Skip to main content
Top
Published in: Sports Medicine 11/2013

01-11-2013 | Systematic Review

Effects of Exercise Training on Arterial Function in Type 2 Diabetes Mellitus

A Systematic Review and Meta-Analysis

Authors: David Montero, Guillaume Walther, Eric Benamo, Antonia Perez-Martin, Agnès Vinet

Published in: Sports Medicine | Issue 11/2013

Login to get access

Abstract

Background and Objective

Controversy exists among trials assessing whether exercise can improve arterial function in type 2 diabetes mellitus (T2DM) subjects. Therefore the aim of this study was to systematically review and quantify the effects of exercise on arterial function in T2DM subjects.

Methods

MEDLINE, Cochrane, Scopus and Web of Science were searched up until January 2013 for randomized controlled trials evaluating the effects of exercise interventions lasting 4 weeks or more on arterial function in T2DM subjects. Flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD) of the brachial conduit artery were considered for assessment of arterial endothelial function and smooth muscle function, respectively.

Results

Five randomized trials comparing exercise and control groups (overall n = 217) met the inclusion criteria. The mean exercise characteristics were as follows: 3.6 sessions per week, 67.5 min per session, intensity at 74.4 % of the maximum heart rate (HRmax), for 14 weeks. The post-intervention mean difference in FMD favoured the exercise groups over the control groups (2.23 %; P < 0.0001). No significant post-intervention mean difference in NMD (1.22 %; P = 0.29) was found between the groups. Neither heterogeneity nor publication bias was detected among the trials.

Conclusion

Exercise training alone improved FMD, showing its capacity to restore arterial endothelial function in T2DM subjects. However, further research is needed to determine whether longer and/or more intense exercise interventions could enhance arterial smooth muscle function in this population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sigal RJ, Kenny GP, Wasserman DH, et al. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433–8.PubMedCrossRef Sigal RJ, Kenny GP, Wasserman DH, et al. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433–8.PubMedCrossRef
2.
go back to reference Boule NG, Haddad E, Kenny GP, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.PubMedCrossRef Boule NG, Haddad E, Kenny GP, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.PubMedCrossRef
3.
go back to reference Balducci S, Leonetti F, Di Mario U, et al. Is a long-term aerobic plus resistance training program feasible for and effective on metabolic profiles in type 2 diabetic patients? Diabetes Care. 2004;27(3):841–2.PubMedCrossRef Balducci S, Leonetti F, Di Mario U, et al. Is a long-term aerobic plus resistance training program feasible for and effective on metabolic profiles in type 2 diabetic patients? Diabetes Care. 2004;27(3):841–2.PubMedCrossRef
4.
go back to reference Boule NG, Kenny GP, Haddad E, et al. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia. 2003;46(8):1071–81.PubMedCrossRef Boule NG, Kenny GP, Haddad E, et al. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia. 2003;46(8):1071–81.PubMedCrossRef
5.
go back to reference Hakim AA, Petrovitch H, Burchfiel CM, et al. Effects of walking on mortality among nonsmoking retired men. N Engl J Med. 1998;338(2):94–9.PubMedCrossRef Hakim AA, Petrovitch H, Burchfiel CM, et al. Effects of walking on mortality among nonsmoking retired men. N Engl J Med. 1998;338(2):94–9.PubMedCrossRef
6.
go back to reference Hu FB, Stampfer MJ, Solomon C, et al. Physical activity and risk for cardiovascular events in diabetic women. Ann Intern Med. 2001;134(2):96–105.PubMedCrossRef Hu FB, Stampfer MJ, Solomon C, et al. Physical activity and risk for cardiovascular events in diabetic women. Ann Intern Med. 2001;134(2):96–105.PubMedCrossRef
7.
go back to reference Wei M, Gibbons LW, Kampert JB, et al. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11.PubMedCrossRef Wei M, Gibbons LW, Kampert JB, et al. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11.PubMedCrossRef
8.
go back to reference Mora S, Cook N, Buring JE, et al. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116(19):2110–8.PubMedCrossRef Mora S, Cook N, Buring JE, et al. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116(19):2110–8.PubMedCrossRef
9.
go back to reference Joyner MJ, Green DJ. Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol. 2009;587(Pt 23):5551–8.PubMedCrossRef Joyner MJ, Green DJ. Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol. 2009;587(Pt 23):5551–8.PubMedCrossRef
10.
go back to reference Ignarro LJ. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol. 2002;53(4 Pt 1):503–14.PubMed Ignarro LJ. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol. 2002;53(4 Pt 1):503–14.PubMed
11.
go back to reference Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–95.PubMed Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–95.PubMed
12.
go back to reference Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–65.PubMedCrossRef Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–65.PubMedCrossRef
13.
go back to reference Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340(8828):1111–5.PubMedCrossRef Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340(8828):1111–5.PubMedCrossRef
14.
go back to reference Harris RA, Nishiyama SK, Wray DW, et al. Ultrasound assessment of flow-mediated dilation. Hypertension. 2010;55(5):1075–85.PubMedCrossRef Harris RA, Nishiyama SK, Wray DW, et al. Ultrasound assessment of flow-mediated dilation. Hypertension. 2010;55(5):1075–85.PubMedCrossRef
15.
go back to reference Thijssen DH, Black MA, Pyke KE, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300(1):H2–12.PubMedCrossRef Thijssen DH, Black MA, Pyke KE, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300(1):H2–12.PubMedCrossRef
16.
go back to reference Shechter M, Issachar A, Marai I, et al. Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol. 2009;134(1):52–8.PubMedCrossRef Shechter M, Issachar A, Marai I, et al. Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol. 2009;134(1):52–8.PubMedCrossRef
17.
go back to reference Yeboah J, Folsom AR, Burke GL, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(6):502–9.PubMedCrossRef Yeboah J, Folsom AR, Burke GL, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(6):502–9.PubMedCrossRef
18.
go back to reference Kullo IJ, Malik AR, Bielak LF, et al. Brachial artery diameter and vasodilator response to nitroglycerine, but not flow-mediated dilatation, are associated with the presence and quantity of coronary artery calcium in asymptomatic adults. Clin Sci (Lond). 2007;112(3):175–82.CrossRef Kullo IJ, Malik AR, Bielak LF, et al. Brachial artery diameter and vasodilator response to nitroglycerine, but not flow-mediated dilatation, are associated with the presence and quantity of coronary artery calcium in asymptomatic adults. Clin Sci (Lond). 2007;112(3):175–82.CrossRef
19.
go back to reference Akamatsu D, Sato A, Goto H, et al. Nitroglycerin-mediated vasodilatation of the brachial artery may predict long-term cardiovascular events irrespective of the presence of atherosclerotic disease. J Atheroscler Thromb. 2010;17(12):1266–74.PubMedCrossRef Akamatsu D, Sato A, Goto H, et al. Nitroglycerin-mediated vasodilatation of the brachial artery may predict long-term cardiovascular events irrespective of the presence of atherosclerotic disease. J Atheroscler Thromb. 2010;17(12):1266–74.PubMedCrossRef
20.
go back to reference Kawano N, Emoto M, Mori K, et al. Association of endothelial and vascular smooth muscle dysfunction with cardiovascular risk factors, vascular complications, and subclinical carotid atherosclerosis in type 2 diabetic patients. J Atheroscler Thromb. 2012;19(3):276–84.PubMedCrossRef Kawano N, Emoto M, Mori K, et al. Association of endothelial and vascular smooth muscle dysfunction with cardiovascular risk factors, vascular complications, and subclinical carotid atherosclerosis in type 2 diabetic patients. J Atheroscler Thromb. 2012;19(3):276–84.PubMedCrossRef
21.
go back to reference Bruno RM, Penno G, Daniele G, et al. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia. 2012;55(6):1847–55.PubMedCrossRef Bruno RM, Penno G, Daniele G, et al. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia. 2012;55(6):1847–55.PubMedCrossRef
22.
go back to reference Tan KC, Chow WS, Ai VH, et al. Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care. 2002;25(6):1055–9.PubMedCrossRef Tan KC, Chow WS, Ai VH, et al. Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care. 2002;25(6):1055–9.PubMedCrossRef
23.
go back to reference Hamdy O, Ledbury S, Mullooly C, et al. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care. 2003;26(7):2119–25.PubMedCrossRef Hamdy O, Ledbury S, Mullooly C, et al. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care. 2003;26(7):2119–25.PubMedCrossRef
24.
go back to reference Barone Gibbs B, Dobrosielski DA, Bonekamp S, Stewart KJ, Clark JM. A randomized trial of exercise for blood pressure reduction in type 2 diabetes: effect on flow-mediated dilation and circulating biomarkers of endothelial function. Atherosclerosis. 2012;224(2):446–53. doi:10.1016/j.atherosclerosis.2012.07.035. Barone Gibbs B, Dobrosielski DA, Bonekamp S, Stewart KJ, Clark JM. A randomized trial of exercise for blood pressure reduction in type 2 diabetes: effect on flow-mediated dilation and circulating biomarkers of endothelial function. Atherosclerosis. 2012;224(2):446–53. doi:10.​1016/​j.​atherosclerosis.​2012.​07.​035.
25.
go back to reference Kwon HR, Min KW, Ahn HJ, et al. Effects of aerobic exercise vs. resistance training on endothelial function in women with type 2 diabetes mellitus. Diabetes Metab J. 2011;35(4):364–73.PubMedCrossRef Kwon HR, Min KW, Ahn HJ, et al. Effects of aerobic exercise vs. resistance training on endothelial function in women with type 2 diabetes mellitus. Diabetes Metab J. 2011;35(4):364–73.PubMedCrossRef
26.
go back to reference Maiorana A, O’Driscoll G, Cheetham C, et al. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol. 2001;38(3):860–6.PubMedCrossRef Maiorana A, O’Driscoll G, Cheetham C, et al. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol. 2001;38(3):860–6.PubMedCrossRef
27.
go back to reference Okada S, Hiuge A, Makino H, et al. Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J Atheroscler Thromb. 2010;17(8):828–33.PubMedCrossRef Okada S, Hiuge A, Makino H, et al. Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J Atheroscler Thromb. 2010;17(8):828–33.PubMedCrossRef
28.
go back to reference Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.PubMedCrossRef Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.PubMedCrossRef
29.
go back to reference Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.PubMedCrossRef Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.PubMedCrossRef
30.
go back to reference Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.PubMedCrossRef Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.PubMedCrossRef
31.
go back to reference Bhogal SK, Teasell RW, Foley NC, et al. The PEDro scale provides a more comprehensive measure of methodological quality than the Jadad scale in stroke rehabilitation literature. J Clin Epidemiol. 2005;58(7):668–73.PubMedCrossRef Bhogal SK, Teasell RW, Foley NC, et al. The PEDro scale provides a more comprehensive measure of methodological quality than the Jadad scale in stroke rehabilitation literature. J Clin Epidemiol. 2005;58(7):668–73.PubMedCrossRef
32.
go back to reference de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.PubMedCrossRef de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.PubMedCrossRef
33.
go back to reference Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMed Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMed
34.
35.
36.
go back to reference Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.PubMedCrossRef Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.PubMedCrossRef
37.
go back to reference Sixt S, Beer S, Bluher M, et al. Long- but not short-term multifactorial intervention with focus on exercise training improves coronary endothelial dysfunction in diabetes mellitus type 2 and coronary artery disease. Eur Heart J. 2010;31(1):112–9.PubMedCrossRef Sixt S, Beer S, Bluher M, et al. Long- but not short-term multifactorial intervention with focus on exercise training improves coronary endothelial dysfunction in diabetes mellitus type 2 and coronary artery disease. Eur Heart J. 2010;31(1):112–9.PubMedCrossRef
38.
go back to reference Wycherley TP, Brinkworth GD, Noakes M, et al. Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10(11):1062–73.PubMedCrossRef Wycherley TP, Brinkworth GD, Noakes M, et al. Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10(11):1062–73.PubMedCrossRef
39.
go back to reference Green DJ, Maiorana AJ, Tschakovsky ME, et al. Relationship between changes in brachial artery flow-mediated dilation and basal release of nitric oxide in subjects with type 2 diabetes. Am J Physiol Heart Circ Physiol. 2006;291(3):H1193–9.PubMedCrossRef Green DJ, Maiorana AJ, Tschakovsky ME, et al. Relationship between changes in brachial artery flow-mediated dilation and basal release of nitric oxide in subjects with type 2 diabetes. Am J Physiol Heart Circ Physiol. 2006;291(3):H1193–9.PubMedCrossRef
40.
go back to reference Green DJ, Walsh JH, Maiorana A, et al. Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations. Am J Physiol Heart Circ Physiol. 2003;285(6):H2679–87.PubMed Green DJ, Walsh JH, Maiorana A, et al. Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations. Am J Physiol Heart Circ Physiol. 2003;285(6):H2679–87.PubMed
41.
go back to reference Middlebrooke AR, Elston LM, Macleod KM, et al. Six months of aerobic exercise does not improve microvascular function in type 2 diabetes mellitus. Diabetologia. 2006;49(10):2263–71.PubMedCrossRef Middlebrooke AR, Elston LM, Macleod KM, et al. Six months of aerobic exercise does not improve microvascular function in type 2 diabetes mellitus. Diabetologia. 2006;49(10):2263–71.PubMedCrossRef
42.
go back to reference Choi KM, Han KA, Ahn HJ, et al. Effects of exercise on sRAGE levels and cardiometabolic risk factors in patients with type 2 diabetes: a randomized controlled trial. J Clin Endocrinol Metab. 2012;97(10):3751–8.PubMedCrossRef Choi KM, Han KA, Ahn HJ, et al. Effects of exercise on sRAGE levels and cardiometabolic risk factors in patients with type 2 diabetes: a randomized controlled trial. J Clin Endocrinol Metab. 2012;97(10):3751–8.PubMedCrossRef
43.
go back to reference Enderle MD, Benda N, Schmuelling RM, et al. Preserved endothelial function in IDDM patients, but not in NIDDM patients, compared with healthy subjects. Diabetes Care. 1998;21(2):271–7.PubMedCrossRef Enderle MD, Benda N, Schmuelling RM, et al. Preserved endothelial function in IDDM patients, but not in NIDDM patients, compared with healthy subjects. Diabetes Care. 1998;21(2):271–7.PubMedCrossRef
44.
go back to reference Ifrim S, Vasilescu R. Early detection of atherosclerosis in type 2 diabetic patients by endothelial dysfunction and intima-media thickness. Rom J Intern Med. 2004;42(2):343–54.PubMed Ifrim S, Vasilescu R. Early detection of atherosclerosis in type 2 diabetic patients by endothelial dysfunction and intima-media thickness. Rom J Intern Med. 2004;42(2):343–54.PubMed
45.
go back to reference Ihlemann N, Stokholm KH, Eskildsen PC. Impaired vascular reactivity is present despite normal levels of von Willebrand factor in patients with uncomplicated type 2 diabetes. Diabet Med. 2002;19(6):476–81.PubMedCrossRef Ihlemann N, Stokholm KH, Eskildsen PC. Impaired vascular reactivity is present despite normal levels of von Willebrand factor in patients with uncomplicated type 2 diabetes. Diabet Med. 2002;19(6):476–81.PubMedCrossRef
46.
go back to reference Woodman RJ, Watts GF, Puddey IB, et al. Leukocyte count and vascular function in type 2 diabetic subjects with treated hypertension. Atherosclerosis. 2002;163(1):175–81.PubMedCrossRef Woodman RJ, Watts GF, Puddey IB, et al. Leukocyte count and vascular function in type 2 diabetic subjects with treated hypertension. Atherosclerosis. 2002;163(1):175–81.PubMedCrossRef
47.
go back to reference Brooks BA, Franjic B, Ban CR, et al. Diastolic dysfunction and abnormalities of the microcirculation in type 2 diabetes. Diabetes Obes Metab. 2008;10(9):739–46.PubMedCrossRef Brooks BA, Franjic B, Ban CR, et al. Diastolic dysfunction and abnormalities of the microcirculation in type 2 diabetes. Diabetes Obes Metab. 2008;10(9):739–46.PubMedCrossRef
48.
go back to reference Vehkavaara S, Yki-Jarvinen H. 3.5 years of insulin therapy with insulin glargine improves in vivo endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2004;24(2):325–30.PubMedCrossRef Vehkavaara S, Yki-Jarvinen H. 3.5 years of insulin therapy with insulin glargine improves in vivo endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2004;24(2):325–30.PubMedCrossRef
49.
go back to reference Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26(6):631–40.PubMedCrossRef Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26(6):631–40.PubMedCrossRef
50.
go back to reference Tinken TM, Thijssen DH, Black MA, et al. Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol. 2008;586(Pt 20):5003–12.PubMedCrossRef Tinken TM, Thijssen DH, Black MA, et al. Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol. 2008;586(Pt 20):5003–12.PubMedCrossRef
51.
go back to reference Tinken TM, Thijssen DH, Hopkins N, et al. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55(2):312–8.PubMedCrossRef Tinken TM, Thijssen DH, Hopkins N, et al. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55(2):312–8.PubMedCrossRef
52.
go back to reference da Silva CA, Ribeiro JP, Canto JC, et al. High-intensity aerobic training improves endothelium-dependent vasodilation in patients with metabolic syndrome and type 2 diabetes mellitus. Diabetes Res Clin Pract. 2012;95(2):237–45.PubMedCrossRef da Silva CA, Ribeiro JP, Canto JC, et al. High-intensity aerobic training improves endothelium-dependent vasodilation in patients with metabolic syndrome and type 2 diabetes mellitus. Diabetes Res Clin Pract. 2012;95(2):237–45.PubMedCrossRef
53.
go back to reference Miche E, Herrmann G, Nowak M, et al. Effect of an exercise training program on endothelial dysfunction in diabetic and non-diabetic patients with severe chronic heart failure. Clin Res Cardiol. 2006;95(Suppl 1):i117–24.PubMedCrossRef Miche E, Herrmann G, Nowak M, et al. Effect of an exercise training program on endothelial dysfunction in diabetic and non-diabetic patients with severe chronic heart failure. Clin Res Cardiol. 2006;95(Suppl 1):i117–24.PubMedCrossRef
54.
go back to reference Thijssen DH, Dawson EA, Black MA, et al. Brachial artery blood flow responses to different modalities of lower limb exercise. Med Sci Sports Exerc. 2009;41(5):1072–9.PubMedCrossRef Thijssen DH, Dawson EA, Black MA, et al. Brachial artery blood flow responses to different modalities of lower limb exercise. Med Sci Sports Exerc. 2009;41(5):1072–9.PubMedCrossRef
55.
go back to reference Green DJ, Bilsborough W, Naylor LH, et al. Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: relative contribution of nitric oxide. J Physiol. 2005;562(Pt 2):617–28.PubMedCrossRef Green DJ, Bilsborough W, Naylor LH, et al. Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: relative contribution of nitric oxide. J Physiol. 2005;562(Pt 2):617–28.PubMedCrossRef
56.
go back to reference Ayer JG, Harmer JA, David C, et al. Severe obesity is associated with impaired arterial smooth muscle function in young adults. Obesity (Silver Spring). 2011;19(1):54–60.CrossRef Ayer JG, Harmer JA, David C, et al. Severe obesity is associated with impaired arterial smooth muscle function in young adults. Obesity (Silver Spring). 2011;19(1):54–60.CrossRef
57.
go back to reference Leeson P, Thorne S, Donald A, et al. Non-invasive measurement of endothelial function: effect on brachial artery dilatation of graded endothelial dependent and independent stimuli. Heart. 1997;78(1):22–7.PubMed Leeson P, Thorne S, Donald A, et al. Non-invasive measurement of endothelial function: effect on brachial artery dilatation of graded endothelial dependent and independent stimuli. Heart. 1997;78(1):22–7.PubMed
Metadata
Title
Effects of Exercise Training on Arterial Function in Type 2 Diabetes Mellitus
A Systematic Review and Meta-Analysis
Authors
David Montero
Guillaume Walther
Eric Benamo
Antonia Perez-Martin
Agnès Vinet
Publication date
01-11-2013
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 11/2013
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-013-0085-2

Other articles of this Issue 11/2013

Sports Medicine 11/2013 Go to the issue