Skip to main content
Top
Published in: CNS Drugs 11/2018

Open Access 01-11-2018 | Original Research Article

A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose, Multiple Dose, and Food Effect Trial of the Safety, Tolerability and Pharmacokinetics of Highly Purified Cannabidiol in Healthy Subjects

Authors: Lesley Taylor, Barry Gidal, Graham Blakey, Bola Tayo, Gilmour Morrison

Published in: CNS Drugs | Issue 11/2018

Login to get access

Abstract

Background

A formal single ascending and multiple dose pharmacokinetic (PK) trial of cannabidiol (CBD) oral solution was required to determine the safety and tolerability of CBD, the maximum tolerated dose, and to examine the effect of food on CBD PK parameters.

Objective

This trial assessed the safety, tolerability and PK of CBD oral solution in healthy adult volunteers, as well as the effect of food on CBD PK parameters.

Methods

The study consisted of three arms: single ascending dose (1500, 3000, 4500 or 6000 mg CBD [n = 6 per group]/placebo [n = 8; 2 per CBD dose group]), multiple dose (750 or 1500 mg CBD [n = 9 per group]/placebo [n = 6; 3 per CBD dose group] twice daily), and food effect (1500 mg CBD single dose [n = 12]). All subjects completed all trial arms and were analyzed as planned.

Results

CBD was generally well tolerated. Diarrhea, nausea, headache, and somnolence were the most common adverse events (AEs) across all trial arms, with an increased incidence of some gastrointestinal and nervous system disorder AEs (most notably diarrhea and headache) apparent in subjects taking CBD compared with placebo. All AEs were of mild or moderate severity; none were severe or serious. There were no deaths or discontinuations in the trial. After single oral doses, CBD appeared rapidly in plasma; time to maximum plasma concentration (tmax) was approximately 4–5 h. The major circulating metabolite was 7-carboxy-CBD, then parent CBD, 7-hydroxy-CBD (active metabolite), and 6-hydroxy-CBD (a relatively minor metabolite). Plasma exposure to CBD [maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from time zero to time t (AUCt)] increased in a less than dose-proportional manner (Cmax slope 0.73; AUCt slope 0.64). Oral clearance of CBD was high (1111–1909 L/h) and apparent volume of distribution was large (20,963–42,849 L). CBD reached steady state after approximately 2 days, with moderate accumulation (1.8- to 2.6-fold) after 750 and 1500 mg CBD twice daily. After 7 days, a twofold increase in CBD dose resulted in 1.6- and 1.9-fold increases in geometric mean Cmax and area under the plasma concentration-time curve over a dosing interval (AUCτ), respectively. CBD elimination was multiphasic; the terminal elimination half-life was approximately 60 h after 750 and 1500 mg CBD twice daily; and effective half-life estimates ranged from 10 to 17 h. Cmax was 541.2 ng/mL and AUCτ was 3236 ng·h/mL after 1500 mg CBD twice daily. A high-fat meal increased CBD plasma exposure (Cmax and AUCt) by 4.85- and 4.2-fold, respectively; there was no effect of food on tmax or terminal half-life.

Conclusion

CBD was generally well tolerated. Most AEs were mild in severity; none were severe or serious. The safety and PK profile support twice-daily administration of CBD.
Literature
1.
go back to reference Devinsky O, Cross JH, Laux L, et al. Cannabidiol in Dravet Syndrome Study Group. Trial of Cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376(21):2011–20.CrossRefPubMed Devinsky O, Cross JH, Laux L, et al. Cannabidiol in Dravet Syndrome Study Group. Trial of Cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376(21):2011–20.CrossRefPubMed
2.
go back to reference Devinsky O, Patel AD, Thiele EA, et al. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018;90(14):e1204–11.CrossRefPubMed Devinsky O, Patel AD, Thiele EA, et al. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018;90(14):e1204–11.CrossRefPubMed
3.
go back to reference Devinsky O, Patel AD, Cross JH, et al. Effect of cannabidiol on drop seizures in the Lennox–Gastaut syndrome. N Engl J Med. 2018;378(20):1888–97.CrossRefPubMed Devinsky O, Patel AD, Cross JH, et al. Effect of cannabidiol on drop seizures in the Lennox–Gastaut syndrome. N Engl J Med. 2018;378(20):1888–97.CrossRefPubMed
4.
go back to reference Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391(10125):1085–96.CrossRefPubMed Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391(10125):1085–96.CrossRefPubMed
5.
go back to reference Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ. Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics. 2015;12(4):699–730.CrossRefPubMed Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ. Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics. 2015;12(4):699–730.CrossRefPubMed
6.
go back to reference Henstridge CM, Balenga NA, Kargl J, et al. Minireview: recent developments in the physiology and pathology of the lysophosphatidylinositol-sensitive receptor GPR55. Mol Endocrinol. 2011;25(11):1835–48.CrossRefPubMed Henstridge CM, Balenga NA, Kargl J, et al. Minireview: recent developments in the physiology and pathology of the lysophosphatidylinositol-sensitive receptor GPR55. Mol Endocrinol. 2011;25(11):1835–48.CrossRefPubMed
7.
go back to reference Sylantyev S, Jensen TP, Ross RA, Rusakov DA. Cannabinoid and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci USA. 2013;110(13):5193–8.CrossRefPubMed Sylantyev S, Jensen TP, Ross RA, Rusakov DA. Cannabinoid and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci USA. 2013;110(13):5193–8.CrossRefPubMed
8.
go back to reference McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Δ(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015;172(3):737–53.CrossRefPubMed McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Δ(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015;172(3):737–53.CrossRefPubMed
9.
go back to reference Jiang R, Yamaori S, Takeda S, Yamamoto I, Watanabe K. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci. 2011;89(5–6):165–70.CrossRefPubMed Jiang R, Yamaori S, Takeda S, Yamamoto I, Watanabe K. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci. 2011;89(5–6):165–70.CrossRefPubMed
10.
go back to reference Zendulka O, Dovrtělová G, Nosková K, et al. Cannabinoids and cytochrome P450 interactions. Curr Drug Metab. 2016;17(3):206–26.CrossRefPubMed Zendulka O, Dovrtělová G, Nosková K, et al. Cannabinoids and cytochrome P450 interactions. Curr Drug Metab. 2016;17(3):206–26.CrossRefPubMed
11.
go back to reference Mazur A, Lichti CF, Prather PL, et al. Characterization of human hepatic and extrahepatic UDP-glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids. Drug Metab Dispos. 2009;37(7):1496–504.CrossRefPubMed Mazur A, Lichti CF, Prather PL, et al. Characterization of human hepatic and extrahepatic UDP-glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids. Drug Metab Dispos. 2009;37(7):1496–504.CrossRefPubMed
12.
go back to reference Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014;46(1):86–95.CrossRefPubMed Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014;46(1):86–95.CrossRefPubMed
13.
go back to reference Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56(8):1246–51.CrossRefPubMed Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56(8):1246–51.CrossRefPubMed
14.
go back to reference Gaston TE, Bebin EM, Cutter GR, Liu Y, Szaflarski JP. UAB CBD Program. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia. 2017;58(9):1586–92.CrossRefPubMed Gaston TE, Bebin EM, Cutter GR, Liu Y, Szaflarski JP. UAB CBD Program. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia. 2017;58(9):1586–92.CrossRefPubMed
15.
go back to reference Zuardi AW, Morais SL, Guimarães FS, Mechoulam R. Antipsychotic effect of cannabidiol. J Clin Psychiatry. 1995;56(10):485–6.PubMed Zuardi AW, Morais SL, Guimarães FS, Mechoulam R. Antipsychotic effect of cannabidiol. J Clin Psychiatry. 1995;56(10):485–6.PubMed
16.
go back to reference Bergamaschi MM, Queiroz RH, Zuardi AW, Crippa JA. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf. 2011;6(4):237–49.CrossRefPubMed Bergamaschi MM, Queiroz RH, Zuardi AW, Crippa JA. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf. 2011;6(4):237–49.CrossRefPubMed
17.
go back to reference Hess EJ, Moody KA, Geffrey AL, et al. Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia. 2016;57(10):1617–24.CrossRefPubMed Hess EJ, Moody KA, Geffrey AL, et al. Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia. 2016;57(10):1617–24.CrossRefPubMed
18.
go back to reference Devinsky O, Marsh E, Friedman D, et al. Cannabidiol in patients with treatment resistant epilepsy: an open-label interventional trial. The Lancet Neurology. 2016;15:270–8.CrossRefPubMed Devinsky O, Marsh E, Friedman D, et al. Cannabidiol in patients with treatment resistant epilepsy: an open-label interventional trial. The Lancet Neurology. 2016;15:270–8.CrossRefPubMed
19.
go back to reference Whalley BJ, Stott C, Gray RA. The human metabolite of cannabidiol, 7-hydroxy-cannabidiol, but not 7-carboxy-cannabidiol, is anticonvulsant in the maximal electroshock threshold test (MEST) in mouse [abstract no. 1.435]. AES Conference; 2017. Whalley BJ, Stott C, Gray RA. The human metabolite of cannabidiol, 7-hydroxy-cannabidiol, but not 7-carboxy-cannabidiol, is anticonvulsant in the maximal electroshock threshold test (MEST) in mouse [abstract no. 1.435]. AES Conference; 2017.
20.
go back to reference Boxenbaum H, Battle M. Effective half-life in clinical pharmacology. J Clin Pharmacol. 1995;35(8):763–6.CrossRefPubMed Boxenbaum H, Battle M. Effective half-life in clinical pharmacology. J Clin Pharmacol. 1995;35(8):763–6.CrossRefPubMed
21.
go back to reference Gidal BE, Clark AM, Anders B, Gilliam F. The application of half-life in clinical decision making: comparison of the pharmacokinetics of extended-release topiramate (USL255) and immediate-release topiramate. Epilepsy Res. 2017;129:26–32.CrossRefPubMed Gidal BE, Clark AM, Anders B, Gilliam F. The application of half-life in clinical decision making: comparison of the pharmacokinetics of extended-release topiramate (USL255) and immediate-release topiramate. Epilepsy Res. 2017;129:26–32.CrossRefPubMed
22.
go back to reference Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20(8):14451–73.CrossRefPubMed Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20(8):14451–73.CrossRefPubMed
Metadata
Title
A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose, Multiple Dose, and Food Effect Trial of the Safety, Tolerability and Pharmacokinetics of Highly Purified Cannabidiol in Healthy Subjects
Authors
Lesley Taylor
Barry Gidal
Graham Blakey
Bola Tayo
Gilmour Morrison
Publication date
01-11-2018
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 11/2018
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-018-0578-5

Other articles of this Issue 11/2018

CNS Drugs 11/2018 Go to the issue