Skip to main content
Top
Published in: Sports Medicine 4/2013

Open Access 01-04-2013 | Review Article

Neural Correlates of Motor Vigour and Motor Urgency During Exercise

Authors: H. G. Laurie Rauch, Georg Schönbächler, Timothy D. Noakes

Published in: Sports Medicine | Issue 4/2013

Login to get access

Abstract

This article reviews the brain structures and neural circuitry underlying the motor system as it pertains to endurance exercise. Some obvious phenomena that occur during endurance racing events that need to be explained neurophysiologically are variable pacing strategies, the end spurt, motivation and the rating of perceived exertion. Understanding the above phenomena physiologically is problematic due to the sheer complexity of obtaining real-time brain measurements during exercise. In those rare instances where brain measurements have been made during exercise, the measurements have usually been limited to the sensory and motor cortices; or the exercise itself was limited to small muscle groups. Without discounting the crucial importance of the primary motor cortex in the execution of voluntary movement, it is surprising that very few exercise studies pay any attention to the complex and dynamic organization of motor action in relation to the subcortical nuclei, given that they are essential for the execution of normal movement patterns. In addition, the findings from laboratory-based exercise performance trials are hampered by the absence of objective measures of the motivational state of subjects. In this review we propose that some of the above phenomena may be explained by distinguishing between voluntary, vigorous and urgent motor behaviours during exercise, given that different CNS structures and neurotransmitters are involved in the execution of these different motor behaviours.
Literature
1.
go back to reference Swanson LW. Quest for the basic plan of nervous system circuitry. Brain Res Rev. 2007;55(2):356–72.PubMedCrossRef Swanson LW. Quest for the basic plan of nervous system circuitry. Brain Res Rev. 2007;55(2):356–72.PubMedCrossRef
2.
go back to reference Swanson LW. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol. 2005;493(1):122–31.PubMedCrossRef Swanson LW. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol. 2005;493(1):122–31.PubMedCrossRef
3.
go back to reference Kandel ER, Schwartz JH, Jessell TM. Principles of neuroscience. 4th ed. New York (NY): McGraw-Hill; 2000. Kandel ER, Schwartz JH, Jessell TM. Principles of neuroscience. 4th ed. New York (NY): McGraw-Hill; 2000.
4.
go back to reference Geyer S, Matelli M, Luppino G, et al. Functional neuroanatomy of the primate isocortical motor system. Anat Embryol. 2000;202(6):443–74.PubMedCrossRef Geyer S, Matelli M, Luppino G, et al. Functional neuroanatomy of the primate isocortical motor system. Anat Embryol. 2000;202(6):443–74.PubMedCrossRef
5.
go back to reference Oliveri M, Koch G, Torriero S, et al. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93.PubMedCrossRef Oliveri M, Koch G, Torriero S, et al. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93.PubMedCrossRef
6.
go back to reference Hilty L, Langer N, Pascual-Marqui R, et al. Fatigue-induced increase in intracortical communication between mid/anterior insular and motor cortex during cycling exercise. Eur J Neurosci. 2011;34(12):2035–42.PubMedCrossRef Hilty L, Langer N, Pascual-Marqui R, et al. Fatigue-induced increase in intracortical communication between mid/anterior insular and motor cortex during cycling exercise. Eur J Neurosci. 2011;34(12):2035–42.PubMedCrossRef
7.
go back to reference Brehm JW, Self EA. The intensity of motivation. Ann Rev Psychol. 1989;40:109–31.CrossRef Brehm JW, Self EA. The intensity of motivation. Ann Rev Psychol. 1989;40:109–31.CrossRef
8.
go back to reference Marcora SM. Do we really need a central governor to explain brain regulation of exercise performance? Eur J Appl Physiol. 2008;104(5):929–31.PubMedCrossRef Marcora SM. Do we really need a central governor to explain brain regulation of exercise performance? Eur J Appl Physiol. 2008;104(5):929–31.PubMedCrossRef
9.
go back to reference Noakes TD. Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab. 2011;36(1):23–35.PubMedCrossRef Noakes TD. Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab. 2011;36(1):23–35.PubMedCrossRef
10.
go back to reference Krogh A, Lindhard J. The regulation of respiration and circulation during the initial stages of muscular work. J Physiol. 1913;47:112–36.PubMed Krogh A, Lindhard J. The regulation of respiration and circulation during the initial stages of muscular work. J Physiol. 1913;47:112–36.PubMed
11.
go back to reference Goodwin GM. MCCloske DI, Mitchell JH. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol. 1972;226(1):173–90.PubMed Goodwin GM. MCCloske DI, Mitchell JH. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol. 1972;226(1):173–90.PubMed
12.
go back to reference Williamson JW. The relevance of central command for the neural cardiovascular control of exercise. Exp Physiol. 2010;95(11):1043–8.PubMedCrossRef Williamson JW. The relevance of central command for the neural cardiovascular control of exercise. Exp Physiol. 2010;95(11):1043–8.PubMedCrossRef
13.
go back to reference Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725–89.PubMed Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725–89.PubMed
14.
go back to reference Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161–73.PubMedCrossRef Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161–73.PubMedCrossRef
15.
go back to reference Eldridge FL, Millhorn DE, Waldrop TG. Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science. 1981;211(4484):844–6.PubMedCrossRef Eldridge FL, Millhorn DE, Waldrop TG. Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science. 1981;211(4484):844–6.PubMedCrossRef
16.
go back to reference Secher NH. Heart-rate at the onset of static exercise in man with partial neuromuscular blockade. J Physiol. 1985;368:481–90.PubMed Secher NH. Heart-rate at the onset of static exercise in man with partial neuromuscular blockade. J Physiol. 1985;368:481–90.PubMed
17.
go back to reference Dalsgaard MK, Ide K, Cai Y, et al. The intent to exercise influences the cerebral O-2/carbohydrate uptake ratio in humans. J Physiol. 2002;540(2):681–9.PubMedCrossRef Dalsgaard MK, Ide K, Cai Y, et al. The intent to exercise influences the cerebral O-2/carbohydrate uptake ratio in humans. J Physiol. 2002;540(2):681–9.PubMedCrossRef
18.
go back to reference Spyer KM, Gourine AV. Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos Trans R Soc Lond B Biol Sci. 2009;364(1529):2603–10.PubMedCrossRef Spyer KM, Gourine AV. Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos Trans R Soc Lond B Biol Sci. 2009;364(1529):2603–10.PubMedCrossRef
19.
go back to reference Williamson JW, McColl R, Mathews D. Evidence for central command activation of the human insular cortex during exercise. J Appl Physiol. 2003;94(5):1726–34.PubMed Williamson JW, McColl R, Mathews D. Evidence for central command activation of the human insular cortex during exercise. J Appl Physiol. 2003;94(5):1726–34.PubMed
20.
go back to reference Williamson JW, McColl R, Mathews D, et al. Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol. 1999;87(3):1213–9.PubMed Williamson JW, McColl R, Mathews D, et al. Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol. 1999;87(3):1213–9.PubMed
21.
go back to reference Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements.1. Nuclear cell output. J Neurophysiol. 1970;33(4):527–36.PubMed Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements.1. Nuclear cell output. J Neurophysiol. 1970;33(4):527–36.PubMed
22.
go back to reference Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements.2. Purkinje cell output and input. J Neurophysiol. 1970;33(4):537–47.PubMed Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements.2. Purkinje cell output and input. J Neurophysiol. 1970;33(4):537–47.PubMed
23.
go back to reference Delong MR. Putamen: activity of single units during slow and rapid arm movements. Science. 1973;179(4079):1240–2.PubMedCrossRef Delong MR. Putamen: activity of single units during slow and rapid arm movements. Science. 1973;179(4079):1240–2.PubMedCrossRef
24.
go back to reference Delong MR. Motor functions of the basal ganglia: single-unit activity during movement. In: Schmitt FO, Worden FG, editors. The neurosciences. Cambridge: Massachusetts Institute of Technology Press; 1974. Delong MR. Motor functions of the basal ganglia: single-unit activity during movement. In: Schmitt FO, Worden FG, editors. The neurosciences. Cambridge: Massachusetts Institute of Technology Press; 1974.
25.
go back to reference Evarts EV. Activity of thalamic and cortical neurons in relation to learned movement in monkey. Int J Neurol. 1971;8:321–6.PubMed Evarts EV. Activity of thalamic and cortical neurons in relation to learned movement in monkey. Int J Neurol. 1971;8:321–6.PubMed
26.
go back to reference Evarts EV. Brain mechanisms in voluntary movement. In: McFadden D, editor. Neural mechanisms in behavior. New York (NY): Springer Verlag; 1980. p. 223–59.CrossRef Evarts EV. Brain mechanisms in voluntary movement. In: McFadden D, editor. Neural mechanisms in behavior. New York (NY): Springer Verlag; 1980. p. 223–59.CrossRef
27.
go back to reference Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78(2–3):69–74.PubMedCrossRef Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78(2–3):69–74.PubMedCrossRef
28.
go back to reference Sherman SM, Guillery RW. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Natl Acad Sci USA. 1998;95(12):7121–6.PubMedCrossRef Sherman SM, Guillery RW. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Natl Acad Sci USA. 1998;95(12):7121–6.PubMedCrossRef
29.
go back to reference Hoover JE, Strick PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci. 1999;19(4):1446–63.PubMed Hoover JE, Strick PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci. 1999;19(4):1446–63.PubMed
30.
go back to reference Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: Targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659–73.PubMedCrossRef Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: Targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659–73.PubMedCrossRef
31.
go back to reference Cunnington R, Windischberger C, Deecke L, et al. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage. 2002;15(2):373–85.PubMedCrossRef Cunnington R, Windischberger C, Deecke L, et al. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage. 2002;15(2):373–85.PubMedCrossRef
32.
go back to reference van Donkelaar P, Stein JF, Passingham RE, et al. Neuronal activity in the primate motor thalamus during visually triggered and internally generated limb movements. J Neurophysiol. 1999;82(2):934–45.PubMed van Donkelaar P, Stein JF, Passingham RE, et al. Neuronal activity in the primate motor thalamus during visually triggered and internally generated limb movements. J Neurophysiol. 1999;82(2):934–45.PubMed
33.
go back to reference van Donkelaar P, Stein JF, Passingham RE, et al. Temporary inactivation in the primate motor thalamus during visually triggered and internally generated limb movements. J Neurophysiol. 2000;83(5):2780–90.PubMed van Donkelaar P, Stein JF, Passingham RE, et al. Temporary inactivation in the primate motor thalamus during visually triggered and internally generated limb movements. J Neurophysiol. 2000;83(5):2780–90.PubMed
34.
go back to reference Mazzoni P, Hristova A, Krakauer JW. Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci. 2007;27(27):7105–16.PubMedCrossRef Mazzoni P, Hristova A, Krakauer JW. Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci. 2007;27(27):7105–16.PubMedCrossRef
35.
go back to reference Robbins TW, Everitt BJ. A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology. 2007;191(3):433–7.PubMedCrossRef Robbins TW, Everitt BJ. A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology. 2007;191(3):433–7.PubMedCrossRef
36.
go back to reference Thobois S, Ballanger B, Baraduc P, et al. Functional anatomy of motor urgency. Neuroimage. 2007;37(1):243–52.PubMedCrossRef Thobois S, Ballanger B, Baraduc P, et al. Functional anatomy of motor urgency. Neuroimage. 2007;37(1):243–52.PubMedCrossRef
37.
go back to reference Ballanger B, Thobois S, Baraduc P, et al. “Paradoxical kinesis” is not a hallmark of Parkinson’s disease but a general property of the motor system. Mov Disord. 2006;21(9):1490–5.PubMedCrossRef Ballanger B, Thobois S, Baraduc P, et al. “Paradoxical kinesis” is not a hallmark of Parkinson’s disease but a general property of the motor system. Mov Disord. 2006;21(9):1490–5.PubMedCrossRef
38.
39.
go back to reference Mussa-Ivaldi FA, Bizzi E. Motor learning through the combination of primitives. Phil Trans R Soc Lond B. 2000;355(1404):1755–69.CrossRef Mussa-Ivaldi FA, Bizzi E. Motor learning through the combination of primitives. Phil Trans R Soc Lond B. 2000;355(1404):1755–69.CrossRef
40.
go back to reference Pribram KH, Kruger L, Robinson F, et al. The effects of precentral lesions on the behaviour of monkeys. J Biol Med. 1955;28:428–43. Pribram KH, Kruger L, Robinson F, et al. The effects of precentral lesions on the behaviour of monkeys. J Biol Med. 1955;28:428–43.
41.
go back to reference Joseph R. Neuropsychiatry, neuropsychology, clinical neuroscience. New York (NY): Academic Press; 2000. Joseph R. Neuropsychiatry, neuropsychology, clinical neuroscience. New York (NY): Academic Press; 2000.
42.
go back to reference Grillner S, Helligren J, Menard A, et al. Mechanisms for selection of basic motor programs: roles for the striatum and pallidum. Trends Neurosci. 2005;28(7):364–70.PubMedCrossRef Grillner S, Helligren J, Menard A, et al. Mechanisms for selection of basic motor programs: roles for the striatum and pallidum. Trends Neurosci. 2005;28(7):364–70.PubMedCrossRef
43.
go back to reference Jahn K, Deutschlader A, Stephan T, et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage. 2008;39(2):786–92.PubMedCrossRef Jahn K, Deutschlader A, Stephan T, et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage. 2008;39(2):786–92.PubMedCrossRef
44.
go back to reference Paterson DJ, Thornton JM, Murphy K, et al. Higher centres encode cardiorespiratory response to exercise without movement feedback. Faseb J. 2000;14:A646. Paterson DJ, Thornton JM, Murphy K, et al. Higher centres encode cardiorespiratory response to exercise without movement feedback. Faseb J. 2000;14:A646.
45.
go back to reference Noga BR, Kriellaars DJ, Brownstone RM, et al. Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J Neurophysiol. 2003;90(3):1464–78.PubMedCrossRef Noga BR, Kriellaars DJ, Brownstone RM, et al. Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J Neurophysiol. 2003;90(3):1464–78.PubMedCrossRef
46.
go back to reference Takakusaki K, Saitoh K, Harada H, et al. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res. 2004;50(2):137–51.PubMedCrossRef Takakusaki K, Saitoh K, Harada H, et al. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res. 2004;50(2):137–51.PubMedCrossRef
47.
go back to reference Cheung VCK, Piron L, Agostini M, et al. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA. 2009;106(46):19563–8.PubMedCrossRef Cheung VCK, Piron L, Agostini M, et al. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA. 2009;106(46):19563–8.PubMedCrossRef
48.
go back to reference Hanakawa T, Katsumi Y, Fukuyama H, et al. Mechanisms underlying gait disturbance in Parkinson’s disease: a single photon emission computed tomography study. Brain. 1999;122:1271–82.PubMedCrossRef Hanakawa T, Katsumi Y, Fukuyama H, et al. Mechanisms underlying gait disturbance in Parkinson’s disease: a single photon emission computed tomography study. Brain. 1999;122:1271–82.PubMedCrossRef
49.
go back to reference Jahn K, Zwergal A. Imaging supraspinal locomotor control in balance disorders. Restor Neurol Neurosci. 2010;28:105–14.PubMed Jahn K, Zwergal A. Imaging supraspinal locomotor control in balance disorders. Restor Neurol Neurosci. 2010;28:105–14.PubMed
50.
go back to reference la Fougere C, Zwergal A, Rominger A, et al. Real versus imagined locomotion: A [(18)F]-FDG PET-fMRI comparison. Neuroimage. 2010;50(4):1589–98.PubMedCrossRef la Fougere C, Zwergal A, Rominger A, et al. Real versus imagined locomotion: A [(18)F]-FDG PET-fMRI comparison. Neuroimage. 2010;50(4):1589–98.PubMedCrossRef
51.
go back to reference Shik ML, Orlovsky GN. Neurophysiology of locomotor automatism. Physiol Rev. 1976;56(3):465–501.PubMed Shik ML, Orlovsky GN. Neurophysiology of locomotor automatism. Physiol Rev. 1976;56(3):465–501.PubMed
52.
go back to reference Armstrong DM. The supraspinal control of mammalian locomotion. J Physiol. 1988;405:1–37.PubMed Armstrong DM. The supraspinal control of mammalian locomotion. J Physiol. 1988;405:1–37.PubMed
53.
go back to reference Matsumura M, Nambu A, Yamaji Y, et al. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience. 2000;98:97–110.PubMedCrossRef Matsumura M, Nambu A, Yamaji Y, et al. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience. 2000;98:97–110.PubMedCrossRef
54.
go back to reference Menard A, Grillner S. Diencephalic locomotor region in the lamprey: afferents and efferent control. J Neurophysiol. 2008;100(3):1343–53.PubMedCrossRef Menard A, Grillner S. Diencephalic locomotor region in the lamprey: afferents and efferent control. J Neurophysiol. 2008;100(3):1343–53.PubMedCrossRef
55.
go back to reference Vogelstein RJ, Tenore F, Etienne-Cummings R, et al. Dynamic control of the central pattern generator for locomotion. Biol Cybern. 2006;95(6):555–66.PubMedCrossRef Vogelstein RJ, Tenore F, Etienne-Cummings R, et al. Dynamic control of the central pattern generator for locomotion. Biol Cybern. 2006;95(6):555–66.PubMedCrossRef
56.
go back to reference Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998;860:360–76.PubMedCrossRef Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998;860:360–76.PubMedCrossRef
57.
go back to reference Crenna P, Frigo C. A motor program for the initiation of forward-oriented movements in humans. J Physiol. 1991;437:635–53.PubMed Crenna P, Frigo C. A motor program for the initiation of forward-oriented movements in humans. J Physiol. 1991;437:635–53.PubMed
58.
go back to reference Lacquaniti F, Ivanenko YP, Zago M. Patterned control of human locomotion. J Physiol. 2012;590(10):2189–99.PubMedCrossRef Lacquaniti F, Ivanenko YP, Zago M. Patterned control of human locomotion. J Physiol. 2012;590(10):2189–99.PubMedCrossRef
59.
go back to reference Canedo A. Primary motor cortex influences on the descending and ascending systems. Prog Neurobiol. 1997;51(3):287–335.PubMedCrossRef Canedo A. Primary motor cortex influences on the descending and ascending systems. Prog Neurobiol. 1997;51(3):287–335.PubMedCrossRef
60.
go back to reference Keisker B, Hepp-Reymond MC, Blickenstorfer A, et al. Differential force scaling of fine-graded power grip force in the sensorimotor network. Hum Brain Mapp. 2009;30(8):2453–65.PubMedCrossRef Keisker B, Hepp-Reymond MC, Blickenstorfer A, et al. Differential force scaling of fine-graded power grip force in the sensorimotor network. Hum Brain Mapp. 2009;30(8):2453–65.PubMedCrossRef
61.
go back to reference Wilkinson L, Teo JT, Obeso I, et al. The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. J Cogn Neurosci. 2010;22(3):427–36.PubMedCrossRef Wilkinson L, Teo JT, Obeso I, et al. The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. J Cogn Neurosci. 2010;22(3):427–36.PubMedCrossRef
62.
go back to reference Kelley AE, Andrzejewski ME, Baldwin AE, et al. Glutamate-mediated plasticity in corticostriatal networks: role in adaptive motor learning. Ann N Y Acad Sci. 2003;1003:159–68.PubMedCrossRef Kelley AE, Andrzejewski ME, Baldwin AE, et al. Glutamate-mediated plasticity in corticostriatal networks: role in adaptive motor learning. Ann N Y Acad Sci. 2003;1003:159–68.PubMedCrossRef
63.
go back to reference Raasch CC, Zajac FE. Locomotor strategy for pedaling: muscle groups and biomechanical functions. J Neurophysiol. 1999;82(2):515–25.PubMed Raasch CC, Zajac FE. Locomotor strategy for pedaling: muscle groups and biomechanical functions. J Neurophysiol. 1999;82(2):515–25.PubMed
64.
go back to reference Bizzi E, Tresch MC, Saltiel P, et al. New perspectives on spinal motor systems. Nat Rev Neurosci. 2000;1(2):101–8.PubMedCrossRef Bizzi E, Tresch MC, Saltiel P, et al. New perspectives on spinal motor systems. Nat Rev Neurosci. 2000;1(2):101–8.PubMedCrossRef
65.
go back to reference Dietrich A, Audiffren M. The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci Biobehav Rev. 2011;35(6):1305–25.PubMedCrossRef Dietrich A, Audiffren M. The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci Biobehav Rev. 2011;35(6):1305–25.PubMedCrossRef
66.
go back to reference Subudhi AW, Miramon BR, Granger ME, et al. Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J Appl Physiol. 2009;106(4):1153–8.PubMedCrossRef Subudhi AW, Miramon BR, Granger ME, et al. Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J Appl Physiol. 2009;106(4):1153–8.PubMedCrossRef
67.
go back to reference Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, et al. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neurosci. 2003;119(1):293–308.CrossRef Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, et al. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neurosci. 2003;119(1):293–308.CrossRef
68.
go back to reference Latash ML. Progress in motor control. In: Hatzopoulos J, Frey R, Patterson Wright JJ, et al., editors. Bernstein’s traditions in movement studies. Champaign: Human Kinetics; 1998. Latash ML. Progress in motor control. In: Hatzopoulos J, Frey R, Patterson Wright JJ, et al., editors. Bernstein’s traditions in movement studies. Champaign: Human Kinetics; 1998.
69.
go back to reference Solms TO. The brain and the inner world: an introduction to the neuroscience of subjective experience. New York: Other Press; 2002. Solms TO. The brain and the inner world: an introduction to the neuroscience of subjective experience. New York: Other Press; 2002.
70.
go back to reference Dietrich A. Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn. 2003;12(2):231–56.PubMedCrossRef Dietrich A. Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn. 2003;12(2):231–56.PubMedCrossRef
71.
go back to reference Koechlin E, Ody C, Kouneiher F. The architecture of cognitive control in the human prefrontal cortex. Science. 2003;5648:1181–5.CrossRef Koechlin E, Ody C, Kouneiher F. The architecture of cognitive control in the human prefrontal cortex. Science. 2003;5648:1181–5.CrossRef
72.
go back to reference Rushworth MFS. Intention, choice, and the medial frontal cortex. Ann N Y Acad Sci. 2008;1124:181–207.PubMedCrossRef Rushworth MFS. Intention, choice, and the medial frontal cortex. Ann N Y Acad Sci. 2008;1124:181–207.PubMedCrossRef
73.
go back to reference Martin JP. The caudate nuclei and locomotion. Ann R Coll Surg Engl. 1966;38:166–75.PubMed Martin JP. The caudate nuclei and locomotion. Ann R Coll Surg Engl. 1966;38:166–75.PubMed
74.
go back to reference Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6:242–7.PubMedCrossRef Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6:242–7.PubMedCrossRef
75.
go back to reference Hepp-Reymond MC, Kirkpatrick-Tanner M, Gabernet L, et al. Context-dependent force coding in motor and premotor cortical areas. Exp Brain Res. 1999;128(1–2):123–33.PubMedCrossRef Hepp-Reymond MC, Kirkpatrick-Tanner M, Gabernet L, et al. Context-dependent force coding in motor and premotor cortical areas. Exp Brain Res. 1999;128(1–2):123–33.PubMedCrossRef
76.
go back to reference Alexander GE, Crutcher MD, Delong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog Brain Res. 1990;85:119–46.PubMedCrossRef Alexander GE, Crutcher MD, Delong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog Brain Res. 1990;85:119–46.PubMedCrossRef
77.
go back to reference Di Martino A, Scheres A, Margulies D, et al. Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex. 2008;18(12):2735–47.PubMedCrossRef Di Martino A, Scheres A, Margulies D, et al. Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex. 2008;18(12):2735–47.PubMedCrossRef
78.
go back to reference Lehericy S, Bardinet E, Tremblay L, et al. Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex. 2006;16(2):149–61.PubMedCrossRef Lehericy S, Bardinet E, Tremblay L, et al. Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex. 2006;16(2):149–61.PubMedCrossRef
79.
go back to reference Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35(1):4–26.PubMedCrossRef Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35(1):4–26.PubMedCrossRef
80.
go back to reference Kravitz AV, Kreitzer AC. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda). 2012;27(3):167–77.CrossRef Kravitz AV, Kreitzer AC. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda). 2012;27(3):167–77.CrossRef
81.
go back to reference Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012;15(6):816–8.PubMedCrossRef Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012;15(6):816–8.PubMedCrossRef
82.
go back to reference Guillery RW. Anatomical pathways that link perception and action. Prog Brain Res. 2005;149:235–56.PubMedCrossRef Guillery RW. Anatomical pathways that link perception and action. Prog Brain Res. 2005;149:235–56.PubMedCrossRef
83.
go back to reference Guillery RW, Sherman SM. Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res Rev. 2011;1–2:205–19.CrossRef Guillery RW, Sherman SM. Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res Rev. 2011;1–2:205–19.CrossRef
84.
go back to reference Grillner S, Wallen P, Saitoh K, et al. Neural bases of goal-directed locomotion in vertebrates: an overview. Brain Res Rev. 2008;57(1):2–12.PubMedCrossRef Grillner S, Wallen P, Saitoh K, et al. Neural bases of goal-directed locomotion in vertebrates: an overview. Brain Res Rev. 2008;57(1):2–12.PubMedCrossRef
85.
go back to reference Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.PubMedCrossRef Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.PubMedCrossRef
86.
go back to reference Pasquereau B, Nadjar A, Arkadir D, et al. Shaping of motor responses by incentive values through the basal ganglia. J Neurosci. 2007;27:1176–83.PubMedCrossRef Pasquereau B, Nadjar A, Arkadir D, et al. Shaping of motor responses by incentive values through the basal ganglia. J Neurosci. 2007;27:1176–83.PubMedCrossRef
87.
go back to reference Hilty L, Lutz K, Maurer K, et al. Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Exp Physiol. 2011;96(5):505–17.PubMed Hilty L, Lutz K, Maurer K, et al. Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Exp Physiol. 2011;96(5):505–17.PubMed
88.
go back to reference Hilty L, Jäncke L, Luechinger R, et al. Limitation of physical performance in a muscle fatiguing handgrip exercise is mediated by thalamo-insular activity. Hum Brain Mapp. 2011;32(12):2151–60.PubMedCrossRef Hilty L, Jäncke L, Luechinger R, et al. Limitation of physical performance in a muscle fatiguing handgrip exercise is mediated by thalamo-insular activity. Hum Brain Mapp. 2011;32(12):2151–60.PubMedCrossRef
89.
go back to reference Pasquereau B, Turner RS. Primary motor cortex of the Parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons. Cereb Cortex. 2011;21(6):1362–78.PubMedCrossRef Pasquereau B, Turner RS. Primary motor cortex of the Parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons. Cereb Cortex. 2011;21(6):1362–78.PubMedCrossRef
90.
go back to reference Swart J, Lamberts RP, Lambert MI, et al. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. Br J Sports Med. 2009;43(10):775–81.PubMedCrossRef Swart J, Lamberts RP, Lambert MI, et al. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. Br J Sports Med. 2009;43(10):775–81.PubMedCrossRef
91.
go back to reference Schmidt L, D’Arc BF, Lafargue G, et al. Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain. 2008;131(Pt 5):1303–10.PubMed Schmidt L, D’Arc BF, Lafargue G, et al. Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain. 2008;131(Pt 5):1303–10.PubMed
92.
go back to reference Niv Y. Cost, benefit, tonic, phasic, what do response rates tell us about dopamine and motivation. Ann N Y Acad Sci. 2007;1104:357–76.PubMedCrossRef Niv Y. Cost, benefit, tonic, phasic, what do response rates tell us about dopamine and motivation. Ann N Y Acad Sci. 2007;1104:357–76.PubMedCrossRef
93.
go back to reference Gibson ASC, Foster C. The role of self-talk in the awareness of physiological state and physical performance. Sports Med. 2007;37(12):1029–44.CrossRef Gibson ASC, Foster C. The role of self-talk in the awareness of physiological state and physical performance. Sports Med. 2007;37(12):1029–44.CrossRef
94.
go back to reference Volkow ND, Wang GJ, Fowler JS, et al. Imaging the effect of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1410–5.PubMedCrossRef Volkow ND, Wang GJ, Fowler JS, et al. Imaging the effect of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1410–5.PubMedCrossRef
95.
go back to reference Niv Y, Daw ND, Joel D, et al. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology. 2007;191(3):507–20.PubMedCrossRef Niv Y, Daw ND, Joel D, et al. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology. 2007;191(3):507–20.PubMedCrossRef
96.
go back to reference Swart J, Lamberts RP, Lambert MI, et al. Exercising with reserve: evidence that the central nervous system regulates prolonged exercise performance. Br J Sports Med. 2009;43(10):782–8.PubMedCrossRef Swart J, Lamberts RP, Lambert MI, et al. Exercising with reserve: evidence that the central nervous system regulates prolonged exercise performance. Br J Sports Med. 2009;43(10):782–8.PubMedCrossRef
97.
go back to reference Bock O, Hagemann A. An experimental paradigm to compare motor performance under laboratory and under everyday-like conditions. J Neurosci Methods. 2010;193:24–8.PubMedCrossRef Bock O, Hagemann A. An experimental paradigm to compare motor performance under laboratory and under everyday-like conditions. J Neurosci Methods. 2010;193:24–8.PubMedCrossRef
98.
go back to reference Pessiglione M, Seymour B, Flandin G, et al. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006;442:1042–5.PubMedCrossRef Pessiglione M, Seymour B, Flandin G, et al. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006;442:1042–5.PubMedCrossRef
99.
go back to reference Prevost C, Pessiglione M, Metereau E, et al. Separate valuation subsystems for delay and effort decision costs. J Neurosci. 2010;30:14080–90.PubMedCrossRef Prevost C, Pessiglione M, Metereau E, et al. Separate valuation subsystems for delay and effort decision costs. J Neurosci. 2010;30:14080–90.PubMedCrossRef
100.
go back to reference Lutz K, Pedroni A, Nadig K, et al. The rewarding value of good motor performance in the context of monetary incentives. Neuropsychologica. 2012;50(8):1739–47.CrossRef Lutz K, Pedroni A, Nadig K, et al. The rewarding value of good motor performance in the context of monetary incentives. Neuropsychologica. 2012;50(8):1739–47.CrossRef
101.
go back to reference Laplane D, Dubois B. Auto-activation deficit: a basal ganglia related syndrome. Mov Disord. 2001;16(5):810–4.PubMedCrossRef Laplane D, Dubois B. Auto-activation deficit: a basal ganglia related syndrome. Mov Disord. 2001;16(5):810–4.PubMedCrossRef
102.
go back to reference Volkow ND, Wang GJ, Fowler JS, et al. Cardiovascular effects of methylphenidate in humans are associated with increases of dopamine in brain and of epinephrine in plasma. Psychopharmacology. 2003;166(3):264–70.PubMed Volkow ND, Wang GJ, Fowler JS, et al. Cardiovascular effects of methylphenidate in humans are associated with increases of dopamine in brain and of epinephrine in plasma. Psychopharmacology. 2003;166(3):264–70.PubMed
103.
go back to reference Wardle MC, Treadway MT, Mayo LM, et al. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011;31(46):16597–602.PubMedCrossRef Wardle MC, Treadway MT, Mayo LM, et al. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011;31(46):16597–602.PubMedCrossRef
104.
go back to reference Volkow ND, Wang GJ, Telang F, et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26(24):6583–8.PubMedCrossRef Volkow ND, Wang GJ, Telang F, et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26(24):6583–8.PubMedCrossRef
105.
go back to reference Pecina S, Cagniard B, Berridge KC, et al. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci. 2003;23(28):9395–402.PubMed Pecina S, Cagniard B, Berridge KC, et al. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci. 2003;23(28):9395–402.PubMed
106.
go back to reference Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28(3):309–69.PubMedCrossRef Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28(3):309–69.PubMedCrossRef
107.
go back to reference Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci. 2008;1129:35–46.PubMedCrossRef Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci. 2008;1129:35–46.PubMedCrossRef
108.
go back to reference Nicola SM, Surmeier DT, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000;23:185–215.PubMedCrossRef Nicola SM, Surmeier DT, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000;23:185–215.PubMedCrossRef
109.
go back to reference Plowey ED, Kramer JM, Beatty JA, et al. In vivo electrophysiological responses of pedunculopontine neurons to static muscle contraction. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1008–19.PubMed Plowey ED, Kramer JM, Beatty JA, et al. In vivo electrophysiological responses of pedunculopontine neurons to static muscle contraction. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1008–19.PubMed
110.
go back to reference Mena-Segovia J, Winn P, Bolam JP. Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev. 2008;58(2):265–71.PubMedCrossRef Mena-Segovia J, Winn P, Bolam JP. Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev. 2008;58(2):265–71.PubMedCrossRef
111.
go back to reference Ungless MA, Magill PJ, Bolam JP. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science. 2004;303(5666):2040–2.PubMedCrossRef Ungless MA, Magill PJ, Bolam JP. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science. 2004;303(5666):2040–2.PubMedCrossRef
112.
go back to reference Joshua M, Adler A, Mitelman R, et al. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci. 2008;28(45):11673–84.PubMedCrossRef Joshua M, Adler A, Mitelman R, et al. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci. 2008;28(45):11673–84.PubMedCrossRef
113.
go back to reference Schultz W. Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct. 2010;6:24.PubMedCrossRef Schultz W. Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct. 2010;6:24.PubMedCrossRef
114.
go back to reference Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci. 2001;21(13):4915–22.PubMed Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci. 2001;21(13):4915–22.PubMed
115.
go back to reference Krebs RM, Schott BH, Duzel E. Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biol Psychiatry. 2009;65(2):103–10.PubMedCrossRef Krebs RM, Schott BH, Duzel E. Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biol Psychiatry. 2009;65(2):103–10.PubMedCrossRef
116.
go back to reference Foley TE, Fleshner M. Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med. 2008;10(2):67–80.PubMedCrossRef Foley TE, Fleshner M. Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med. 2008;10(2):67–80.PubMedCrossRef
117.
go back to reference Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci. 2006;29(3):125–31.PubMedCrossRef Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci. 2006;29(3):125–31.PubMedCrossRef
118.
go back to reference Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience. 2001;106(2):313–30.PubMedCrossRef Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience. 2001;106(2):313–30.PubMedCrossRef
119.
go back to reference Horvitz JC. Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res. 2002;137:65–74.PubMedCrossRef Horvitz JC. Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res. 2002;137:65–74.PubMedCrossRef
120.
go back to reference Grace AA. Physiology of the normal and dopamine-depleted basal ganglia: insights into levodopa pharmacotherapy. Mov Disord. 2008;23(Suppl. 3):S560–9.PubMedCrossRef Grace AA. Physiology of the normal and dopamine-depleted basal ganglia: insights into levodopa pharmacotherapy. Mov Disord. 2008;23(Suppl. 3):S560–9.PubMedCrossRef
121.
122.
go back to reference Tepper JM, Lee CR. GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res. 2007;160:189–208.PubMedCrossRef Tepper JM, Lee CR. GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res. 2007;160:189–208.PubMedCrossRef
123.
go back to reference Seiden LS, Sabol KE, Ricaurte GA. Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol. 1993;33:639–77.PubMedCrossRef Seiden LS, Sabol KE, Ricaurte GA. Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol. 1993;33:639–77.PubMedCrossRef
124.
go back to reference Smeets WJAJ, Marin O, Gonzalez A. Evolution of the basal ganglia: new perspectives through a comparative approach. J Anat. 2000;196:501–17.PubMedCrossRef Smeets WJAJ, Marin O, Gonzalez A. Evolution of the basal ganglia: new perspectives through a comparative approach. J Anat. 2000;196:501–17.PubMedCrossRef
125.
go back to reference Tops M, Boksem MAS, Luu P, et al. Brain substrates of behavioral programs associated with self-regulation. Epub: Front Psychol; 2010. Tops M, Boksem MAS, Luu P, et al. Brain substrates of behavioral programs associated with self-regulation. Epub: Front Psychol; 2010.
126.
go back to reference Zhou FM, Wilson C, Dani JA. Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist. 2003;9(1):23–36.PubMedCrossRef Zhou FM, Wilson C, Dani JA. Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist. 2003;9(1):23–36.PubMedCrossRef
127.
go back to reference Aosaki T, Miura M, Suzuki T, et al. Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int. 2010;10(Suppl. 1):S148–57.PubMedCrossRef Aosaki T, Miura M, Suzuki T, et al. Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int. 2010;10(Suppl. 1):S148–57.PubMedCrossRef
128.
go back to reference Sarter M, Hasselmo ME, Bruno JP, et al. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev. 2005;48(1):98–111.PubMedCrossRef Sarter M, Hasselmo ME, Bruno JP, et al. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev. 2005;48(1):98–111.PubMedCrossRef
129.
go back to reference Aliane V, Perez S, Nieoullon A, et al. Cocaine-induced stereotypy is linked to an imbalance between the medial prefrontal and sensorimotor circuits of the basal ganglia. Eur J Neurosci. 2009;30(7):1269–79.PubMedCrossRef Aliane V, Perez S, Nieoullon A, et al. Cocaine-induced stereotypy is linked to an imbalance between the medial prefrontal and sensorimotor circuits of the basal ganglia. Eur J Neurosci. 2009;30(7):1269–79.PubMedCrossRef
130.
go back to reference Ding JB, Guzman JN, Peterson JD, et al. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron. 2010;67(2):294–307.PubMedCrossRef Ding JB, Guzman JN, Peterson JD, et al. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron. 2010;67(2):294–307.PubMedCrossRef
131.
go back to reference Swanson LW. Cerebral hemisphere regulation of motivated behavior. Brain Res. 2000;886(1–2):113–64.PubMedCrossRef Swanson LW. Cerebral hemisphere regulation of motivated behavior. Brain Res. 2000;886(1–2):113–64.PubMedCrossRef
132.
go back to reference Pfaff DW, Kieffer BL, Swanson LW. Mechanisms for the regulation of state changes in the central nervous system: an introduction. Ann N Y Acad Sci. 2008;1129:1–7.PubMedCrossRef Pfaff DW, Kieffer BL, Swanson LW. Mechanisms for the regulation of state changes in the central nervous system: an introduction. Ann N Y Acad Sci. 2008;1129:1–7.PubMedCrossRef
133.
go back to reference Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev. 2001;35(2):146–60.PubMedCrossRef Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev. 2001;35(2):146–60.PubMedCrossRef
134.
go back to reference Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates. Science. 1985;12(228):143–8.CrossRef Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates. Science. 1985;12(228):143–8.CrossRef
135.
go back to reference Berntson GG, Sarter M, Cacioppo JT. Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behav Brain Res. 1998;94(2):225–48.PubMedCrossRef Berntson GG, Sarter M, Cacioppo JT. Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behav Brain Res. 1998;94(2):225–48.PubMedCrossRef
136.
go back to reference Green AL, Paterson DJ. Identification of neurocircuitry controlling cardiovascular function in humans using functional neurosurgery: implications for exercise control. Exp Physiol. 2008;93(9):1022–8.PubMedCrossRef Green AL, Paterson DJ. Identification of neurocircuitry controlling cardiovascular function in humans using functional neurosurgery: implications for exercise control. Exp Physiol. 2008;93(9):1022–8.PubMedCrossRef
137.
go back to reference Basnayake SD, Hyam JA, Pereira EA, et al. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. J Appl Physiol. 2011;110(4):881–91.PubMedCrossRef Basnayake SD, Hyam JA, Pereira EA, et al. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. J Appl Physiol. 2011;110(4):881–91.PubMedCrossRef
138.
go back to reference Mauger AR, Jones AM, Williams CA. Influence of acetaminophen on performance during time trial cycling. J Appl Physiol. 2010;108(1):98–104.PubMedCrossRef Mauger AR, Jones AM, Williams CA. Influence of acetaminophen on performance during time trial cycling. J Appl Physiol. 2010;108(1):98–104.PubMedCrossRef
139.
go back to reference Katz RJ, Carroll BJ, Baldrighi G. Behavioral activation by enkephalins in mice. Pharmacol Biochem Behav. 1978;8(4):493–6.PubMedCrossRef Katz RJ, Carroll BJ, Baldrighi G. Behavioral activation by enkephalins in mice. Pharmacol Biochem Behav. 1978;8(4):493–6.PubMedCrossRef
140.
go back to reference Krummenacher P, Candia V, Folkers G, et al. Prefrontal cortex modulates placebo analgesia. Pain. 2010;148(3):68–374.CrossRef Krummenacher P, Candia V, Folkers G, et al. Prefrontal cortex modulates placebo analgesia. Pain. 2010;148(3):68–374.CrossRef
141.
go back to reference Benedetti F, Pollo A, Colloca L. Opioid-mediated placebo responses boost pain endurance and physical performance: is it doping in sport competitions? J Neurosci. 2007;27(44):11934–9.PubMedCrossRef Benedetti F, Pollo A, Colloca L. Opioid-mediated placebo responses boost pain endurance and physical performance: is it doping in sport competitions? J Neurosci. 2007;27(44):11934–9.PubMedCrossRef
142.
go back to reference Boecker H, Sprenger T, Spilker ME, et al. The runner’s high: opioidergic mechanisms in the human brain. Cereb Cortex. 2008;18(11):2523–31.PubMedCrossRef Boecker H, Sprenger T, Spilker ME, et al. The runner’s high: opioidergic mechanisms in the human brain. Cereb Cortex. 2008;18(11):2523–31.PubMedCrossRef
143.
go back to reference Hohmann AG, Suplita RL, Bolton NM, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;23(435):1108–12.CrossRef Hohmann AG, Suplita RL, Bolton NM, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;23(435):1108–12.CrossRef
144.
145.
go back to reference Fernandez-Ruiz J, Hernandez M, Ramos JA. Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010;16(3):e72–91.PubMedCrossRef Fernandez-Ruiz J, Hernandez M, Ramos JA. Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010;16(3):e72–91.PubMedCrossRef
146.
go back to reference Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 1998;121:1437–49.PubMedCrossRef Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 1998;121:1437–49.PubMedCrossRef
147.
148.
go back to reference Gibson ASC, Lambert EV, Rauch LHG, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705–22.CrossRef Gibson ASC, Lambert EV, Rauch LHG, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705–22.CrossRef
149.
go back to reference Rauch HGL, Gibson AS, Lambert EV, et al. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–8.PubMedCrossRef Rauch HGL, Gibson AS, Lambert EV, et al. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–8.PubMedCrossRef
150.
go back to reference Rauch HGL, Hawley JA, Woodey M, et al. Effects of ingesting a sports bar versus glucose polymer on substrate utilisation and ultra-endurance performance. Int J Sports Med. 1999;20(4):252–7.PubMedCrossRef Rauch HGL, Hawley JA, Woodey M, et al. Effects of ingesting a sports bar versus glucose polymer on substrate utilisation and ultra-endurance performance. Int J Sports Med. 1999;20(4):252–7.PubMedCrossRef
151.
go back to reference Tucker R, Rauch L, Harley YXR, et al. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004;448(4):422–30.PubMedCrossRef Tucker R, Rauch L, Harley YXR, et al. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004;448(4):422–30.PubMedCrossRef
152.
go back to reference Kay D, Marino FE, Cannon J, et al. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. Eur J Appl Physiol. 2001;84(1–2):115–21.PubMedCrossRef Kay D, Marino FE, Cannon J, et al. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. Eur J Appl Physiol. 2001;84(1–2):115–21.PubMedCrossRef
153.
go back to reference Rauch HGL, Hawley JA, Noakes TD, et al. Fuel metabolism during ultra-endurance exercise. Pflugers Arch. 1998;436(2):211–9.PubMedCrossRef Rauch HGL, Hawley JA, Noakes TD, et al. Fuel metabolism during ultra-endurance exercise. Pflugers Arch. 1998;436(2):211–9.PubMedCrossRef
154.
go back to reference Klass M, Roelands B, Levenez M, et al. Effects of noradrenaline and dopamine on supraspinal fatigue in well-trained men. Med Sci Sports Exerc. 2012;44:2299–308.PubMedCrossRef Klass M, Roelands B, Levenez M, et al. Effects of noradrenaline and dopamine on supraspinal fatigue in well-trained men. Med Sci Sports Exerc. 2012;44:2299–308.PubMedCrossRef
155.
go back to reference Gainetdinov RR, Wetsel WC, Jones SR, et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science. 1999;15(283):397–401.CrossRef Gainetdinov RR, Wetsel WC, Jones SR, et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science. 1999;15(283):397–401.CrossRef
156.
go back to reference Ellison GD. Behavior and balance between norepinephrine and serotonin. Acta Neurobiol Exp (Wars). 1975;35(5–6):499–515. Ellison GD. Behavior and balance between norepinephrine and serotonin. Acta Neurobiol Exp (Wars). 1975;35(5–6):499–515.
157.
go back to reference Barasi S, Roberts MHT. Modification of lumbar motoneuron excitability by stimulation of A putative 5-hydroxytryptamine pathway. Br J Pharmacol. 1974;52(3):339–48.PubMedCrossRef Barasi S, Roberts MHT. Modification of lumbar motoneuron excitability by stimulation of A putative 5-hydroxytryptamine pathway. Br J Pharmacol. 1974;52(3):339–48.PubMedCrossRef
158.
go back to reference Crone C, Hultborn H, Kiehn O, et al. Maintained changes in motoneuronal excitability by short-lasting synaptic inputs in the decerebrate cat. J Physiol. 1988;405:321–43.PubMed Crone C, Hultborn H, Kiehn O, et al. Maintained changes in motoneuronal excitability by short-lasting synaptic inputs in the decerebrate cat. J Physiol. 1988;405:321–43.PubMed
159.
go back to reference MacLean JN, Cowley KC, Schmidt BJ. NMDA receptor-mediated oscillatory activity in the neonatal rat spinal cord is serotonin dependent. J Neurophysiol. 1998;79(5):2804–8.PubMed MacLean JN, Cowley KC, Schmidt BJ. NMDA receptor-mediated oscillatory activity in the neonatal rat spinal cord is serotonin dependent. J Neurophysiol. 1998;79(5):2804–8.PubMed
160.
go back to reference Walton C, Kalmar JM, Cafarelli E. Effect of caffeine on self-sustained firing in human motor units. J Physiol. 2002;545:671–9.PubMedCrossRef Walton C, Kalmar JM, Cafarelli E. Effect of caffeine on self-sustained firing in human motor units. J Physiol. 2002;545:671–9.PubMedCrossRef
161.
go back to reference Meeusen R, Roelands B. Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scand J Med Sci Sports. 2010;20(Suppl. 3):19–28.PubMedCrossRef Meeusen R, Roelands B. Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scand J Med Sci Sports. 2010;20(Suppl. 3):19–28.PubMedCrossRef
162.
go back to reference Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? The flush model. Sports Med. 2011;41:489–506.PubMedCrossRef Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? The flush model. Sports Med. 2011;41:489–506.PubMedCrossRef
163.
go back to reference Noakes TD, Gibson AS, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br J Sports Med. 2004;38(4):511–4.PubMedCrossRef Noakes TD, Gibson AS, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br J Sports Med. 2004;38(4):511–4.PubMedCrossRef
164.
go back to reference Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.PubMed Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.PubMed
165.
go back to reference Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392–400.PubMedCrossRef Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392–400.PubMedCrossRef
166.
go back to reference Dzirasa K, Phillips HW, Sotnikova TD, et al. Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony. J Neuro. 2010;30:6387–97.CrossRef Dzirasa K, Phillips HW, Sotnikova TD, et al. Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony. J Neuro. 2010;30:6387–97.CrossRef
Metadata
Title
Neural Correlates of Motor Vigour and Motor Urgency During Exercise
Authors
H. G. Laurie Rauch
Georg Schönbächler
Timothy D. Noakes
Publication date
01-04-2013
Publisher
Springer International Publishing AG
Published in
Sports Medicine / Issue 4/2013
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-013-0025-1

Other articles of this Issue 4/2013

Sports Medicine 4/2013 Go to the issue