Skip to main content
Top
Published in: CNS Drugs 2/2013

01-02-2013 | Review Article

Potential Mechanisms of Action of Lithium in Bipolar Disorder

Current Understanding

Authors: Gin S. Malhi, Michelle Tanious, Pritha Das, Carissa M. Coulston, Michael Berk

Published in: CNS Drugs | Issue 2/2013

Login to get access

Abstract

Lithium has been used for over half a century for the treatment of bipolar disorder as the archetypal mood stabilizer, and has a wealth of empirical evidence supporting its efficacy in this role. Despite this, the specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Given the inherently complex nature of the pathophysiology of bipolar disorder, this paper aims to capture what is known about the actions of lithium ranging from macroscopic changes in mood, cognition and brain structure, to its effects at the microscopic level on neurotransmission and intracellular and molecular pathways. A comprehensive literature search of databases including MEDLINE, EMBASE and PsycINFO was conducted using relevant keywords and the findings from the literature were then reviewed and synthesized. Numerous studies report that lithium is effective in the treatment of acute mania and for the long-term maintenance of mood and prophylaxis; in comparison, evidence for its efficacy in depression is modest. However, lithium possesses unique anti-suicidal properties that set it apart from other agents. With respect to cognition, studies suggest that lithium may reduce cognitive decline in patients; however, these findings require further investigation using both neuropsychological and functional neuroimaging probes. Interestingly, lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy. Overall, it is clear that the processes which underpin the therapeutic actions of lithium are sophisticated and most likely inter-related.
Literature
2.
go back to reference Grunze H, Vieta E, Goodwin GM, et al. The World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of bipolar disorders: update 2009 on the treatment of acute mania. World J Biol Psychiatry. 2009;10(2):85–116.PubMedCrossRef Grunze H, Vieta E, Goodwin GM, et al. The World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of bipolar disorders: update 2009 on the treatment of acute mania. World J Biol Psychiatry. 2009;10(2):85–116.PubMedCrossRef
3.
go back to reference Baldessarini RJ, Tondo L, Davis P, et al. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review [see comment]. [erratum appears in Bipolar Disord 2007 May;9(3):314]. Bipolar Disord 2006 Oct;8(5 Pt 2):625–39. Baldessarini RJ, Tondo L, Davis P, et al. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review [see comment]. [erratum appears in Bipolar Disord 2007 May;9(3):314]. Bipolar Disord 2006 Oct;8(5 Pt 2):625–39.
4.
go back to reference Malhi GS, Adams D, Berk M. Is lithium in a class of its own? A brief profile of its clinical use. Aust N Z J Psychiatry. 2009;43:1093–104. Malhi GS, Adams D, Berk M. Is lithium in a class of its own? A brief profile of its clinical use. Aust N Z J Psychiatry. 2009;43:1093–104.
5.
go back to reference Goodwin FK, Fireman B, Simon GE, et al. Suicide risk in bipolar disorder during treatment with lithium and divalproex. JAMA. 2003;290(11):1467–73.PubMedCrossRef Goodwin FK, Fireman B, Simon GE, et al. Suicide risk in bipolar disorder during treatment with lithium and divalproex. JAMA. 2003;290(11):1467–73.PubMedCrossRef
6.
go back to reference Bowden CL. Bipolar pathophysiology and development of improved treatments. Brain Res. 2008;1235:92–7.PubMedCrossRef Bowden CL. Bipolar pathophysiology and development of improved treatments. Brain Res. 2008;1235:92–7.PubMedCrossRef
7.
go back to reference Manji HK, Chen G. PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry. 2002;7(Suppl. 1):S46–56.PubMedCrossRef Manji HK, Chen G. PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry. 2002;7(Suppl. 1):S46–56.PubMedCrossRef
8.
go back to reference Berk M. Neuroprogression: pathways to progressive brain changes in bipolar disorder. Int J Neuropsychopharmacol. 2009;12(4):441–5.PubMedCrossRef Berk M. Neuroprogression: pathways to progressive brain changes in bipolar disorder. Int J Neuropsychopharmacol. 2009;12(4):441–5.PubMedCrossRef
9.
go back to reference Quiroz JA, Machado-Vieira R, Zarate JCA, et al. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010;62(1):50–60.PubMedCrossRef Quiroz JA, Machado-Vieira R, Zarate JCA, et al. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010;62(1):50–60.PubMedCrossRef
10.
go back to reference Post RM, Speer AM, Hough CJ, et al. Neurobiology of bipolar illness: implications for future study and therapeutics. Ann Clin Psychiatry. 2003;15(2):85–94.PubMedCrossRef Post RM, Speer AM, Hough CJ, et al. Neurobiology of bipolar illness: implications for future study and therapeutics. Ann Clin Psychiatry. 2003;15(2):85–94.PubMedCrossRef
11.
go back to reference Chen G, Rajkowska G, Du F, et al. Enhancement of hippocampal neurogenesis by lithium. J Neurochem. 2000;75(4):1729–34.PubMedCrossRef Chen G, Rajkowska G, Du F, et al. Enhancement of hippocampal neurogenesis by lithium. J Neurochem. 2000;75(4):1729–34.PubMedCrossRef
12.
go back to reference Berk M, Kapczinski F, Andreazza AC, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience Biobehav Rev. 2011;35(3):804–17.CrossRef Berk M, Kapczinski F, Andreazza AC, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience Biobehav Rev. 2011;35(3):804–17.CrossRef
13.
go back to reference Baldessarini RJ, Tondo L. Does lithium treatment still work? Evidence of stable responses over three decades. Arch Gen Psychiatry. 2000;57(2):187–90.PubMedCrossRef Baldessarini RJ, Tondo L. Does lithium treatment still work? Evidence of stable responses over three decades. Arch Gen Psychiatry. 2000;57(2):187–90.PubMedCrossRef
14.
go back to reference Bowden CL, Mosolov S, Hranov L, et al. Efficacy of valproate versus lithium in mania or mixed mania: a randomized, open 12-week trial. Int Clin Psychopharmacol. 2010;25(2):60–7.PubMedCrossRef Bowden CL, Mosolov S, Hranov L, et al. Efficacy of valproate versus lithium in mania or mixed mania: a randomized, open 12-week trial. Int Clin Psychopharmacol. 2010;25(2):60–7.PubMedCrossRef
15.
go back to reference Yildiz A, Vieta E, Leucht S, et al. Efficacy of antimanic treatments: meta-analysis of randomized, controlled trials. Neuropsychopharmacology. 2011;36(2):375–89.PubMedCrossRef Yildiz A, Vieta E, Leucht S, et al. Efficacy of antimanic treatments: meta-analysis of randomized, controlled trials. Neuropsychopharmacology. 2011;36(2):375–89.PubMedCrossRef
16.
go back to reference Shafti SS. Olanzapine vs. lithium in management of acute mania. J Affect Disord. 2010;122(3):273–6.PubMedCrossRef Shafti SS. Olanzapine vs. lithium in management of acute mania. J Affect Disord. 2010;122(3):273–6.PubMedCrossRef
17.
go back to reference Segal J, Berk M, Brook S. Risperidone compared with both lithium and haloperidol in mania: a double-blind randomized controlled trial. Clin Neuropharmacol. 1998;21(3):176–80.PubMed Segal J, Berk M, Brook S. Risperidone compared with both lithium and haloperidol in mania: a double-blind randomized controlled trial. Clin Neuropharmacol. 1998;21(3):176–80.PubMed
18.
go back to reference Gershon S, Chengappa KR, Malhi GS. Lithium specificity in bipolar illness: a classic agent for a classic disorder. Bipolar Disord. 2009;11(Suppl. 2):34–44.PubMedCrossRef Gershon S, Chengappa KR, Malhi GS. Lithium specificity in bipolar illness: a classic agent for a classic disorder. Bipolar Disord. 2009;11(Suppl. 2):34–44.PubMedCrossRef
19.
go back to reference Geddes JR, Burgess S, Hawton K, et al. Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. Am J Psychiatry. 2004;161(2):217–22.PubMedCrossRef Geddes JR, Burgess S, Hawton K, et al. Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. Am J Psychiatry. 2004;161(2):217–22.PubMedCrossRef
20.
go back to reference Cipriani A, Barbui C, Salanti G, et al. Comparative efficacy and acceptability of antimanic drugs in acute mania: a multiple-treatments meta-analysis. Lancet. 2011;378(9799):1306–15.PubMedCrossRef Cipriani A, Barbui C, Salanti G, et al. Comparative efficacy and acceptability of antimanic drugs in acute mania: a multiple-treatments meta-analysis. Lancet. 2011;378(9799):1306–15.PubMedCrossRef
21.
go back to reference Berk M, Malhi GS. Should antipsychotics take pole position in mania treatment? Lancet. 2011;378(9799):1279–81.PubMedCrossRef Berk M, Malhi GS. Should antipsychotics take pole position in mania treatment? Lancet. 2011;378(9799):1279–81.PubMedCrossRef
22.
go back to reference National Institute for Health and Clinical Excellence. Bipolar disorder: the management of bipolar disorder in adults, children and adolescents, in primary and secondary care: clinical guideline 38. London: National Institute for Health and Clinical Excellence; 2006. National Institute for Health and Clinical Excellence. Bipolar disorder: the management of bipolar disorder in adults, children and adolescents, in primary and secondary care: clinical guideline 38. London: National Institute for Health and Clinical Excellence; 2006.
23.
go back to reference Yatham LN, Kennedy SH, O’Donovan C, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: consensus and controversies. Bipolar Disord. 2005;7(Suppl.3):5–69.PubMedCrossRef Yatham LN, Kennedy SH, O’Donovan C, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: consensus and controversies. Bipolar Disord. 2005;7(Suppl.3):5–69.PubMedCrossRef
24.
go back to reference Yatham LN, Kennedy SH, O’Donovan C, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: update 2007. Bipolar Disord. 2006;8(6):721–39.PubMedCrossRef Yatham LN, Kennedy SH, O’Donovan C, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: update 2007. Bipolar Disord. 2006;8(6):721–39.PubMedCrossRef
25.
go back to reference Malhi GS, Adams DA, Lampe L, et al. Clinical practice recommendations for bipolar disorder. Acta Psychiatr Scand. 2009;119(Suppl. 439):27–46.CrossRef Malhi GS, Adams DA, Lampe L, et al. Clinical practice recommendations for bipolar disorder. Acta Psychiatr Scand. 2009;119(Suppl. 439):27–46.CrossRef
26.
go back to reference Tohen M, Chengappa KN, Suppes T, et al. Efficacy of olanzapine in combination with valproate or lithium in the treatment of mania in patients partially nonresponsive to valproate or lithium monotherapy. Arch Gen Psychiatry. 2002;59(1):62–9.PubMedCrossRef Tohen M, Chengappa KN, Suppes T, et al. Efficacy of olanzapine in combination with valproate or lithium in the treatment of mania in patients partially nonresponsive to valproate or lithium monotherapy. Arch Gen Psychiatry. 2002;59(1):62–9.PubMedCrossRef
27.
go back to reference Bhagwagar Z, Goodwin GM. The role of lithium in the treatment of bipolar depression. Clin Neurosci Res. 2002;2(3–4):222–7.CrossRef Bhagwagar Z, Goodwin GM. The role of lithium in the treatment of bipolar depression. Clin Neurosci Res. 2002;2(3–4):222–7.CrossRef
28.
go back to reference Van Lieshout RJ, MacQueen GM. Efficacy and acceptability of mood stabilisers in the treatment of acute bipolar depression: systematic review. Br J Psychiatry. 2010;196(4):266–73.PubMedCrossRef Van Lieshout RJ, MacQueen GM. Efficacy and acceptability of mood stabilisers in the treatment of acute bipolar depression: systematic review. Br J Psychiatry. 2010;196(4):266–73.PubMedCrossRef
29.
go back to reference Fountoulakis KN. An update of evidence-based treatment of bipolar depression: where do we stand? Curr Opin Psychiatry. 2010;23(1):19–24.PubMedCrossRef Fountoulakis KN. An update of evidence-based treatment of bipolar depression: where do we stand? Curr Opin Psychiatry. 2010;23(1):19–24.PubMedCrossRef
30.
go back to reference Fountoulakis KN, Grunze H, Panagiotidis P, et al. Treatment of bipolar depression: an update. J Affect Disord. 2008;109(1–2):21–34.PubMedCrossRef Fountoulakis KN, Grunze H, Panagiotidis P, et al. Treatment of bipolar depression: an update. J Affect Disord. 2008;109(1–2):21–34.PubMedCrossRef
31.
go back to reference Vieta E, Locklear J, Gunther O, et al. Treatment options for bipolar depression: a systematic review of randomized, controlled trials. J Clin Pyschopharmacol. 2010;30:579–90.CrossRef Vieta E, Locklear J, Gunther O, et al. Treatment options for bipolar depression: a systematic review of randomized, controlled trials. J Clin Pyschopharmacol. 2010;30:579–90.CrossRef
32.
go back to reference Grandjean EM, Aubry JM. Lithium: updated human knowledge using an evidence-based approach. Part I: clinical efficacy in bipolar disorder. CNS Drugs. 2009;23(3):225–40.PubMedCrossRef Grandjean EM, Aubry JM. Lithium: updated human knowledge using an evidence-based approach. Part I: clinical efficacy in bipolar disorder. CNS Drugs. 2009;23(3):225–40.PubMedCrossRef
33.
go back to reference Yatham LN, Kennedy SH, Schaffer A, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2009. Bipolar Disord. 2009;11(3):225–55.PubMedCrossRef Yatham LN, Kennedy SH, Schaffer A, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2009. Bipolar Disord. 2009;11(3):225–55.PubMedCrossRef
34.
go back to reference Young AH, Hammond JM. Lithium in mood disorders: increasing evidence base, declining use? Br J Psychiatry. 2007;191:474–6.PubMedCrossRef Young AH, Hammond JM. Lithium in mood disorders: increasing evidence base, declining use? Br J Psychiatry. 2007;191:474–6.PubMedCrossRef
35.
go back to reference Coryell W. Maintenance treatment in bipolar disorder: a reassessment of lithium as the first choice. Bipolar Disord. 2009;11:77–83.PubMedCrossRef Coryell W. Maintenance treatment in bipolar disorder: a reassessment of lithium as the first choice. Bipolar Disord. 2009;11:77–83.PubMedCrossRef
36.
go back to reference Geddes JR, Goodwin GM, Rendell J, et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet. 2010;375(9712):385–95.PubMedCrossRef Geddes JR, Goodwin GM, Rendell J, et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet. 2010;375(9712):385–95.PubMedCrossRef
37.
go back to reference Silverstone T. Is lithium still the maintenance treatment of choice for bipolar disorder? CNS Drugs. 2000;14(2):81–94.CrossRef Silverstone T. Is lithium still the maintenance treatment of choice for bipolar disorder? CNS Drugs. 2000;14(2):81–94.CrossRef
38.
go back to reference Perlis R, Sachs G, Lafer B, et al. Effect of abrupt change from standard to low serum levels of lithium: a reanalysis of double-blind lithium maintenance data. Am J Psychiatry. 2002;159(7):1155–9.PubMedCrossRef Perlis R, Sachs G, Lafer B, et al. Effect of abrupt change from standard to low serum levels of lithium: a reanalysis of double-blind lithium maintenance data. Am J Psychiatry. 2002;159(7):1155–9.PubMedCrossRef
39.
go back to reference Cavanagh J, Smyth R, Goodwin GM. Relapse into mania or depression following lithium discontinuation: a 7-year follow-up. Acta Psychiatr Scand. 2004;109(2):91–5.PubMedCrossRef Cavanagh J, Smyth R, Goodwin GM. Relapse into mania or depression following lithium discontinuation: a 7-year follow-up. Acta Psychiatr Scand. 2004;109(2):91–5.PubMedCrossRef
40.
go back to reference Klein E, Lavie P, Meiraz R, et al. Increased motor activity and recurrent manic episodes: predictors of rapid relapse in remitted bipolar disorder patients after lithium discontinuation. Biol Psychiatry. 1992;31(3):279–84.PubMedCrossRef Klein E, Lavie P, Meiraz R, et al. Increased motor activity and recurrent manic episodes: predictors of rapid relapse in remitted bipolar disorder patients after lithium discontinuation. Biol Psychiatry. 1992;31(3):279–84.PubMedCrossRef
41.
go back to reference Bowden C, Gögüs A, Grunze H, et al. A 12-week, open, randomized trial comparing sodium valproate to lithium in patients with bipolar I disorder suffering from a manic episode. Int Clin Psychopharmacol. 2008;23(5):254–62.PubMedCrossRef Bowden C, Gögüs A, Grunze H, et al. A 12-week, open, randomized trial comparing sodium valproate to lithium in patients with bipolar I disorder suffering from a manic episode. Int Clin Psychopharmacol. 2008;23(5):254–62.PubMedCrossRef
42.
go back to reference Malhi GS, Adams D, Cahill CM, et al. The management of individuals with bipolar disorder: a review of the evidence and its integration into clinical practice. Drugs. 2009;69(15):2063–101.PubMedCrossRef Malhi GS, Adams D, Cahill CM, et al. The management of individuals with bipolar disorder: a review of the evidence and its integration into clinical practice. Drugs. 2009;69(15):2063–101.PubMedCrossRef
43.
go back to reference Bowden CL. The ability of lithium and other mood stabilisers to decrease suicide risk and prevent relapse. Curr Psychiatr Rep. 2000;2:490–4.CrossRef Bowden CL. The ability of lithium and other mood stabilisers to decrease suicide risk and prevent relapse. Curr Psychiatr Rep. 2000;2:490–4.CrossRef
44.
go back to reference Muller-Oerlinghausen B. Arguments for the specificity of the antisuicidal effect of lithium. Eur Arch Psychiatry Clin Neurosci. 2001;251(Suppl. 2)):II/72–5. Muller-Oerlinghausen B. Arguments for the specificity of the antisuicidal effect of lithium. Eur Arch Psychiatry Clin Neurosci. 2001;251(Suppl. 2)):II/72–5.
45.
go back to reference Cipriani A, Pretty H, Hawton K, et al. Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials [see comment]. Am J Psychiatry. 2005;162(10):1805–19.PubMedCrossRef Cipriani A, Pretty H, Hawton K, et al. Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials [see comment]. Am J Psychiatry. 2005;162(10):1805–19.PubMedCrossRef
46.
go back to reference Wingo AP, Wingo TS, Harvey PD, et al. Effects of lithium on cognitive performance: a meta-analysis. J Clin Psychiatry. 2009;70(11):1588–97.PubMedCrossRef Wingo AP, Wingo TS, Harvey PD, et al. Effects of lithium on cognitive performance: a meta-analysis. J Clin Psychiatry. 2009;70(11):1588–97.PubMedCrossRef
47.
go back to reference Engelsmann F, Katz J, Ghadirian AM, et al. Lithium and memory: a long term follow-up study. J Clin Psychopharmacol. 1988;8(3):207–12.PubMedCrossRef Engelsmann F, Katz J, Ghadirian AM, et al. Lithium and memory: a long term follow-up study. J Clin Psychopharmacol. 1988;8(3):207–12.PubMedCrossRef
48.
go back to reference Smigan L, Perris C. Memory functions and prophylactic lithium treatment. Psychol Med. 1983;13:529–36.PubMedCrossRef Smigan L, Perris C. Memory functions and prophylactic lithium treatment. Psychol Med. 1983;13:529–36.PubMedCrossRef
49.
go back to reference Pachet AK, Wisniewski AM. The effects of lithium on cognition: an updated review. Psychopharmacology (Berl). 2003;170:225–34.CrossRef Pachet AK, Wisniewski AM. The effects of lithium on cognition: an updated review. Psychopharmacology (Berl). 2003;170:225–34.CrossRef
50.
go back to reference Kessing LV, Forman JL, Andersen PK. Does lithium protect against dementia? Bipolar Disord. 2010;12(1):87–94.PubMedCrossRef Kessing LV, Forman JL, Andersen PK. Does lithium protect against dementia? Bipolar Disord. 2010;12(1):87–94.PubMedCrossRef
51.
go back to reference Arts B, Jabben N, Krabbendam L, et al. A 2-year naturalistic study on cognitive functioning in bipolar disorder. Acta Psychiatr Scand. 2011;123(3):190–205.PubMedCrossRef Arts B, Jabben N, Krabbendam L, et al. A 2-year naturalistic study on cognitive functioning in bipolar disorder. Acta Psychiatr Scand. 2011;123(3):190–205.PubMedCrossRef
52.
go back to reference Rybakowski JK, Permoda-Osip A, Borkowska A. Response to prophylactic lithium in bipolar disorder may be associated with a preservation of executive cognitive functions. Eur Neuropsychopharmacol. 2009;19(11):791–5.PubMedCrossRef Rybakowski JK, Permoda-Osip A, Borkowska A. Response to prophylactic lithium in bipolar disorder may be associated with a preservation of executive cognitive functions. Eur Neuropsychopharmacol. 2009;19(11):791–5.PubMedCrossRef
53.
go back to reference Anand A, Shekhar A. Brain imaging studies in mood and anxiety disorders. Ann N Y Acad Sci. 2003;985(1):370–88.PubMedCrossRef Anand A, Shekhar A. Brain imaging studies in mood and anxiety disorders. Ann N Y Acad Sci. 2003;985(1):370–88.PubMedCrossRef
54.
go back to reference Bell EC, Willson MC, Wilman AH, et al. Differential effects of chronic lithium and valproate on brain activation in healthy volunteers. Hum Psychopharmacol Clin Exp. 2005;20(6):415–24.CrossRef Bell EC, Willson MC, Wilman AH, et al. Differential effects of chronic lithium and valproate on brain activation in healthy volunteers. Hum Psychopharmacol Clin Exp. 2005;20(6):415–24.CrossRef
55.
go back to reference Bell EC, Willson MC, Wilman AH, et al. Lithium and valproate attenuate dextroamphetamine-induced changes in brain activation. Hum Psychopharmacol. 2005;20(2):87–96.PubMedCrossRef Bell EC, Willson MC, Wilman AH, et al. Lithium and valproate attenuate dextroamphetamine-induced changes in brain activation. Hum Psychopharmacol. 2005;20(2):87–96.PubMedCrossRef
56.
go back to reference Silverstone PH, Bell EC, Willson MC, et al. Lithium alters brain activation in bipolar disorder in a task- and state-dependent manner: an fMRI study. Ann Gen Psychiatry. 2005;4(14):1–7. Silverstone PH, Bell EC, Willson MC, et al. Lithium alters brain activation in bipolar disorder in a task- and state-dependent manner: an fMRI study. Ann Gen Psychiatry. 2005;4(14):1–7.
57.
go back to reference Tsaltas E, Kontis D, Boulougouris V, et al. Lithium and cognitive enhancement: leave it or take it? Psychopharmacology (Berl). 2009;202(1–3):457–76.CrossRef Tsaltas E, Kontis D, Boulougouris V, et al. Lithium and cognitive enhancement: leave it or take it? Psychopharmacology (Berl). 2009;202(1–3):457–76.CrossRef
58.
go back to reference Emsell L, McDonald C. The structural neuroimaging of bipolar disorder. Int Rev Psychiatry. 2009;21(4):297–313.PubMedCrossRef Emsell L, McDonald C. The structural neuroimaging of bipolar disorder. Int Rev Psychiatry. 2009;21(4):297–313.PubMedCrossRef
59.
go back to reference Kempton MJ, Geddes JR, Ettinger U, et al. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry. 2008;65(9):1017–32.PubMedCrossRef Kempton MJ, Geddes JR, Ettinger U, et al. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry. 2008;65(9):1017–32.PubMedCrossRef
60.
go back to reference Strakowski SM, DelBello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry. 2005;10:105–16.PubMedCrossRef Strakowski SM, DelBello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry. 2005;10:105–16.PubMedCrossRef
61.
go back to reference Hajek T, Cullis J, Novak T, et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord. 2012;14(3):261–70.PubMedCrossRef Hajek T, Cullis J, Novak T, et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord. 2012;14(3):261–70.PubMedCrossRef
62.
go back to reference Chepenik LG, Wang F, Spencer L, et al. Structure-function associations in hippocampus in bipolar disorder. Biol Psychol. 2012;90(1):18–22.PubMedCrossRef Chepenik LG, Wang F, Spencer L, et al. Structure-function associations in hippocampus in bipolar disorder. Biol Psychol. 2012;90(1):18–22.PubMedCrossRef
63.
go back to reference Savitz J, Nugent AC, Bogers W, et al. Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication. Neuroimage. 2010;49(4):2966–76.PubMedCrossRef Savitz J, Nugent AC, Bogers W, et al. Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication. Neuroimage. 2010;49(4):2966–76.PubMedCrossRef
64.
go back to reference Foland-Ross LC. Brooks Iii JO, Mintz J, et al. Mood-state effects on amygdala volume in bipolar disorder. J Affect Disord. 2012;139(3):298–301.PubMedCrossRef Foland-Ross LC. Brooks Iii JO, Mintz J, et al. Mood-state effects on amygdala volume in bipolar disorder. J Affect Disord. 2012;139(3):298–301.PubMedCrossRef
65.
go back to reference Hajek T, Gunde E, Slaney C, et al. Striatal volumes in affected and unaffected relatives of bipolar patients: high-risk study. J Psychiatr Res. 2009;43(7):724–9.PubMedCrossRef Hajek T, Gunde E, Slaney C, et al. Striatal volumes in affected and unaffected relatives of bipolar patients: high-risk study. J Psychiatr Res. 2009;43(7):724–9.PubMedCrossRef
66.
go back to reference DelBello MP, Zimmerman ME, Mills NP, et al. Magnetic resonance imaging analysis of amygdala and other subcortical brain regions in adolescents with bipolar disorder. Bipolar Disord. 2004;6(1):43–52.PubMedCrossRef DelBello MP, Zimmerman ME, Mills NP, et al. Magnetic resonance imaging analysis of amygdala and other subcortical brain regions in adolescents with bipolar disorder. Bipolar Disord. 2004;6(1):43–52.PubMedCrossRef
67.
go back to reference Strakowski SM, DelBello MP, Zimmerman ME, et al. Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. Am J Psychiatry. 2002;159:1841–7.PubMedCrossRef Strakowski SM, DelBello MP, Zimmerman ME, et al. Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. Am J Psychiatry. 2002;159:1841–7.PubMedCrossRef
68.
go back to reference Drevets WC, Price JL, Simpson JR, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386(6627):824–7.PubMedCrossRef Drevets WC, Price JL, Simpson JR, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386(6627):824–7.PubMedCrossRef
69.
go back to reference Sassi RB, Brambilla P, Hatch JP, et al. Reduced left anterior cingulate volumes in untreated bipolar patients. Biol Psychiatry. 2004;56(7):467–75.PubMedCrossRef Sassi RB, Brambilla P, Hatch JP, et al. Reduced left anterior cingulate volumes in untreated bipolar patients. Biol Psychiatry. 2004;56(7):467–75.PubMedCrossRef
70.
go back to reference López-Larson MP, DelBello MP, Zimmerman ME, et al. Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol Psychiatry. 2002;52(2):93–100.PubMedCrossRef López-Larson MP, DelBello MP, Zimmerman ME, et al. Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol Psychiatry. 2002;52(2):93–100.PubMedCrossRef
71.
go back to reference Brooks JO 3rd, Bonner JC, Rosen AC, et al. Dorsolateral and dorsomedial prefrontal gray matter density changes associated with bipolar depression. Psychiatry Res. 2009;172(3):200–4.PubMedCrossRef Brooks JO 3rd, Bonner JC, Rosen AC, et al. Dorsolateral and dorsomedial prefrontal gray matter density changes associated with bipolar depression. Psychiatry Res. 2009;172(3):200–4.PubMedCrossRef
73.
go back to reference Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry. 2001;49(9):741–52.PubMedCrossRef Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry. 2001;49(9):741–52.PubMedCrossRef
74.
go back to reference Öngür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci. 1998;95(22):13290–5.PubMedCrossRef Öngür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci. 1998;95(22):13290–5.PubMedCrossRef
75.
go back to reference Brambilla P, Nicoletti MA, Harenski K, et al. Anatomical MRI study of subgenual prefrontal cortex in bipolar and unipolar subjects. Neuropsychopharmacology. 2002;27(5):792–9.PubMedCrossRef Brambilla P, Nicoletti MA, Harenski K, et al. Anatomical MRI study of subgenual prefrontal cortex in bipolar and unipolar subjects. Neuropsychopharmacology. 2002;27(5):792–9.PubMedCrossRef
76.
go back to reference Fornito A, Malhi GS, Lagopoulos J, et al. Anatomical abnormalities of the anterior cingulate and paracingulate cortex in patients with bipolar I disorder. Psychiatry Res Neuroimaging. 2008;162(2):123–32.CrossRef Fornito A, Malhi GS, Lagopoulos J, et al. Anatomical abnormalities of the anterior cingulate and paracingulate cortex in patients with bipolar I disorder. Psychiatry Res Neuroimaging. 2008;162(2):123–32.CrossRef
77.
go back to reference Brambilla P, Harenski K, Nicoletti M, et al. Differential effects of age on brain gray matter in bipolar patients and healthy individuals. Neuropsychobiology. 2001;43(4):242–7.PubMedCrossRef Brambilla P, Harenski K, Nicoletti M, et al. Differential effects of age on brain gray matter in bipolar patients and healthy individuals. Neuropsychobiology. 2001;43(4):242–7.PubMedCrossRef
78.
go back to reference Bearden CE, Thompson PM, Dalwani M, et al. Greater cortical gray matter density in lithium-treated patients with bipolar disorder [see comment]. Biol Psychiatry. 2007;62(1):7–16.PubMedCrossRef Bearden CE, Thompson PM, Dalwani M, et al. Greater cortical gray matter density in lithium-treated patients with bipolar disorder [see comment]. Biol Psychiatry. 2007;62(1):7–16.PubMedCrossRef
79.
go back to reference Sassi RB, Nicoletti M, Brambilla P, et al. Increased gray matter volume in lithium-treated bipolar disorder patients. Neurosci Lett. 2002;329(2):243–5.PubMedCrossRef Sassi RB, Nicoletti M, Brambilla P, et al. Increased gray matter volume in lithium-treated bipolar disorder patients. Neurosci Lett. 2002;329(2):243–5.PubMedCrossRef
80.
go back to reference Adler CM, Levine AD, DelBello MP, et al. Changes in gray matter volume in patients with bipolar disorder. Biol Psychiatry. 2005;58(2):151–7.PubMedCrossRef Adler CM, Levine AD, DelBello MP, et al. Changes in gray matter volume in patients with bipolar disorder. Biol Psychiatry. 2005;58(2):151–7.PubMedCrossRef
81.
go back to reference Takahashi T, Malhi GS, Wood SJ, et al. Gray matter reduction of the superior temporal gyrus in patients with established bipolar I disorder. J Affect Disord. 2010;123:276–82.PubMedCrossRef Takahashi T, Malhi GS, Wood SJ, et al. Gray matter reduction of the superior temporal gyrus in patients with established bipolar I disorder. J Affect Disord. 2010;123:276–82.PubMedCrossRef
82.
go back to reference Usher J, Menzel P, Schneider-Axmann T, et al. Increased right amygdala volume in lithium-treated patients with bipolar I disorder. Acta Psychiatr Scand. 2010;121:119–24.PubMedCrossRef Usher J, Menzel P, Schneider-Axmann T, et al. Increased right amygdala volume in lithium-treated patients with bipolar I disorder. Acta Psychiatr Scand. 2010;121:119–24.PubMedCrossRef
83.
go back to reference Foland LC, Altshuler LL, Sugar CA, et al. Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. Neuroreport. 2008;19(2):221–4.PubMedCrossRef Foland LC, Altshuler LL, Sugar CA, et al. Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. Neuroreport. 2008;19(2):221–4.PubMedCrossRef
84.
go back to reference Hallahan B, Newell J, Soares JC, et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry. 2011;69(4):326–35.PubMedCrossRef Hallahan B, Newell J, Soares JC, et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry. 2011;69(4):326–35.PubMedCrossRef
85.
go back to reference van Erp TGM, Thompson PM, Kieseppä T, et al. Hippocampal morphology in lithium and non-lithium-treated bipolar I disorder patients, non-bipolar co-twins, and control twins. Hum Brain Mapp. 2012;33(3):501–10.PubMedCrossRef van Erp TGM, Thompson PM, Kieseppä T, et al. Hippocampal morphology in lithium and non-lithium-treated bipolar I disorder patients, non-bipolar co-twins, and control twins. Hum Brain Mapp. 2012;33(3):501–10.PubMedCrossRef
86.
go back to reference Yucel K, Taylor VH, McKinnon MC, et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology. 2008;33(2):361–7.PubMedCrossRef Yucel K, Taylor VH, McKinnon MC, et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology. 2008;33(2):361–7.PubMedCrossRef
87.
go back to reference Moore GJ, Cortese BM, Glitz DA, et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry. 2009;70(5):699–705.PubMedCrossRef Moore GJ, Cortese BM, Glitz DA, et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry. 2009;70(5):699–705.PubMedCrossRef
88.
go back to reference Schildkraut JJ. The catecholamine hypothesis of affective-disorders: a review of supporting evidence. Am J Psychiatry. 1965;122(5):509–22.PubMed Schildkraut JJ. The catecholamine hypothesis of affective-disorders: a review of supporting evidence. Am J Psychiatry. 1965;122(5):509–22.PubMed
89.
go back to reference Pert A, Rosenblatt JE, Sivit C, et al. Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity. Science. 1978;201(4351):171–3.PubMedCrossRef Pert A, Rosenblatt JE, Sivit C, et al. Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity. Science. 1978;201(4351):171–3.PubMedCrossRef
90.
go back to reference Knapp S, Mandell AJ. Short- and long-term lithium administration: effects on the brain’s serotonergic biosynthetic systems. Science. 1973;180(4086):645–7.PubMedCrossRef Knapp S, Mandell AJ. Short- and long-term lithium administration: effects on the brain’s serotonergic biosynthetic systems. Science. 1973;180(4086):645–7.PubMedCrossRef
92.
go back to reference Berk M, Dodd S, Kauer-Sant’Anna M, et al. Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand. 2007;116(Suppl. 434):41–9.CrossRef Berk M, Dodd S, Kauer-Sant’Anna M, et al. Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand. 2007;116(Suppl. 434):41–9.CrossRef
93.
go back to reference Cousins DA, Butts K, Young AH. The role of dopamine in bipolar disorder. Bipolar Disord. 2010;11:787–806.CrossRef Cousins DA, Butts K, Young AH. The role of dopamine in bipolar disorder. Bipolar Disord. 2010;11:787–806.CrossRef
94.
go back to reference Jacobs D, Silverstone T. Dextroamphetamine-induced arousal in human subjects as a model for mania. Psychol Med. 1986;16(02):323–9.PubMedCrossRef Jacobs D, Silverstone T. Dextroamphetamine-induced arousal in human subjects as a model for mania. Psychol Med. 1986;16(02):323–9.PubMedCrossRef
95.
go back to reference Post RM, Jimerson DC, Bunney WE, et al. Dopamine and mania: behavioral and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology (Berl). 1980;67(3):297–305.CrossRef Post RM, Jimerson DC, Bunney WE, et al. Dopamine and mania: behavioral and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology (Berl). 1980;67(3):297–305.CrossRef
96.
go back to reference Staunton DA, Magistretti PJ, Shoemaker WJ, et al. Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum: I. Locomotor activity and behavioral supersensitivity. Brain Res. 1982;232(2):391–400.PubMedCrossRef Staunton DA, Magistretti PJ, Shoemaker WJ, et al. Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum: I. Locomotor activity and behavioral supersensitivity. Brain Res. 1982;232(2):391–400.PubMedCrossRef
97.
go back to reference Gambarana C, Ghiglieri O, Masi F, et al. The effects of long-term administration of rubidium or lithium on reactivity to stress and on dopamine output in the nucleus accumbens in rats. Brain Res. 1999;826(2):200–9.PubMedCrossRef Gambarana C, Ghiglieri O, Masi F, et al. The effects of long-term administration of rubidium or lithium on reactivity to stress and on dopamine output in the nucleus accumbens in rats. Brain Res. 1999;826(2):200–9.PubMedCrossRef
98.
go back to reference Ichikawa J, Dai J, Meltzer HY. Lithium differs from anticonvulsant mood stabilizers in prefrontal cortical and accumbal dopamine release: role of 5-HT1A receptor antagonism. Brain Res. 2005;1049:182–90.PubMedCrossRef Ichikawa J, Dai J, Meltzer HY. Lithium differs from anticonvulsant mood stabilizers in prefrontal cortical and accumbal dopamine release: role of 5-HT1A receptor antagonism. Brain Res. 2005;1049:182–90.PubMedCrossRef
99.
go back to reference Ferrie L, Young AH, McQuade R. Effect of lithium and lithium withdrawal on potassium-evoked dopamine release and tyrosine hydroxylase expression in the rat. Int J Neuropsychopharmacol. 2006;9(6):729–35.PubMedCrossRef Ferrie L, Young AH, McQuade R. Effect of lithium and lithium withdrawal on potassium-evoked dopamine release and tyrosine hydroxylase expression in the rat. Int J Neuropsychopharmacol. 2006;9(6):729–35.PubMedCrossRef
100.
go back to reference Ferrie L, Young AH, McQuade R. Effect of chronic lithium and withdrawal from chronic lithium on presynaptic dopamine function in the rat. J Psychopharmacol (Oxf). 2005;19(3):229–34.CrossRef Ferrie L, Young AH, McQuade R. Effect of chronic lithium and withdrawal from chronic lithium on presynaptic dopamine function in the rat. J Psychopharmacol (Oxf). 2005;19(3):229–34.CrossRef
101.
go back to reference Malhi GS, Tanious M, Gershon S. The lithiumeter: a measured approach. Bipolar Disord. 2011;13(3):219–26.PubMedCrossRef Malhi GS, Tanious M, Gershon S. The lithiumeter: a measured approach. Bipolar Disord. 2011;13(3):219–26.PubMedCrossRef
102.
go back to reference Manji HK, Lenox RH. Signaling: cellular insights into the pathophysiology of bipolar disorder. Biol Psychiatry. 2000;48(6):518–30.PubMedCrossRef Manji HK, Lenox RH. Signaling: cellular insights into the pathophysiology of bipolar disorder. Biol Psychiatry. 2000;48(6):518–30.PubMedCrossRef
103.
go back to reference Michael N, Erfurth A, Ohrmann P, et al. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology (Berl). 2003;168(3):344–6.CrossRef Michael N, Erfurth A, Ohrmann P, et al. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology (Berl). 2003;168(3):344–6.CrossRef
104.
go back to reference Öngür D, Jensen JE, Prescot AP, et al. Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry. 2008;64(8):718–26.PubMedCrossRef Öngür D, Jensen JE, Prescot AP, et al. Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry. 2008;64(8):718–26.PubMedCrossRef
105.
go back to reference Berk M. Lamotrigine and the treatment of mania in bipolar disorder. Eur Neuropsychopharmacol. 1999;9(Suppl. 4):S119–23.PubMedCrossRef Berk M. Lamotrigine and the treatment of mania in bipolar disorder. Eur Neuropsychopharmacol. 1999;9(Suppl. 4):S119–23.PubMedCrossRef
106.
go back to reference Tsapakis EM, Travis MJ. Glutamate and psychiatric disorders. Adv Psychiatr Treat. 2002;8:189–97.CrossRef Tsapakis EM, Travis MJ. Glutamate and psychiatric disorders. Adv Psychiatr Treat. 2002;8:189–97.CrossRef
107.
go back to reference Hokin LE, Dixon JF, Los GV. A novel action of lithium: stimulation of glutamate release and inositol 1,4,5 trisphosphate accumulation via activation of the N-methyl d-aspartate receptor in monkey and mouse cerebral cortex slices. Adv Enzyme Regul. 1996;36:229–44.PubMedCrossRef Hokin LE, Dixon JF, Los GV. A novel action of lithium: stimulation of glutamate release and inositol 1,4,5 trisphosphate accumulation via activation of the N-methyl d-aspartate receptor in monkey and mouse cerebral cortex slices. Adv Enzyme Regul. 1996;36:229–44.PubMedCrossRef
108.
go back to reference Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci. 2011;32(7):420–34.PubMedCrossRef Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci. 2011;32(7):420–34.PubMedCrossRef
109.
go back to reference Dixon JF, Hokin LE. Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex. Proc Natl Acad Sci USA. 1998;95(14):8363–8.PubMedCrossRef Dixon JF, Hokin LE. Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex. Proc Natl Acad Sci USA. 1998;95(14):8363–8.PubMedCrossRef
110.
go back to reference Brunello N, Tascedda F. Cellular mechanisms and second messengers: relevance to the psychopharmacology of bipolar disorders. Int J Neuropsychopharmacol. 2003;6(2):181–9.PubMedCrossRef Brunello N, Tascedda F. Cellular mechanisms and second messengers: relevance to the psychopharmacology of bipolar disorders. Int J Neuropsychopharmacol. 2003;6(2):181–9.PubMedCrossRef
111.
go back to reference Hashimoto R, Takei N, Shimazu K, et al. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002;43(7):1173–9.PubMedCrossRef Hashimoto R, Takei N, Shimazu K, et al. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002;43(7):1173–9.PubMedCrossRef
112.
go back to reference Nonaka S, Hough CJ, Chuang D-M. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-d-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci USA. 1998;95(5):2642–7.PubMedCrossRef Nonaka S, Hough CJ, Chuang D-M. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-d-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci USA. 1998;95(5):2642–7.PubMedCrossRef
113.
go back to reference Bown CD, Wang JF, Young LT. Attenuation of N-methyl-d-aspartate-mediated cytoplasmic vacuolization in primary rat hippocampal neurons by mood stabilizers. Neuroscience. 2003;117(4):949–55.PubMedCrossRef Bown CD, Wang JF, Young LT. Attenuation of N-methyl-d-aspartate-mediated cytoplasmic vacuolization in primary rat hippocampal neurons by mood stabilizers. Neuroscience. 2003;117(4):949–55.PubMedCrossRef
114.
go back to reference Ng WXD, Lau IY, Graham S, Sim K. Neurobiological evidence for thalamic, hippocampal and related glutamatergic abnormalities in bipolar disorder: a review and synthesis. Neurosci Biobehav Rev. 2009;33(3):336–54.PubMedCrossRef Ng WXD, Lau IY, Graham S, Sim K. Neurobiological evidence for thalamic, hippocampal and related glutamatergic abnormalities in bipolar disorder: a review and synthesis. Neurosci Biobehav Rev. 2009;33(3):336–54.PubMedCrossRef
115.
go back to reference Brambilla P, Perez J, Barale F, et al. GABAergic dysfunction in mood disorders. Mol Psychiatry. 2003;8(8):721–37.PubMedCrossRef Brambilla P, Perez J, Barale F, et al. GABAergic dysfunction in mood disorders. Mol Psychiatry. 2003;8(8):721–37.PubMedCrossRef
116.
go back to reference Kato T. Molecular neurobiology of bipolar disorder: a disease of ‘mood-stabilizing neurons’? Trends Neurosci. 2008;31(10):495–503.PubMedCrossRef Kato T. Molecular neurobiology of bipolar disorder: a disease of ‘mood-stabilizing neurons’? Trends Neurosci. 2008;31(10):495–503.PubMedCrossRef
117.
go back to reference Lenox RH, McNamara RK, Papke RL, et al. Neurobiology of lithium: an update. J Clin Psychiatry. 1998;59(Suppl. 6):37–47.PubMed Lenox RH, McNamara RK, Papke RL, et al. Neurobiology of lithium: an update. J Clin Psychiatry. 1998;59(Suppl. 6):37–47.PubMed
118.
go back to reference Shiah I, Yatham L. GABA function in mood disorders: an update and critical review. Life Sci. 1998;63(15):1289–303.PubMedCrossRef Shiah I, Yatham L. GABA function in mood disorders: an update and critical review. Life Sci. 1998;63(15):1289–303.PubMedCrossRef
119.
go back to reference Petty F. Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood test for manic depressive disease? Clin Chem. 1994;40(2):296–302.PubMed Petty F. Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood test for manic depressive disease? Clin Chem. 1994;40(2):296–302.PubMed
120.
go back to reference Chuang D-M, Chen R-W, Chalecka-Franaszek E, et al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 2002;4(2):129–36.PubMedCrossRef Chuang D-M, Chen R-W, Chalecka-Franaszek E, et al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 2002;4(2):129–36.PubMedCrossRef
121.
go back to reference Ahluwalia P, Grewaal DS, Singhal RL. Brain gabaergic and dopaminergic systems following lithium treatment and withdrawal. Prog Neuropsychopharmacol. 1981;5(5–6):527–30.PubMedCrossRef Ahluwalia P, Grewaal DS, Singhal RL. Brain gabaergic and dopaminergic systems following lithium treatment and withdrawal. Prog Neuropsychopharmacol. 1981;5(5–6):527–30.PubMedCrossRef
122.
go back to reference Vargas C, Tannhauser M, Barros HMT. Dissimilar effects of lithium and valproic acid on GABA and glutamine concentrations in rat cerebrospinal fluid. Gen Pharmacol Vasc Syst. 1998;30(4):601–4.CrossRef Vargas C, Tannhauser M, Barros HMT. Dissimilar effects of lithium and valproic acid on GABA and glutamine concentrations in rat cerebrospinal fluid. Gen Pharmacol Vasc Syst. 1998;30(4):601–4.CrossRef
123.
go back to reference Schloesser RJ, Huang J, Klein PS, et al. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology. 2008;33:110–33.PubMedCrossRef Schloesser RJ, Huang J, Klein PS, et al. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology. 2008;33:110–33.PubMedCrossRef
124.
go back to reference Manji HK, Lenox RH. The nature of bipolar disorder. J Clin Psychiatry. 2000;61(Suppl. 13):42–57.PubMed Manji HK, Lenox RH. The nature of bipolar disorder. J Clin Psychiatry. 2000;61(Suppl. 13):42–57.PubMed
125.
go back to reference Gould TD, Chen G, Manji HK. Mood stabilizer psychopharmacology. Clin Neurosci Res. 2002;2(3–4):193–212.PubMedCrossRef Gould TD, Chen G, Manji HK. Mood stabilizer psychopharmacology. Clin Neurosci Res. 2002;2(3–4):193–212.PubMedCrossRef
126.
go back to reference Marmol F. Lithium: bipolar disorder and neurodegenerative diseases. Possible cellular mechanisms of the therapeutic effects of lithium. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1761–71.PubMedCrossRef Marmol F. Lithium: bipolar disorder and neurodegenerative diseases. Possible cellular mechanisms of the therapeutic effects of lithium. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1761–71.PubMedCrossRef
127.
128.
go back to reference Montezinho LP, Mørk A, Duarte CB, et al. Effects of mood stabilizers on the inhibition of adenylate cyclase via dopamine D2-like receptors. Bipolar Disord. 2007;9(3):290–7.PubMedCrossRef Montezinho LP, Mørk A, Duarte CB, et al. Effects of mood stabilizers on the inhibition of adenylate cyclase via dopamine D2-like receptors. Bipolar Disord. 2007;9(3):290–7.PubMedCrossRef
129.
130.
go back to reference Mann L, Heldman E, Bersudsky Y, et al. Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their anti-depressant effect. Bipolar Disord. 2009;11:885–96.PubMedCrossRef Mann L, Heldman E, Bersudsky Y, et al. Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their anti-depressant effect. Bipolar Disord. 2009;11:885–96.PubMedCrossRef
131.
go back to reference Ikonomov OC, Manji HK. Molecular mechanisms underlying mood stabilization in manic-depressive illness: the phenotype challenge. Am J Psychiatry. 1999;156(10):1506–14.PubMed Ikonomov OC, Manji HK. Molecular mechanisms underlying mood stabilization in manic-depressive illness: the phenotype challenge. Am J Psychiatry. 1999;156(10):1506–14.PubMed
132.
go back to reference Machado-Vieira R, Manji HK, Zarate CA Jr, et al. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 2009;11(Suppl. 2):92–109.PubMedCrossRef Machado-Vieira R, Manji HK, Zarate CA Jr, et al. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 2009;11(Suppl. 2):92–109.PubMedCrossRef
133.
go back to reference Silverstone PH, McGrath BM. Lithium and valproate and their possible effects on the myo-inositol second messenger system in healthy volunteers and bipolar patients. Int Rev Psychiatry. 2009;21(4):414–23.PubMedCrossRef Silverstone PH, McGrath BM. Lithium and valproate and their possible effects on the myo-inositol second messenger system in healthy volunteers and bipolar patients. Int Rev Psychiatry. 2009;21(4):414–23.PubMedCrossRef
134.
go back to reference Calker Dv, Belmaker RH. The high affinity inositol transport system: implications for the pathophysiology and treatment of bipolar disorder. Bipolar Disord. 2000;2(2):102–7.PubMedCrossRef Calker Dv, Belmaker RH. The high affinity inositol transport system: implications for the pathophysiology and treatment of bipolar disorder. Bipolar Disord. 2000;2(2):102–7.PubMedCrossRef
135.
go back to reference Willmroth F, Drieling T, Lamla U, et al. Sodium-myo-inositol co-transporter (SMIT-1) mRNA is increased in neutrophils of patients with bipolar 1 disorder and down-regulated under treatment with mood stabilizers. Int J Neuropsychopharmacol. 2007;10(1):63–71.PubMedCrossRef Willmroth F, Drieling T, Lamla U, et al. Sodium-myo-inositol co-transporter (SMIT-1) mRNA is increased in neutrophils of patients with bipolar 1 disorder and down-regulated under treatment with mood stabilizers. Int J Neuropsychopharmacol. 2007;10(1):63–71.PubMedCrossRef
136.
go back to reference Deranieh RM, Greenberg ML. Cellular consequences of inositol depletion. Biochem Soc Trans. 2009;37:1099–103.PubMedCrossRef Deranieh RM, Greenberg ML. Cellular consequences of inositol depletion. Biochem Soc Trans. 2009;37:1099–103.PubMedCrossRef
137.
go back to reference Berridge MJ. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984;220:345–60.PubMed Berridge MJ. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984;220:345–60.PubMed
138.
go back to reference Lenox RH, Wang L. Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry. 2003;8(2):135–44.PubMedCrossRef Lenox RH, Wang L. Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry. 2003;8(2):135–44.PubMedCrossRef
139.
go back to reference Silverstone PH, McGrath BM, Kim H, et al. Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord. 2005;7(1):1–10.PubMedCrossRef Silverstone PH, McGrath BM, Kim H, et al. Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord. 2005;7(1):1–10.PubMedCrossRef
140.
go back to reference Chen G, Hasanat KA, Bebchuk JM, et al. Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med. 1999;61(5):599–617.PubMed Chen G, Hasanat KA, Bebchuk JM, et al. Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med. 1999;61(5):599–617.PubMed
141.
go back to reference Davanzo P, Thomas MA, Yue K, et al. Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology. 2001;24(4):359–69.PubMedCrossRef Davanzo P, Thomas MA, Yue K, et al. Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology. 2001;24(4):359–69.PubMedCrossRef
142.
go back to reference Moore GJ, Bebchuk JM, Parrish JK, et al. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry. 1999;156(12):1902–8.PubMed Moore GJ, Bebchuk JM, Parrish JK, et al. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry. 1999;156(12):1902–8.PubMed
143.
go back to reference Chiu CT, Chuang DM. Neuroprotective action of lithium in disorders of the central nervous system. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(6):461–76.PubMed Chiu CT, Chuang DM. Neuroprotective action of lithium in disorders of the central nervous system. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(6):461–76.PubMed
144.
go back to reference Zarate CA, Manji HK. Protein kinase C inhibitors: rationale for use and potential in the treatment of bipolar disorder. CNS Drugs. 2009;23(7):569–82.PubMedCrossRef Zarate CA, Manji HK. Protein kinase C inhibitors: rationale for use and potential in the treatment of bipolar disorder. CNS Drugs. 2009;23(7):569–82.PubMedCrossRef
145.
go back to reference Hahn C-G, Friedman E. Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipolar Disord. 1999;1(2):81–6.PubMedCrossRef Hahn C-G, Friedman E. Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipolar Disord. 1999;1(2):81–6.PubMedCrossRef
146.
go back to reference Szabo ST, Machado-Vieira R, Yuan P, et al. Glutamate receptors as targets of protein kinase C in the pathophysiology and treatment of animal models of mania. Neuropharmacology. 2009;56(1):47–55.PubMedCrossRef Szabo ST, Machado-Vieira R, Yuan P, et al. Glutamate receptors as targets of protein kinase C in the pathophysiology and treatment of animal models of mania. Neuropharmacology. 2009;56(1):47–55.PubMedCrossRef
147.
go back to reference Manji HK, Etcheberrigaray R, Chen G, et al. Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the α isozyme. J Neurochem. 1993;61(6):2303–10.PubMedCrossRef Manji HK, Etcheberrigaray R, Chen G, et al. Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the α isozyme. J Neurochem. 1993;61(6):2303–10.PubMedCrossRef
148.
go back to reference Lenox RH, Watson DG, Ellis J. Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res. 1992;570:333–40.PubMedCrossRef Lenox RH, Watson DG, Ellis J. Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res. 1992;570:333–40.PubMedCrossRef
149.
go back to reference Friedman E, Hoau Yan W, Levinson D, et al. Altered platelet protein kinase C activity in bipolar affective disorder, manic episode. Biol Psychiatry. 1993;33(7):520–5.PubMedCrossRef Friedman E, Hoau Yan W, Levinson D, et al. Altered platelet protein kinase C activity in bipolar affective disorder, manic episode. Biol Psychiatry. 1993;33(7):520–5.PubMedCrossRef
150.
go back to reference Warsh JJ, Andreopoulos S, Li PP. Role of intracellular calcium signaling in the pathophysiology and pharmacotherapy of bipolar disorder: current status. Clin Neurosci Res. 2004;4(3–4):201–13.CrossRef Warsh JJ, Andreopoulos S, Li PP. Role of intracellular calcium signaling in the pathophysiology and pharmacotherapy of bipolar disorder: current status. Clin Neurosci Res. 2004;4(3–4):201–13.CrossRef
151.
go back to reference Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.PubMedCrossRef Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.PubMedCrossRef
152.
go back to reference Carafoli E, Santella L, Branca D, et al. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 2001;36(2):107–260.PubMedCrossRef Carafoli E, Santella L, Branca D, et al. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 2001;36(2):107–260.PubMedCrossRef
153.
go back to reference Berk M, Plein H, Ferreira D. Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol. 2001;24(3):129–32.PubMedCrossRef Berk M, Plein H, Ferreira D. Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol. 2001;24(3):129–32.PubMedCrossRef
154.
go back to reference Berk M, Plein H, Belsham B. The specificity of platelet glutamate receptor supersensitivity in psychotic disorders. Life Sci. 2000;66(25):2427–32.PubMedCrossRef Berk M, Plein H, Belsham B. The specificity of platelet glutamate receptor supersensitivity in psychotic disorders. Life Sci. 2000;66(25):2427–32.PubMedCrossRef
155.
go back to reference Plein H, Berk M. Changes in the platelet intracellular calcium response to serotonin in patients with major depression treated with electroconvulsive therapy: state or trait marker status. Int Clin Psychopharmacol. 2000;15(2):93–8.PubMedCrossRef Plein H, Berk M. Changes in the platelet intracellular calcium response to serotonin in patients with major depression treated with electroconvulsive therapy: state or trait marker status. Int Clin Psychopharmacol. 2000;15(2):93–8.PubMedCrossRef
156.
go back to reference Berk M, Kirchmann NH, Butkow N. Lithium blocks 45Ca2+ uptake into platelets in bipolar affective disorder and controls. Clin Neuropharmacol. 1996;19(1):48–51.PubMedCrossRef Berk M, Kirchmann NH, Butkow N. Lithium blocks 45Ca2+ uptake into platelets in bipolar affective disorder and controls. Clin Neuropharmacol. 1996;19(1):48–51.PubMedCrossRef
157.
go back to reference Sourial-Bassillious N, Rydelius PA, Aperia A, et al. Glutamate-mediated calcium signaling: a potential target for lithium action. Neuroscience. 2009;161(4):1126–34.PubMedCrossRef Sourial-Bassillious N, Rydelius PA, Aperia A, et al. Glutamate-mediated calcium signaling: a potential target for lithium action. Neuroscience. 2009;161(4):1126–34.PubMedCrossRef
158.
go back to reference Perova T, Kwan M, Li PP, et al. Differential modulation of intracellular Ca2+ responses in B lymphoblasts by mood stabilizers. Int J Neuropsychopharmacol. 2010;13(06):693–702.PubMedCrossRef Perova T, Kwan M, Li PP, et al. Differential modulation of intracellular Ca2+ responses in B lymphoblasts by mood stabilizers. Int J Neuropsychopharmacol. 2010;13(06):693–702.PubMedCrossRef
159.
go back to reference Crespo-Biel N, Camins A, Canudas AM, et al. Kainate-induced toxicity in the hippocampus: potential role of lithium. Bipolar Disord. 2010;12(4):425–36.PubMedCrossRef Crespo-Biel N, Camins A, Canudas AM, et al. Kainate-induced toxicity in the hippocampus: potential role of lithium. Bipolar Disord. 2010;12(4):425–36.PubMedCrossRef
160.
go back to reference Camins A, Crespo-Biel N, Junyent F, et al. Calpains as a target for therapy of neurodegenerative diseases: putative role of lithium. Curr Drug Metab. 2009;10(5):433–47.PubMedCrossRef Camins A, Crespo-Biel N, Junyent F, et al. Calpains as a target for therapy of neurodegenerative diseases: putative role of lithium. Curr Drug Metab. 2009;10(5):433–47.PubMedCrossRef
161.
go back to reference Chang K, Barnea-Goraly N, Karchemskiy A, et al. Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder. Biol Psychiatry. 2005;58(3):197–203.PubMedCrossRef Chang K, Barnea-Goraly N, Karchemskiy A, et al. Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder. Biol Psychiatry. 2005;58(3):197–203.PubMedCrossRef
163.
go back to reference Mielke K, Herdegen T. JNK and p38 stress kinases: degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol. 2000;61(1):45–60.PubMedCrossRef Mielke K, Herdegen T. JNK and p38 stress kinases: degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol. 2000;61(1):45–60.PubMedCrossRef
164.
go back to reference Chen R-W, Qin Z-H, Ren M, et al. Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. J Neurochem. 2003;84(3):566–75.PubMedCrossRef Chen R-W, Qin Z-H, Ren M, et al. Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. J Neurochem. 2003;84(3):566–75.PubMedCrossRef
165.
go back to reference Chiu C-T, Chuang D-M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther. 2010;128(2):281–304.PubMedCrossRef Chiu C-T, Chuang D-M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther. 2010;128(2):281–304.PubMedCrossRef
166.
go back to reference Chen R-W, Chuang D-M. Long-term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. J Biol Chem. 1999;274(10):6039–42.PubMedCrossRef Chen R-W, Chuang D-M. Long-term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. J Biol Chem. 1999;274(10):6039–42.PubMedCrossRef
167.
go back to reference Berk M, Conus P, Kapczinski F, et al. From neuroprogression to neuroprotection: implications for clinical care. Med J Aust. 2010;193(4):S36–40.PubMed Berk M, Conus P, Kapczinski F, et al. From neuroprogression to neuroprotection: implications for clinical care. Med J Aust. 2010;193(4):S36–40.PubMed
168.
go back to reference Ng F, Berk M, Dean OM, et al. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008;11:851–76.PubMedCrossRef Ng F, Berk M, Dean OM, et al. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008;11:851–76.PubMedCrossRef
169.
go back to reference Machado-Vieira R, Pivovarova NB, Stanika RI, et al. The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol Psychiatry. 2011;69(4):344–52.PubMedCrossRef Machado-Vieira R, Pivovarova NB, Stanika RI, et al. The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol Psychiatry. 2011;69(4):344–52.PubMedCrossRef
170.
go back to reference Scola G, Kim HK, Young LT, et al. A fresh look at complex I in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol Psychiatry. 2013;73:e4–5.PubMedCrossRef Scola G, Kim HK, Young LT, et al. A fresh look at complex I in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol Psychiatry. 2013;73:e4–5.PubMedCrossRef
171.
go back to reference Maurer IC, Schippel P, Volz H-P. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord. 2009;11(5):515–22.PubMedCrossRef Maurer IC, Schippel P, Volz H-P. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord. 2009;11(5):515–22.PubMedCrossRef
172.
go back to reference Eskandari M, Fard J, Hosseini M-J, et al. Glutathione mediated reductive activation and mitochondrial dysfunction play key roles in lithium induced oxidative stress and cytotoxicity in liver. Biometals. 2012;25(5):863–73.PubMedCrossRef Eskandari M, Fard J, Hosseini M-J, et al. Glutathione mediated reductive activation and mitochondrial dysfunction play key roles in lithium induced oxidative stress and cytotoxicity in liver. Biometals. 2012;25(5):863–73.PubMedCrossRef
173.
go back to reference Berk M, Ng F, Dean O, et al. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci. 2008;29(7):346–51.PubMedCrossRef Berk M, Ng F, Dean O, et al. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci. 2008;29(7):346–51.PubMedCrossRef
174.
go back to reference Frey BN, Martins MR, Petronilho FC, et al. Increased oxidative stress after repeated amphetamine exposure: possible relevance as a model of mania. Bipolar Disord. 2006;8(3):275–80.PubMedCrossRef Frey BN, Martins MR, Petronilho FC, et al. Increased oxidative stress after repeated amphetamine exposure: possible relevance as a model of mania. Bipolar Disord. 2006;8(3):275–80.PubMedCrossRef
175.
go back to reference Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, et al. 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci. 2009;34(4):263–71.PubMed Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, et al. 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci. 2009;34(4):263–71.PubMed
176.
go back to reference Andreazza AC, Shao L, Wang J-F, et al. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 2010;67(4):360–8.PubMedCrossRef Andreazza AC, Shao L, Wang J-F, et al. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 2010;67(4):360–8.PubMedCrossRef
177.
go back to reference Andreazza AC, Cassini C, Rosa AR, et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res. 2007;41(6):523–9.PubMedCrossRef Andreazza AC, Cassini C, Rosa AR, et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res. 2007;41(6):523–9.PubMedCrossRef
178.
go back to reference Cecil KM, DelBello MP, Morey R, et al. Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord. 2002;4(6):357–65.PubMedCrossRef Cecil KM, DelBello MP, Morey R, et al. Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord. 2002;4(6):357–65.PubMedCrossRef
179.
go back to reference Frey BN, Valvassori SS, Reus GZ, et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci. 2006;31(5):326–32.PubMed Frey BN, Valvassori SS, Reus GZ, et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci. 2006;31(5):326–32.PubMed
180.
go back to reference Machado-Vieira R, Andreazza AC, Viale CI, et al. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett. 2007;421(1):33–6.PubMedCrossRef Machado-Vieira R, Andreazza AC, Viale CI, et al. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett. 2007;421(1):33–6.PubMedCrossRef
181.
go back to reference Cunha ABM, Frey BN, Andreazza AC, et al. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett. 2006;398(3):215–9.PubMedCrossRef Cunha ABM, Frey BN, Andreazza AC, et al. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett. 2006;398(3):215–9.PubMedCrossRef
182.
go back to reference Tramontina JF, Andreazza AC, Kauer-Sant’Anna M, et al. Brain-derived neurotrophic factor serum levels before and after treatment for acute mania. Neurosci Lett. 2009;452(2):111–3.PubMedCrossRef Tramontina JF, Andreazza AC, Kauer-Sant’Anna M, et al. Brain-derived neurotrophic factor serum levels before and after treatment for acute mania. Neurosci Lett. 2009;452(2):111–3.PubMedCrossRef
183.
go back to reference Einat H, Manji HK, Einat H, et al. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry. 2006;59(12):1160–71.PubMedCrossRef Einat H, Manji HK, Einat H, et al. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry. 2006;59(12):1160–71.PubMedCrossRef
184.
go back to reference Rybakowski JK, Suwalska A. Excellent lithium responders have normal cognitive functions and plasma BDNF levels. Int J Neuropsychopharmacol. 2010;13:617–22.PubMedCrossRef Rybakowski JK, Suwalska A. Excellent lithium responders have normal cognitive functions and plasma BDNF levels. Int J Neuropsychopharmacol. 2010;13:617–22.PubMedCrossRef
185.
go back to reference Vidal F, de Araujo WM, Cruz AL, et al. Lithium reduces tumorigenic potential in response to EGF signaling in human colorectal cancer cells. Int J Oncol. 2011;38(5):1365–73.PubMed Vidal F, de Araujo WM, Cruz AL, et al. Lithium reduces tumorigenic potential in response to EGF signaling in human colorectal cancer cells. Int J Oncol. 2011;38(5):1365–73.PubMed
186.
go back to reference Cameron AR, Anil S, Sutherland E, et al. Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics. 2010;2(3):195–203.PubMedCrossRef Cameron AR, Anil S, Sutherland E, et al. Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics. 2010;2(3):195–203.PubMedCrossRef
187.
go back to reference Manji HK, Moore GJ, Chen G. Lithium up-regulates the cytoprotective protein bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry. 2000;61(Suppl. 9):82–96.PubMed Manji HK, Moore GJ, Chen G. Lithium up-regulates the cytoprotective protein bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry. 2000;61(Suppl. 9):82–96.PubMed
188.
go back to reference Lien R, Flaisher-Grinberg S, Cleary C, et al. Behavioral effects of Bcl-2 deficiency: implications for affective disorders. Pharmacol Rep. 2008;60(4):490–8.PubMed Lien R, Flaisher-Grinberg S, Cleary C, et al. Behavioral effects of Bcl-2 deficiency: implications for affective disorders. Pharmacol Rep. 2008;60(4):490–8.PubMed
189.
go back to reference Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem Res. 2009;34(3):536–41.PubMedCrossRef Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem Res. 2009;34(3):536–41.PubMedCrossRef
190.
go back to reference Ghribi O, Herman MM, Spaulding NK, et al. Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase-3 activation. J Neurochem. 2002;82(1):137–45.PubMedCrossRef Ghribi O, Herman MM, Spaulding NK, et al. Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase-3 activation. J Neurochem. 2002;82(1):137–45.PubMedCrossRef
191.
go back to reference Beaulieu J-M, Sotnikova TD, Yao W-D, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA. 2004;101(14):5099–104.PubMedCrossRef Beaulieu J-M, Sotnikova TD, Yao W-D, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA. 2004;101(14):5099–104.PubMedCrossRef
192.
go back to reference Prickaerts J, Moechars D, Cryns K, et al. Transgenic mice overexpressing glycogen synthase kinase 3β: a putative model of hyperactivity and mania. J Neurosci. 2006;26(35):9022–9.PubMedCrossRef Prickaerts J, Moechars D, Cryns K, et al. Transgenic mice overexpressing glycogen synthase kinase 3β: a putative model of hyperactivity and mania. J Neurosci. 2006;26(35):9022–9.PubMedCrossRef
193.
go back to reference Klein E, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci. 1996;93(16):8455–9.PubMedCrossRef Klein E, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci. 1996;93(16):8455–9.PubMedCrossRef
194.
go back to reference Li X, Friedman AB, Zhu W, et al. Lithium regulates glycogen synthase kinase-3β in human peripheral blood mononuclear cells: implication in the treatment of bipolar disorder. Biol Psychiatry. 2007;61(2):216–22.PubMedCrossRef Li X, Friedman AB, Zhu W, et al. Lithium regulates glycogen synthase kinase-3β in human peripheral blood mononuclear cells: implication in the treatment of bipolar disorder. Biol Psychiatry. 2007;61(2):216–22.PubMedCrossRef
195.
go back to reference Tajes M, Yeste-Velasco M, Zhu X, et al. Activation of Akt by lithium: pro-survival pathways in aging. Mech Ageing Dev. 2009;130:253–61.PubMedCrossRef Tajes M, Yeste-Velasco M, Zhu X, et al. Activation of Akt by lithium: pro-survival pathways in aging. Mech Ageing Dev. 2009;130:253–61.PubMedCrossRef
196.
go back to reference Freland L, Beaulieu J-M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci. 2012;5:14.PubMedCrossRef Freland L, Beaulieu J-M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci. 2012;5:14.PubMedCrossRef
197.
go back to reference Rowe MK, Wiest C, Chuang D-M. GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. Neurosci Biobehav Rev. 2007;31(6):920–31.PubMedCrossRef Rowe MK, Wiest C, Chuang D-M. GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. Neurosci Biobehav Rev. 2007;31(6):920–31.PubMedCrossRef
198.
go back to reference Gould TD, Einat H, Bhat R, et al. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol. 2004;7:387–90.PubMedCrossRef Gould TD, Einat H, Bhat R, et al. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol. 2004;7:387–90.PubMedCrossRef
199.
go back to reference Silva R, Mesquita AR, Bessa J, et al. Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3β. Neuroscience. 2008;152(3):656–69.PubMedCrossRef Silva R, Mesquita AR, Bessa J, et al. Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3β. Neuroscience. 2008;152(3):656–69.PubMedCrossRef
200.
go back to reference Wada A. Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades. J Pharmacol Sci. 2009;110(1):14–28.PubMedCrossRef Wada A. Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades. J Pharmacol Sci. 2009;110(1):14–28.PubMedCrossRef
201.
go back to reference Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.PubMedCrossRef Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.PubMedCrossRef
202.
go back to reference Meléndez A, Neufeld TP. The cell biology of autophagy in metazoans: a developing story. Development. 2008;135(14):2347–60.PubMedCrossRef Meléndez A, Neufeld TP. The cell biology of autophagy in metazoans: a developing story. Development. 2008;135(14):2347–60.PubMedCrossRef
203.
go back to reference Sarkar S, Krishna G, Imarisio S, et al. A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum Mol Genet. 2008;17(2):170–8.PubMedCrossRef Sarkar S, Krishna G, Imarisio S, et al. A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum Mol Genet. 2008;17(2):170–8.PubMedCrossRef
204.
go back to reference Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005;170(7):1101–11.PubMedCrossRef Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005;170(7):1101–11.PubMedCrossRef
205.
go back to reference Heiseke A, Aguib Y, Schatzl HM. Autophagy, prion infection and their mutual interactions. Curr Issues Mol Biol. 2009;12:87–98.PubMed Heiseke A, Aguib Y, Schatzl HM. Autophagy, prion infection and their mutual interactions. Curr Issues Mol Biol. 2009;12:87–98.PubMed
206.
go back to reference Camins A, Verdaguer E, Junyent F, et al. Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther. 2009;15(4):333–44.PubMedCrossRef Camins A, Verdaguer E, Junyent F, et al. Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther. 2009;15(4):333–44.PubMedCrossRef
207.
go back to reference Dean OM, Bush AI, Berk M. Translating the rosetta stone of N-acetylcysteine. Biol Psychiatry. 2012;71(11):935–6.PubMedCrossRef Dean OM, Bush AI, Berk M. Translating the rosetta stone of N-acetylcysteine. Biol Psychiatry. 2012;71(11):935–6.PubMedCrossRef
Metadata
Title
Potential Mechanisms of Action of Lithium in Bipolar Disorder
Current Understanding
Authors
Gin S. Malhi
Michelle Tanious
Pritha Das
Carissa M. Coulston
Michael Berk
Publication date
01-02-2013
Publisher
Springer International Publishing AG
Published in
CNS Drugs / Issue 2/2013
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-013-0039-0

Other articles of this Issue 2/2013

CNS Drugs 2/2013 Go to the issue