Skip to main content
Top
Published in: Drug Safety 6/2013

01-06-2013 | Review Article

Tyrosine Kinase Inhibitors: Their On-Target Toxicities as Potential Indicators of Efficacy

Authors: Devron R. Shah, Rashmi R. Shah, Joel Morganroth

Published in: Drug Safety | Issue 6/2013

Login to get access

Abstract

Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of certain forms of cancers, raising hopes for many patients with otherwise unresponsive tumours. While these agents are generally well tolerated, clinical experience with them has highlighted their unexpected association with serious toxic effects on various organs such as the heart, lungs, liver, kidneys, thyroid, skin, blood coagulation, gastrointestinal tract and nervous system. Many of these toxic effects result from downstream inhibition of vascular endothelial growth factor or epidermal growth factor signalling in cells of normal organs. Many of these undesirable effects such as hypertension, hypothyroidism, skin reactions and possibly proteinuria are on-target effects. Since tyrosine kinases are widely distributed with specific functional roles in different organs, this association is not too surprising. Various studies suggest that the development of these on-target effects indicates clinically desirable and effective inhibition of the corresponding ligand-mediated receptor linked with oncogenesis. This is reflected as improved efficacy in the subgroup of patients who develop these on-target adverse effects compared with those who do not. Inevitably, issues arise with respect to the regulatory assessment of efficacy and risk/benefit of the TKIs as well as the clinical approach to managing patients who develop these effects. Routine subgroup analysis of efficacy data from clinical trials (patients with and without on-target toxicity) may enable more effective clinical use of TKIs since (i) discontinuing or reducing the dose of the TKI has a negative impact if the tumour is TKI-responsive; and (ii) it is usually possible to manage these undesirable on-target effects with conventional clinical approaches. Prospective studies are needed to investigate this proposition further.
Literature
1.
go back to reference Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.PubMedCrossRef Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.PubMedCrossRef
2.
go back to reference Chen MH, Kerkela R, Force T. Mechanisms of cardiomyopathy associated with tyrosine kinase inhibitor cancer therapeutics. Circulation. 2008;118(1):84–95.PubMedCrossRef Chen MH, Kerkela R, Force T. Mechanisms of cardiomyopathy associated with tyrosine kinase inhibitor cancer therapeutics. Circulation. 2008;118(1):84–95.PubMedCrossRef
3.
go back to reference Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarization (QT interval). Drug Saf. doi:10.1007/s40264-013-0047-5 Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarization (QT interval). Drug Saf. doi:10.​1007/​s40264-013-0047-5
4.
go back to reference Keefe D, Bowen J, Gibson R, et al. Noncardiac vascular toxicities of vascular endothelial growth factor inhibitors in advanced cancer: a review. Oncologist. 2011;16(4):432–44.PubMedCrossRef Keefe D, Bowen J, Gibson R, et al. Noncardiac vascular toxicities of vascular endothelial growth factor inhibitors in advanced cancer: a review. Oncologist. 2011;16(4):432–44.PubMedCrossRef
5.
go back to reference Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–43. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–43.
6.
go back to reference Gotlink KJ, Verheul HMW. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis. 2010;13(1):1–14. Gotlink KJ, Verheul HMW. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis. 2010;13(1):1–14.
7.
go back to reference Laurent-Puig P, Lievre A, Blons H. Mutations and response to epidermal growth factor receptor inhibitors. Clin Cancer Res. 2009;15(4):1133–9.PubMedCrossRef Laurent-Puig P, Lievre A, Blons H. Mutations and response to epidermal growth factor receptor inhibitors. Clin Cancer Res. 2009;15(4):1133–9.PubMedCrossRef
8.
go back to reference Elice F, Rodeghiero F, Falanga A, et al. Thrombosis associated with angiogenesis inhibitors. Best Pract Res Clin Haematol. 2009;22(1):115–28.PubMedCrossRef Elice F, Rodeghiero F, Falanga A, et al. Thrombosis associated with angiogenesis inhibitors. Best Pract Res Clin Haematol. 2009;22(1):115–28.PubMedCrossRef
9.
go back to reference Sonpavde G, Bellmunt J, Schutz F, et al. The double edged sword of bleeding and clotting from VEGF inhibition in renal cancer patients. Curr Oncol Rep. 2012;14(4):295–306.PubMedCrossRef Sonpavde G, Bellmunt J, Schutz F, et al. The double edged sword of bleeding and clotting from VEGF inhibition in renal cancer patients. Curr Oncol Rep. 2012;14(4):295–306.PubMedCrossRef
10.
go back to reference Amir E, Seruga B, Martinez-Lopez J, et al. Oncogenic targets, magnitude of benefit, and market pricing of antineoplastic drugs. J Clin Oncol. 2011;29(18):2543–9.PubMedCrossRef Amir E, Seruga B, Martinez-Lopez J, et al. Oncogenic targets, magnitude of benefit, and market pricing of antineoplastic drugs. J Clin Oncol. 2011;29(18):2543–9.PubMedCrossRef
11.
go back to reference van Cruijsen H, van der Veldt A, Hoekman K. Tyrosine kinase inhibitors of VEGF receptors: clinical issues and remaining questions. Front Biosci. 2009;14(1):2248–68.PubMedCrossRef van Cruijsen H, van der Veldt A, Hoekman K. Tyrosine kinase inhibitors of VEGF receptors: clinical issues and remaining questions. Front Biosci. 2009;14(1):2248–68.PubMedCrossRef
12.
go back to reference Roodhart JM, Langenberg MH, Witteveen E, et al. The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway. Curr Clin Pharmacol. 2008;3(2):132–43.PubMedCrossRef Roodhart JM, Langenberg MH, Witteveen E, et al. The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway. Curr Clin Pharmacol. 2008;3(2):132–43.PubMedCrossRef
13.
go back to reference Eaby B, Culkin A, Lacouture ME. An interdisciplinary consensus on managing skin reactions associated with human epidermal growth factor receptor inhibitors. Clin J Oncol Nurs. 2008;12(2):283–90.PubMedCrossRef Eaby B, Culkin A, Lacouture ME. An interdisciplinary consensus on managing skin reactions associated with human epidermal growth factor receptor inhibitors. Clin J Oncol Nurs. 2008;12(2):283–90.PubMedCrossRef
14.
go back to reference Asnacios A, Naveau S, Perlemuter G. Gastrointestinal toxicities of novel agents in cancer therapy. Eur J Cancer. 2009;45(Suppl. 1):332–42.PubMedCrossRef Asnacios A, Naveau S, Perlemuter G. Gastrointestinal toxicities of novel agents in cancer therapy. Eur J Cancer. 2009;45(Suppl. 1):332–42.PubMedCrossRef
15.
go back to reference Steeghs N, Gelderblom H, Roodt JO, et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14(11):3470–6.PubMedCrossRef Steeghs N, Gelderblom H, Roodt JO, et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14(11):3470–6.PubMedCrossRef
33.
go back to reference Nazer B, Humphreys BD, Moslehi J. Effects of novel angiogenesis inhibitors for the treatment of cancer on the cardiovascular system: focus on hypertension. Circulation. 2011;124(15):1687–91.PubMedCrossRef Nazer B, Humphreys BD, Moslehi J. Effects of novel angiogenesis inhibitors for the treatment of cancer on the cardiovascular system: focus on hypertension. Circulation. 2011;124(15):1687–91.PubMedCrossRef
34.
go back to reference Qi WX, Shen Z, Lin F, et al. Incidence and risk of hypertension with vandetanib in cancer patients: a systematic review and meta-analysis of clinical trials. Br J Clin Pharmacol. 2013;75(4):919–30.PubMedCrossRef Qi WX, Shen Z, Lin F, et al. Incidence and risk of hypertension with vandetanib in cancer patients: a systematic review and meta-analysis of clinical trials. Br J Clin Pharmacol. 2013;75(4):919–30.PubMedCrossRef
35.
go back to reference Rini BI, Cohen DP, Lu DR, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103(9):763–73.PubMedCrossRef Rini BI, Cohen DP, Lu DR, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103(9):763–73.PubMedCrossRef
36.
go back to reference George S, Reichardt P, Lechner T, et al. Hypertension as a potential biomarker of efficacy in patients with gastrointestinal stromal tumor treated with sunitinib. Ann Oncol. 2012;23(12):3180–7.PubMedCrossRef George S, Reichardt P, Lechner T, et al. Hypertension as a potential biomarker of efficacy in patients with gastrointestinal stromal tumor treated with sunitinib. Ann Oncol. 2012;23(12):3180–7.PubMedCrossRef
37.
go back to reference Rini BI, Schiller JH, Fruehauf JP, et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res. 2011;17(11):3841–9.PubMedCrossRef Rini BI, Schiller JH, Fruehauf JP, et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res. 2011;17(11):3841–9.PubMedCrossRef
38.
go back to reference Estfan B, Byrne M, Kim R. Sorafenib in advanced hepatocellular carcinoma: hypertension as a potential surrogate marker for efficacy. Am J Clin Oncol (Epub 2012 Apr 27). Estfan B, Byrne M, Kim R. Sorafenib in advanced hepatocellular carcinoma: hypertension as a potential surrogate marker for efficacy. Am J Clin Oncol (Epub 2012 Apr 27).
39.
go back to reference Kim JJ, Vaziri SA, Rini BI, et al. Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer. 2012;118(7):1946–54.PubMedCrossRef Kim JJ, Vaziri SA, Rini BI, et al. Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer. 2012;118(7):1946–54.PubMedCrossRef
40.
go back to reference Li XS, Wu X, Zhao PJ, et al. Efficacy and safety of sunitinib in the treatment of metastatic renal cell carcinoma. Chin Med J (Engl). 2011;124(18):2920–4. Li XS, Wu X, Zhao PJ, et al. Efficacy and safety of sunitinib in the treatment of metastatic renal cell carcinoma. Chin Med J (Engl). 2011;124(18):2920–4.
41.
go back to reference Clemons J, Gao D, Naam M, et al. Thyroid dysfunction in patients treated with sunitinib or sorafenib. Clin Genitourin Cancer. 2012;10(4):225–31.PubMedCrossRef Clemons J, Gao D, Naam M, et al. Thyroid dysfunction in patients treated with sunitinib or sorafenib. Clin Genitourin Cancer. 2012;10(4):225–31.PubMedCrossRef
42.
go back to reference Daimon M, Kato T, Kaino W, et al. Thyroid dysfunction in patients treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, for metastatic renal cell carcinoma. Jpn J Clin Oncol. 2012;42(8):742–7.PubMedCrossRef Daimon M, Kato T, Kaino W, et al. Thyroid dysfunction in patients treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, for metastatic renal cell carcinoma. Jpn J Clin Oncol. 2012;42(8):742–7.PubMedCrossRef
43.
go back to reference Torino F, Corsello SM, Longo R, et al. Hypothyroidism related to tyrosine kinase inhibitors: an emerging toxic effect of targeted therapy. Nat Rev Clin Oncol. 2009;6(4):219–28.PubMedCrossRef Torino F, Corsello SM, Longo R, et al. Hypothyroidism related to tyrosine kinase inhibitors: an emerging toxic effect of targeted therapy. Nat Rev Clin Oncol. 2009;6(4):219–28.PubMedCrossRef
44.
go back to reference Sakurai K, Fukazawa H, Arihara Z, et al. Sunitinib-induced thyrotoxicosis followed by persistent hypothyroidism with shrinkage of thyroid volume. Tohoku J Exp Med. 2010;222(1):39–44.PubMedCrossRef Sakurai K, Fukazawa H, Arihara Z, et al. Sunitinib-induced thyrotoxicosis followed by persistent hypothyroidism with shrinkage of thyroid volume. Tohoku J Exp Med. 2010;222(1):39–44.PubMedCrossRef
45.
go back to reference Krouse RS, Royal RE, Heywood G, et al. Thyroid dysfunction in 281 patients with metastatic melanoma or renal carcinoma treated with interleukin-2 alone. J Immunother Emphasis Tumor Immunol. 1995;18(4):272–8.PubMedCrossRef Krouse RS, Royal RE, Heywood G, et al. Thyroid dysfunction in 281 patients with metastatic melanoma or renal carcinoma treated with interleukin-2 alone. J Immunother Emphasis Tumor Immunol. 1995;18(4):272–8.PubMedCrossRef
46.
go back to reference Schwartzentruber DJ, White DE, Zweig MH, et al. Thyroid dysfunction associated with immunotherapy for patients with cancer. Cancer. 1991;68(11):2384–90.PubMedCrossRef Schwartzentruber DJ, White DE, Zweig MH, et al. Thyroid dysfunction associated with immunotherapy for patients with cancer. Cancer. 1991;68(11):2384–90.PubMedCrossRef
47.
go back to reference Wong E, Rosen LS, Mulay M, et al. Sunitinib induces hypothyroidism in advanced cancer patients and may inhibit thyroid peroxidase activity. Thyroid. 2007;17(4):351–5.PubMedCrossRef Wong E, Rosen LS, Mulay M, et al. Sunitinib induces hypothyroidism in advanced cancer patients and may inhibit thyroid peroxidase activity. Thyroid. 2007;17(4):351–5.PubMedCrossRef
48.
go back to reference Mannavola D, Coco P, Vannucchi G, et al. A novel tyrosine-kinase selective inhibitor, sunitinib, induces transient hypothyroidism by blocking iodine uptake. J Clin Endocrinol Metab. 2007;92(9):3531–4.PubMedCrossRef Mannavola D, Coco P, Vannucchi G, et al. A novel tyrosine-kinase selective inhibitor, sunitinib, induces transient hypothyroidism by blocking iodine uptake. J Clin Endocrinol Metab. 2007;92(9):3531–4.PubMedCrossRef
49.
go back to reference Abdulrahman RM, Verloop H, Hoftijzer H, et al. Sorafenib-induced hypothyroidism is associated with increased type 3 deiodination. J Clin Endocrinol Metab. 2010;95(8):3758–62.PubMedCrossRef Abdulrahman RM, Verloop H, Hoftijzer H, et al. Sorafenib-induced hypothyroidism is associated with increased type 3 deiodination. J Clin Endocrinol Metab. 2010;95(8):3758–62.PubMedCrossRef
50.
go back to reference Kappers MH, van Esch JH, Smedts FM, et al. Sunitinib-induced hypothyroidism is due to induction of type 3 deiodinase activity and thyroidal capillary regression. J Clin Endocrinol Metab. 2011;96(10):3087–94.PubMedCrossRef Kappers MH, van Esch JH, Smedts FM, et al. Sunitinib-induced hypothyroidism is due to induction of type 3 deiodinase activity and thyroidal capillary regression. J Clin Endocrinol Metab. 2011;96(10):3087–94.PubMedCrossRef
51.
go back to reference Vesely D, Astil J, Lastuvka P, et al. Serum levels of IGF-I, HGF, TGFβ1, bFGF and VEGF in thyroid gland tumors. Physiol Res. 2004;53(1):83–9.PubMed Vesely D, Astil J, Lastuvka P, et al. Serum levels of IGF-I, HGF, TGFβ1, bFGF and VEGF in thyroid gland tumors. Physiol Res. 2004;53(1):83–9.PubMed
52.
go back to reference Makita N, Miyakawa M, Fujita T, et al. Sunitinib induces hypothyroidism with a markedly reduced vascularity. Thyroid. 2010;20(3):323–6.PubMedCrossRef Makita N, Miyakawa M, Fujita T, et al. Sunitinib induces hypothyroidism with a markedly reduced vascularity. Thyroid. 2010;20(3):323–6.PubMedCrossRef
53.
go back to reference Sato S, Muraishi K, Tani J, et al. Clinical characteristics of thyroid abnormalities induced by sunitinib treatment in Japanese patients with renal cell carcinoma. Endocr J. 2010;57(10):873–80.PubMedCrossRef Sato S, Muraishi K, Tani J, et al. Clinical characteristics of thyroid abnormalities induced by sunitinib treatment in Japanese patients with renal cell carcinoma. Endocr J. 2010;57(10):873–80.PubMedCrossRef
54.
go back to reference Kitajima K, Takahashi S, Maeda T, et al. Thyroid size change by CT monitoring after sorafenib or sunitinib treatment in patients with renal cell carcinoma: comparison with thyroid function. Eur J Radiol. 2012;81(9):2060–5.PubMedCrossRef Kitajima K, Takahashi S, Maeda T, et al. Thyroid size change by CT monitoring after sorafenib or sunitinib treatment in patients with renal cell carcinoma: comparison with thyroid function. Eur J Radiol. 2012;81(9):2060–5.PubMedCrossRef
55.
go back to reference Riesenbeck LM, Bierer S, Hoffmeister I, et al. Hypothyroidism correlates with a better prognosis in metastatic renal cancer patients treated with sorafenib or sunitinib. World J Urol. 2011;29(6):807–13.PubMedCrossRef Riesenbeck LM, Bierer S, Hoffmeister I, et al. Hypothyroidism correlates with a better prognosis in metastatic renal cancer patients treated with sorafenib or sunitinib. World J Urol. 2011;29(6):807–13.PubMedCrossRef
56.
go back to reference Schmidinger M, Vogl UM, Bojic M, et al. Hypothyroidism in patients with renal cell carcinoma: blessing or curse? Cancer. 2011;117(3):534–44.PubMedCrossRef Schmidinger M, Vogl UM, Bojic M, et al. Hypothyroidism in patients with renal cell carcinoma: blessing or curse? Cancer. 2011;117(3):534–44.PubMedCrossRef
57.
go back to reference Robinson ES, Matulonis UA, Ivy P, et al. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin J Am Soc Nephrol. 2010;5(3):477–83.PubMedCrossRef Robinson ES, Matulonis UA, Ivy P, et al. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin J Am Soc Nephrol. 2010;5(3):477–83.PubMedCrossRef
58.
go back to reference Eskens FA, de Jonge MJ, Bhargava P, et al. Biologic and clinical activity of tivozanib (AV-951, KRN-951), a selective inhibitor of VEGF receptor-1, -2, and -3 tyrosine kinases, in a 4-week-on, 2-week-off schedule in patients with advanced solid tumors. Clin Cancer Res. 2011;17(22):7156–63.PubMedCrossRef Eskens FA, de Jonge MJ, Bhargava P, et al. Biologic and clinical activity of tivozanib (AV-951, KRN-951), a selective inhibitor of VEGF receptor-1, -2, and -3 tyrosine kinases, in a 4-week-on, 2-week-off schedule in patients with advanced solid tumors. Clin Cancer Res. 2011;17(22):7156–63.PubMedCrossRef
59.
go back to reference Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.PubMedCrossRef Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.PubMedCrossRef
60.
go back to reference Eremina V, Quaggin SE. Biology of anti-angiogenc therapy-induced thrombotic microangiopathy. Semin Nephrol. 2010;30(6):582–90.PubMedCrossRef Eremina V, Quaggin SE. Biology of anti-angiogenc therapy-induced thrombotic microangiopathy. Semin Nephrol. 2010;30(6):582–90.PubMedCrossRef
61.
go back to reference Izzedine H, Massard C, Spano JP, et al. VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur J Cancer. 2010;46(2):439–48.PubMedCrossRef Izzedine H, Massard C, Spano JP, et al. VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur J Cancer. 2010;46(2):439–48.PubMedCrossRef
63.
go back to reference Bertuccio C, Veron D, Aggarwal PK, et al. Vascular endothelial growth factor receptor 2 direct interaction with nephrin links VEGF-A signals to actin in kidney podocytes. J Biol Chem. 2011;286(46):39933–44.PubMedCrossRef Bertuccio C, Veron D, Aggarwal PK, et al. Vascular endothelial growth factor receptor 2 direct interaction with nephrin links VEGF-A signals to actin in kidney podocytes. J Biol Chem. 2011;286(46):39933–44.PubMedCrossRef
64.
go back to reference Sugimoto H, Hamano Y, Charytan D, et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem. 2003;278(15):12605–8.PubMedCrossRef Sugimoto H, Hamano Y, Charytan D, et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem. 2003;278(15):12605–8.PubMedCrossRef
65.
go back to reference Blanco S, Bonet J, López D, et al. ACE inhibitors improve nephrin expression in Zucker rats with glomerulosclerosis. Kidney Int Suppl. 2005;67(S93):S10-4. Blanco S, Bonet J, López D, et al. ACE inhibitors improve nephrin expression in Zucker rats with glomerulosclerosis. Kidney Int Suppl. 2005;67(S93):S10-4.
66.
go back to reference Agabiti-Rosei E. Structural and functional changes of the microcirculation in hypertension: influence of pharmacological therapy. Drugs. 2003;63(Spec No 1):19–29. Agabiti-Rosei E. Structural and functional changes of the microcirculation in hypertension: influence of pharmacological therapy. Drugs. 2003;63(Spec No 1):19–29.
67.
go back to reference Rosen AC, Wu S, Damse A, et al. Risk of rash in cancer patients treated with vandetanib: systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97(4):1125–33.PubMedCrossRef Rosen AC, Wu S, Damse A, et al. Risk of rash in cancer patients treated with vandetanib: systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97(4):1125–33.PubMedCrossRef
68.
go back to reference Lacouture ME, Laabs SM, Koehler M, et al. Analysis of dermatologic events in patients with cancer treated with lapatinib. Breast Cancer Res Treat. 2009;114(3):485–93.PubMedCrossRef Lacouture ME, Laabs SM, Koehler M, et al. Analysis of dermatologic events in patients with cancer treated with lapatinib. Breast Cancer Res Treat. 2009;114(3):485–93.PubMedCrossRef
69.
go back to reference Choi NM. Chemotherapy-induced iatrogenic injury of skin: new drugs and new concepts Clin Dermatol. 2011;29(6):587–601. Choi NM. Chemotherapy-induced iatrogenic injury of skin: new drugs and new concepts Clin Dermatol. 2011;29(6):587–601.
70.
go back to reference Hirsh V. Managing treatment-related adverse events associated with EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr Oncol. 2011;18(3):126–38.PubMedCrossRef Hirsh V. Managing treatment-related adverse events associated with EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr Oncol. 2011;18(3):126–38.PubMedCrossRef
71.
go back to reference Suzumura T, Kimura T, Kudoh S, et al. Reduced CYP2D6 function is associated with gefitinib-induced rash in patients with non-small cell lung cancer. BMC Cancer. 2012;4(12):568.CrossRef Suzumura T, Kimura T, Kudoh S, et al. Reduced CYP2D6 function is associated with gefitinib-induced rash in patients with non-small cell lung cancer. BMC Cancer. 2012;4(12):568.CrossRef
72.
go back to reference Li J, Karlsson MO, Brahmer J, et al. CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J Natl Cancer Inst. 2006;98(23):1714–23.PubMedCrossRef Li J, Karlsson MO, Brahmer J, et al. CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J Natl Cancer Inst. 2006;98(23):1714–23.PubMedCrossRef
73.
go back to reference Pérez-Soler R, Zou Y, Li T, et al. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab. Clin Cancer Res. 2011;17(21):6766–77.PubMedCrossRef Pérez-Soler R, Zou Y, Li T, et al. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab. Clin Cancer Res. 2011;17(21):6766–77.PubMedCrossRef
74.
go back to reference Mitra SS, Simcock R. Erlotinib induced skin rash spares skin in previous radiotherapy field. J Clin Oncol. 2006;24(16):e28–9.PubMedCrossRef Mitra SS, Simcock R. Erlotinib induced skin rash spares skin in previous radiotherapy field. J Clin Oncol. 2006;24(16):e28–9.PubMedCrossRef
75.
go back to reference Pérez-Soler R. Can rash associated with HER1/EGFR inhibition be used as a marker of treatment outcome? Oncology (Williston Park). 2003;17(11 Suppl. 12):23–8. Pérez-Soler R. Can rash associated with HER1/EGFR inhibition be used as a marker of treatment outcome? Oncology (Williston Park). 2003;17(11 Suppl. 12):23–8.
76.
go back to reference Pérez-Soler R. Rash as a surrogate marker for efficacy of epidermal growth factor receptor inhibitors in lung cancer. Clin Lung Cancer. 2006;8(Suppl. 1):S7–14.PubMedCrossRef Pérez-Soler R. Rash as a surrogate marker for efficacy of epidermal growth factor receptor inhibitors in lung cancer. Clin Lung Cancer. 2006;8(Suppl. 1):S7–14.PubMedCrossRef
77.
go back to reference Wacker B, Nagrani T, Weinberg J, et al. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin Cancer Res. 2007;13(13):3913–21.PubMedCrossRef Wacker B, Nagrani T, Weinberg J, et al. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin Cancer Res. 2007;13(13):3913–21.PubMedCrossRef
78.
go back to reference Liu G, Gurubhagavatula S, Zhou W, et al. Epidermal growth factor receptor polymorphisms and clinical outcomes in non-small-cell lung cancer patients treated with gefitinib. Pharmacogenomics J. 2008;8(2):129–38.PubMedCrossRef Liu G, Gurubhagavatula S, Zhou W, et al. Epidermal growth factor receptor polymorphisms and clinical outcomes in non-small-cell lung cancer patients treated with gefitinib. Pharmacogenomics J. 2008;8(2):129–38.PubMedCrossRef
79.
go back to reference Vincenzi B, Santini D, Russo A, et al. Early skin toxicity as a predictive factor for tumor control in hepatocellular carcinoma patients treated with sorafenib. Oncologist. 2010;15(1):85–92.PubMedCrossRef Vincenzi B, Santini D, Russo A, et al. Early skin toxicity as a predictive factor for tumor control in hepatocellular carcinoma patients treated with sorafenib. Oncologist. 2010;15(1):85–92.PubMedCrossRef
80.
go back to reference Petrelli F, Borgonovo K, Cabiddu M, et al. Relationship between skin rash and outcome in non-small-cell lung cancer patients treated with anti-EGFR tyrosine kinase inhibitors: a literature-based meta-analysis of 24 trials. Lung Cancer. 2012;78(1):8–15.PubMedCrossRef Petrelli F, Borgonovo K, Cabiddu M, et al. Relationship between skin rash and outcome in non-small-cell lung cancer patients treated with anti-EGFR tyrosine kinase inhibitors: a literature-based meta-analysis of 24 trials. Lung Cancer. 2012;78(1):8–15.PubMedCrossRef
81.
go back to reference Stepanski EJ, Reyes C, Walker MS, et al. The association of rash severity with overall survival: findings from patients receiving erlotinib for pancreatic cancer in the community setting. Pancreas. 2013;42(1):32–6.PubMedCrossRef Stepanski EJ, Reyes C, Walker MS, et al. The association of rash severity with overall survival: findings from patients receiving erlotinib for pancreatic cancer in the community setting. Pancreas. 2013;42(1):32–6.PubMedCrossRef
82.
go back to reference Fiala O, Pesek M, Finek J, et al. Skin rash as useful marker of erlotinib efficacy in NSCLC and its impact on clinical practice. Neoplasma. 2013;60(1):26–32.PubMedCrossRef Fiala O, Pesek M, Finek J, et al. Skin rash as useful marker of erlotinib efficacy in NSCLC and its impact on clinical practice. Neoplasma. 2013;60(1):26–32.PubMedCrossRef
83.
go back to reference Mita AC, Papadopoulos K, de Jonge MJA, et al. Erlotinib ‘dosing-to-rash’: a phase II intrapatient dose escalation and pharmacologic study of erlotinib in previously treated advanced non-small cell lung cancer. Br J Cancer. 2011;105(7):938–44. Mita AC, Papadopoulos K, de Jonge MJA, et al. Erlotinib ‘dosing-to-rash’: a phase II intrapatient dose escalation and pharmacologic study of erlotinib in previously treated advanced non-small cell lung cancer. Br J Cancer. 2011;105(7):938–44.
84.
go back to reference Liu HB, Wu Y, Lv TF, et al. Skin rash could predict the response to EGFR tyrosine kinase inhibitor and the prognosis for patients with non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2013;8(1):e55128.PubMedCrossRef Liu HB, Wu Y, Lv TF, et al. Skin rash could predict the response to EGFR tyrosine kinase inhibitor and the prognosis for patients with non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2013;8(1):e55128.PubMedCrossRef
85.
go back to reference Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357(20):2040–8.PubMedCrossRef Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357(20):2040–8.PubMedCrossRef
86.
go back to reference Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.PubMedCrossRef Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.PubMedCrossRef
87.
go back to reference Van Cutsem E, Tejpar S, Vanbeckevoort D, et al. Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: the randomized EVEREST study. J Clin Oncol. 2012;30(23):2861–8.PubMedCrossRef Van Cutsem E, Tejpar S, Vanbeckevoort D, et al. Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: the randomized EVEREST study. J Clin Oncol. 2012;30(23):2861–8.PubMedCrossRef
88.
go back to reference Lièvre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374–9.PubMedCrossRef Lièvre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374–9.PubMedCrossRef
92.
go back to reference Marshall JL. Maximum-tolerated dose, optimum biologic dose, or optimum clinical value: dosing determination of cancer therapies. J Clin Oncol. 2012;30(23):2815–6.PubMedCrossRef Marshall JL. Maximum-tolerated dose, optimum biologic dose, or optimum clinical value: dosing determination of cancer therapies. J Clin Oncol. 2012;30(23):2815–6.PubMedCrossRef
93.
go back to reference Mukohara T, Nakajima H, Mukai H, et al. Effect of axitinib (AG-013736) on fatigue, thyroid-stimulating hormone, and biomarkers: a phase I study in Japanese patients. Cancer Sci. 2010;101(4):963–8.PubMedCrossRef Mukohara T, Nakajima H, Mukai H, et al. Effect of axitinib (AG-013736) on fatigue, thyroid-stimulating hormone, and biomarkers: a phase I study in Japanese patients. Cancer Sci. 2010;101(4):963–8.PubMedCrossRef
94.
go back to reference Fujiwara Y, Kiyota N, Chayahara N, et al. Management of axitinib (AG-013736)-induced fatigue and thyroid dysfunction, and predictive biomarkers of axitinib exposure: results from phase I studies in Japanese patients. Invest New Drugs. 2012;30(3):1055–64.PubMedCrossRef Fujiwara Y, Kiyota N, Chayahara N, et al. Management of axitinib (AG-013736)-induced fatigue and thyroid dysfunction, and predictive biomarkers of axitinib exposure: results from phase I studies in Japanese patients. Invest New Drugs. 2012;30(3):1055–64.PubMedCrossRef
97.
go back to reference Girardi F, Franceschi E, Brandes AA. Cardiovascular safety of VEGF-targeting therapies: current evidence and handling strategies. Oncologist. 2010;15(7):683–94.PubMedCrossRef Girardi F, Franceschi E, Brandes AA. Cardiovascular safety of VEGF-targeting therapies: current evidence and handling strategies. Oncologist. 2010;15(7):683–94.PubMedCrossRef
98.
go back to reference Franklin PH, Banfor PN, Tapang P, et al. Effect of the multitargeted receptor tyrosine kinase inhibitor, ABT-869 [N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N’-(2-fluoro-5-methylphenyl)urea], on blood pressure in conscious rats and mice: reversal with antihypertensive agents and effect on tumor growth inhibition. J Pharmacol Exp Ther. 2009;329(3):928–37.PubMedCrossRef Franklin PH, Banfor PN, Tapang P, et al. Effect of the multitargeted receptor tyrosine kinase inhibitor, ABT-869 [N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N’-(2-fluoro-5-methylphenyl)urea], on blood pressure in conscious rats and mice: reversal with antihypertensive agents and effect on tumor growth inhibition. J Pharmacol Exp Ther. 2009;329(3):928–37.PubMedCrossRef
99.
go back to reference Izzedine H, Ederhy S, Goldwasser F, et al. Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 2009;20(5):807–15.PubMedCrossRef Izzedine H, Ederhy S, Goldwasser F, et al. Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 2009;20(5):807–15.PubMedCrossRef
100.
go back to reference Molteni A, Heffelfinger S, Moulder JE, et al. Potential deployment of angiotensin I converting enzyme inhibitors and of angiotensin II type 1 and type 2 receptor blockers in cancer chemotherapy. Anticancer Agents Med Chem. 2006;6(5):451–60.PubMedCrossRef Molteni A, Heffelfinger S, Moulder JE, et al. Potential deployment of angiotensin I converting enzyme inhibitors and of angiotensin II type 1 and type 2 receptor blockers in cancer chemotherapy. Anticancer Agents Med Chem. 2006;6(5):451–60.PubMedCrossRef
101.
go back to reference Wolter P, Stefan C, Decallonne B, et al. The clinical implications of sunitinib-induced hypothyroidism: a prospective evaluation. Br J Cancer. 2008;99(3):448–54.PubMedCrossRef Wolter P, Stefan C, Decallonne B, et al. The clinical implications of sunitinib-induced hypothyroidism: a prospective evaluation. Br J Cancer. 2008;99(3):448–54.PubMedCrossRef
102.
go back to reference Garfield DH, Wolter P, Schöffski P, et al. Documentation of thyroid function in clinical studies with sunitinib: why does it matter? J Clin Oncol. 2008;26(31):5131–2.PubMedCrossRef Garfield DH, Wolter P, Schöffski P, et al. Documentation of thyroid function in clinical studies with sunitinib: why does it matter? J Clin Oncol. 2008;26(31):5131–2.PubMedCrossRef
103.
go back to reference Lynch TJ Jr, Kim ES, Eaby B, et al. Epidermal growth factor receptor inhibitor-associated cutaneous toxicities: an evolving paradigm in clinical management. Oncologist. 2007;12(5):610–21.PubMedCrossRef Lynch TJ Jr, Kim ES, Eaby B, et al. Epidermal growth factor receptor inhibitor-associated cutaneous toxicities: an evolving paradigm in clinical management. Oncologist. 2007;12(5):610–21.PubMedCrossRef
104.
go back to reference Thatcher N, Nicolson M, Groves RW, for the UK Erlotinib Skin Toxicity Management Consensus Group, et al. Expert consensus on the management of erlotinib-associated cutaneous toxicity in the UK. Oncologist. 2009;14(8):840–7. Thatcher N, Nicolson M, Groves RW, for the UK Erlotinib Skin Toxicity Management Consensus Group, et al. Expert consensus on the management of erlotinib-associated cutaneous toxicity in the UK. Oncologist. 2009;14(8):840–7.
105.
go back to reference Potthoff K, Hofheinz R, Hassel JC, et al. Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion. Ann Oncol. 2011;22(3):524–35.PubMedCrossRef Potthoff K, Hofheinz R, Hassel JC, et al. Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion. Ann Oncol. 2011;22(3):524–35.PubMedCrossRef
106.
go back to reference Abdullah SE, Haigentz M Jr, Piperdi B. Dermatologic toxicities from monoclonal antibodies and tyrosine kinase inhibitors against EGFR: pathophysiology and management. Chemother Res Pract. 2012;2012:351210.PubMed Abdullah SE, Haigentz M Jr, Piperdi B. Dermatologic toxicities from monoclonal antibodies and tyrosine kinase inhibitors against EGFR: pathophysiology and management. Chemother Res Pract. 2012;2012:351210.PubMed
107.
go back to reference Robert C, Sibaud V, Mateus C, et al. Advances in the management of cutaneous toxicities of targeted therapies. Semin Oncol. 2012;39(2):227–40.PubMedCrossRef Robert C, Sibaud V, Mateus C, et al. Advances in the management of cutaneous toxicities of targeted therapies. Semin Oncol. 2012;39(2):227–40.PubMedCrossRef
108.
go back to reference Hassel JC, Kripp M, Al-Batran S, et al. Treatment of epidermal growth factor receptor antagonist-induced skin rash: results of a survey among German oncologists. Onkologie. 2010;33(3):94–8.PubMedCrossRef Hassel JC, Kripp M, Al-Batran S, et al. Treatment of epidermal growth factor receptor antagonist-induced skin rash: results of a survey among German oncologists. Onkologie. 2010;33(3):94–8.PubMedCrossRef
109.
go back to reference Bidoli P, Cortinovis DL, Colombo I, et al. Isotretinoin plus clindamycin seem highly effective against severe erlotinib-induced skin rash in advanced non-small cell lung cancer. J Thorac Oncol. 2010;5(10):1662–3.PubMedCrossRef Bidoli P, Cortinovis DL, Colombo I, et al. Isotretinoin plus clindamycin seem highly effective against severe erlotinib-induced skin rash in advanced non-small cell lung cancer. J Thorac Oncol. 2010;5(10):1662–3.PubMedCrossRef
110.
go back to reference Requena C, Llombart B, Sanmartín O. Acneiform eruptions induced by epidermal growth factor receptor inhibitors: treatment with oral isotretinoin. Cutis. 2012;90(2):77–80.PubMed Requena C, Llombart B, Sanmartín O. Acneiform eruptions induced by epidermal growth factor receptor inhibitors: treatment with oral isotretinoin. Cutis. 2012;90(2):77–80.PubMed
111.
go back to reference Blanchetot C, Tertoolen LG, den Hertog J. Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. EMBO J. 2002;21(4):493–503.PubMedCrossRef Blanchetot C, Tertoolen LG, den Hertog J. Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. EMBO J. 2002;21(4):493–503.PubMedCrossRef
112.
go back to reference Talon Therapeutics, Inc. Safety, tolerability and systemic absorption of menadione topical lotion for epidermal-growth-factor-receptor (EGFR) inhibitor-associated rash [ClinicalTrials.gov identifier NCT00656786]. US National Institutes of Health, ClinicalTrials.gov. Available from URL: http://www.clinicaltrials.gov. Accessed 29 Oct 2012. Talon Therapeutics, Inc. Safety, tolerability and systemic absorption of menadione topical lotion for epidermal-growth-factor-receptor (EGFR) inhibitor-associated rash [ClinicalTrials.gov identifier NCT00656786]. US National Institutes of Health, ClinicalTrials.gov. Available from URL: http://​www.​clinicaltrials.​gov. Accessed 29 Oct 2012.
113.
go back to reference Mayo Clinic. Menadione topical lotion in treating skin discomfort and psychological distress in patients with cancer receiving panitumumab, erlotinib hydrochloride, or cetuximab [ClinicalTrials.gov identifier NCT01393821]. Available from URL: http://www.clinicaltrials.gov. Accessed 29 Oct 2012. Mayo Clinic. Menadione topical lotion in treating skin discomfort and psychological distress in patients with cancer receiving panitumumab, erlotinib hydrochloride, or cetuximab [ClinicalTrials.gov identifier NCT01393821]. Available from URL: http://​www.​clinicaltrials.​gov. Accessed 29 Oct 2012.
Metadata
Title
Tyrosine Kinase Inhibitors: Their On-Target Toxicities as Potential Indicators of Efficacy
Authors
Devron R. Shah
Rashmi R. Shah
Joel Morganroth
Publication date
01-06-2013
Publisher
Springer International Publishing AG
Published in
Drug Safety / Issue 6/2013
Print ISSN: 0114-5916
Electronic ISSN: 1179-1942
DOI
https://doi.org/10.1007/s40264-013-0050-x

Other articles of this Issue 6/2013

Drug Safety 6/2013 Go to the issue