jenkins DG. Influence of an intensified competition on fatigue and match performance in junior rugby league players. J Sci Med Sport. 2013;16:460–5.CrossRefPubMed Johnston RD, Gabbett TJ, Jenkins DG. Influence of an intensified competition on fatigue and match performance in junior rugby league players. J Sci Med Sport. 2013;16:460–5.CrossRefPubMed
52.
go back to reference Kempton T, Sirotic AC, Cameron M. Match-related fatigue reduces physical and technical performance during elite rugby league match-play: a case study. J Sports Sci. 2013;31:1770–80.CrossRefPubMed Kempton T, Sirotic AC, Cameron M. Match-related fatigue reduces physical and technical performance during elite rugby league match-play: a case study. J Sports Sci. 2013;31:1770–80.CrossRefPubMed
53.
go back to reference Kempton T, Sirotic AC, Coutts AJ. An integrated analysis of match-related fatigue in professional rugby league. J Sports Sci. 2015;33:39–47.CrossRefPubMed Kempton T, Sirotic AC, Coutts AJ. An integrated analysis of match-related fatigue in professional rugby league. J Sports Sci. 2015;33:39–47.CrossRefPubMed
54.
go back to reference McLellan CP, Lovell DI. Performance analysis of professional, semiprofessional, and junior elite rugby league match-play using Global Positioning Systems. J Strength Cond Res. 2013;27:3266–74.CrossRefPubMed McLellan CP, Lovell DI. Performance analysis of professional, semiprofessional, and junior elite rugby league match-play using Global Positioning Systems. J Strength Cond Res. 2013;27:3266–74.CrossRefPubMed
55.
go back to reference McLellan CP, Lovell DI, Gass GC. Biomechanical and endocrine responses to impact and collision during elite rugby league match play. J Strength Cond Res. 2011;25:1553–62.CrossRefPubMed McLellan CP, Lovell DI, Gass GC. Biomechanical and endocrine responses to impact and collision during elite rugby league match play. J Strength Cond Res. 2011;25:1553–62.CrossRefPubMed
56.
go back to reference Murray NB, Gabbett TJ, Chamari K. Effect of different between-match recovery times on the activity profiles and injury rates of national rugby league players. J Strength Cond Res. 2014;28:3476–83.CrossRefPubMed Murray NB, Gabbett TJ, Chamari K. Effect of different between-match recovery times on the activity profiles and injury rates of national rugby league players. J Strength Cond Res. 2014;28:3476–83.CrossRefPubMed
57.
go back to reference Twist C, Highton J, Waldron M. Movement demands of elite rugby league players during Australian National Rugby League and European Super League Matches. Int J Sports Physiol Perform. 2014;9:925–30.CrossRefPubMed Twist C, Highton J, Waldron M. Movement demands of elite rugby league players during Australian National Rugby League and European Super League Matches. Int J Sports Physiol Perform. 2014;9:925–30.CrossRefPubMed
58.
go back to reference Varley MC, Gabbett TJ, Aughey RJ. Activity profiles of professional soccer, rugby league and Australian football match play. J Sports Sci. 2014;32:1858–66.CrossRefPubMed Varley MC, Gabbett TJ, Aughey RJ. Activity profiles of professional soccer, rugby league and Australian football match play. J Sports Sci. 2014;32:1858–66.CrossRefPubMed
59.
go back to reference Waldron M, Highton J, Daniels M, et al. Preliminary evidence of transient fatigue and pacing during interchanges in rugby league. Int J Sports Physiol Perform. 2013;8:157–64.PubMed Waldron M, Highton J, Daniels M, et al. Preliminary evidence of transient fatigue and pacing during interchanges in rugby league. Int J Sports Physiol Perform. 2013;8:157–64.PubMed
60.
go back to reference Waldron M, Worsfold PR, Twist C. A three-season comparison of match performances among selected and unselected elite youth rugby league players. J Sports Sci. 2014;32:1110–9.CrossRefPubMed Waldron M, Worsfold PR, Twist C. A three-season comparison of match performances among selected and unselected elite youth rugby league players. J Sports Sci. 2014;32:1110–9.CrossRefPubMed
61.
go back to reference Osgnach C, Poser S, Bernardini R. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170–8.CrossRefPubMed Osgnach C, Poser S, Bernardini R. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170–8.CrossRefPubMed
62.
go back to reference Sirotic AC, Coutts AJ, Knowles AJ. A comparison of match demands between elite and semi-elite rugby league competition. J Sports Sci. 2009;27:203–11.CrossRefPubMed Sirotic AC, Coutts AJ, Knowles AJ. A comparison of match demands between elite and semi-elite rugby league competition. J Sports Sci. 2009;27:203–11.CrossRefPubMed
63.
go back to reference Gabbett T, Jenkins D, Abernethy B. Physical collisions and injury during professional rugby league skills training. J Sci Med Sport. 2010;13:578–83.CrossRefPubMed Gabbett T, Jenkins D, Abernethy B. Physical collisions and injury during professional rugby league skills training. J Sci Med Sport. 2010;13:578–83.CrossRefPubMed
65.
go back to reference Johnston RD, Gabbett TJ. Repeated-sprint and effort ability in rugby league players. J Strength Cond Res. 2011;25:2789–95.CrossRefPubMed Johnston RD, Gabbett TJ. Repeated-sprint and effort ability in rugby league players. J Strength Cond Res. 2011;25:2789–95.CrossRefPubMed
69.
go back to reference New South Wales Rugby League. Semi-Pro Day: recognising and educating and celebrating Players of the VB NSW Cup. Moore Park: New South Wales Rugby League; 2015. New South Wales Rugby League. Semi-Pro Day: recognising and educating and celebrating Players of the VB NSW Cup. Moore Park: New South Wales Rugby League; 2015.
70.
go back to reference Doyle J. Elite pathways review. Moore Park: National Rugby League; 2013. Doyle J. Elite pathways review. Moore Park: National Rugby League; 2013.
71.
go back to reference Sirotic AC, Knowles H, Catterick C, et al. Positional match demands of professional rugby league competition. J Strength Cond Res. 2011;25:3076–87.CrossRefPubMed Sirotic AC, Knowles H, Catterick C, et al. Positional match demands of professional rugby league competition. J Strength Cond Res. 2011;25:3076–87.CrossRefPubMed
72.
go back to reference Austin DJ, Gabbett TJ, Jenkins DJ. Repeated high-intensity exercise in a professional rugby league. J Strength Cond Res. 2011;25:1898–904.CrossRefPubMed Austin DJ, Gabbett TJ, Jenkins DJ. Repeated high-intensity exercise in a professional rugby league. J Strength Cond Res. 2011;25:1898–904.CrossRefPubMed
73.
go back to reference Gabbett TJ. The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. J Strength Cond Res. 2010;24:2593–603.CrossRefPubMed Gabbett TJ. The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. J Strength Cond Res. 2010;24:2593–603.CrossRefPubMed
74.
go back to reference Gabbett TJ, Domrow N. Relationships between training load, injury, and fitness in sub-elite collision sport athletes. J Sports Sci. 2007;25:1507–19.CrossRefPubMed Gabbett TJ, Domrow N. Relationships between training load, injury, and fitness in sub-elite collision sport athletes. J Sports Sci. 2007;25:1507–19.CrossRefPubMed
75.
go back to reference Gabbett TJ, Ullah S. Relationship between running loads and soft-tissue injury in elite team sport athletes. J Strength Cond Res. 2012;26:953–60.CrossRefPubMed Gabbett TJ, Ullah S. Relationship between running loads and soft-tissue injury in elite team sport athletes. J Strength Cond Res. 2012;26:953–60.CrossRefPubMed
Metadata
Title
Application of Global Positioning System and Microsensor Technology in Competitive Rugby League Match-Play: A Systematic Review and Meta-analysis
Authors
Joanne Hausler
Mark Halaki
Rhonda Orr
Publication date
01-04-2016
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 4/2016
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-015-0440-6

Other articles of this Issue 4/2016

Sports Medicine 4/2016 Go to the issue