Skip to main content
Top
Published in: Clinical Pharmacokinetics 5/2021

01-05-2021 | Review Article

Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes

Authors: Yurong Song, Chenxi Li, Guangzhi Liu, Rui Liu, Youwen Chen, Wen Li, Zhiwen Cao, Baosheng Zhao, Cheng Lu, Yuanyan Liu

Published in: Clinical Pharmacokinetics | Issue 5/2021

Login to get access

Abstract

Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1–3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.
Literature
1.
go back to reference Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol. 2015;28(1):38–42.PubMedCrossRef Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol. 2015;28(1):38–42.PubMedCrossRef
2.
go back to reference Guengerich FP, Waterman MR, Egli M. Recent structural insights into cytochrome P450 function. Trends Pharmacol Sci. 2016;37(8):625–40.PubMedCrossRef Guengerich FP, Waterman MR, Egli M. Recent structural insights into cytochrome P450 function. Trends Pharmacol Sci. 2016;37(8):625–40.PubMedCrossRef
3.
go back to reference Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liv Dis. 2017;21(1):1–20.CrossRef Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liv Dis. 2017;21(1):1–20.CrossRef
4.
go back to reference Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedeberg Arch Pharmacol. 2004;369(1):89–104.CrossRef Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedeberg Arch Pharmacol. 2004;369(1):89–104.CrossRef
5.
go back to reference Albertolle ME, Phan TTN, Pozzi A, Guengerich FP. Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration. Mol Cell Proteom. 2018;17(5):889–900.CrossRef Albertolle ME, Phan TTN, Pozzi A, Guengerich FP. Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration. Mol Cell Proteom. 2018;17(5):889–900.CrossRef
6.
go back to reference Xiao Y, Ge M, Xue X, Wang C, Wang H, Wu X, et al. Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney Int. 2008;73(11):1231–9.PubMedCrossRef Xiao Y, Ge M, Xue X, Wang C, Wang H, Wu X, et al. Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney Int. 2008;73(11):1231–9.PubMedCrossRef
7.
go back to reference Goldstein I, Rivlin N, Shoshana OY, Ezra O, Madar S, Goldfinger N, et al. Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis. 2013;34(1):190–8.PubMedCrossRef Goldstein I, Rivlin N, Shoshana OY, Ezra O, Madar S, Goldfinger N, et al. Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis. 2013;34(1):190–8.PubMedCrossRef
8.
go back to reference van Herwaarden AE, van Waterschoot RA, Schinkel AH. How important is intestinal cytochrome P450 3A metabolism? Trends Pharmacol Sci. 2009;30(5):223–7.PubMedCrossRef van Herwaarden AE, van Waterschoot RA, Schinkel AH. How important is intestinal cytochrome P450 3A metabolism? Trends Pharmacol Sci. 2009;30(5):223–7.PubMedCrossRef
9.
go back to reference Miksys S, Tyndale RF. Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology. 2009;34(3):634–40.PubMedCrossRef Miksys S, Tyndale RF. Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology. 2009;34(3):634–40.PubMedCrossRef
10.
go back to reference McMillan DM, Tyndale RF. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol Ther. 2018;184:189–200.PubMedCrossRef McMillan DM, Tyndale RF. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol Ther. 2018;184:189–200.PubMedCrossRef
11.
go back to reference Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 2012;28(2):69–87.PubMedPubMedCentralCrossRef Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 2012;28(2):69–87.PubMedPubMedCentralCrossRef
12.
go back to reference Martínez C, García-Martín E, Pizarro RM, García-Gamito FJ, Agúndez JA. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy. Br J Cancer. 2002;87(6):681–6.PubMedPubMedCentralCrossRef Martínez C, García-Martín E, Pizarro RM, García-Gamito FJ, Agúndez JA. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy. Br J Cancer. 2002;87(6):681–6.PubMedPubMedCentralCrossRef
13.
go back to reference Fahy BN, Guo T, Ghose R. Impact of hepatic malignancy on CYP3A4 gene expression. J Surg Res. 2012;178(2):768–72.PubMedCrossRef Fahy BN, Guo T, Ghose R. Impact of hepatic malignancy on CYP3A4 gene expression. J Surg Res. 2012;178(2):768–72.PubMedCrossRef
14.
go back to reference Gharavi N, El-Kadi AO. Expression of cytochrome P450 in lung tumor. Curr Drug Metab. 2004;5(2):203–10.PubMedCrossRef Gharavi N, El-Kadi AO. Expression of cytochrome P450 in lung tumor. Curr Drug Metab. 2004;5(2):203–10.PubMedCrossRef
15.
go back to reference Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Ann Rev Med. 2006;57:119–37.PubMedCrossRef Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Ann Rev Med. 2006;57:119–37.PubMedCrossRef
16.
go back to reference Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol. 2001;41:535–67.PubMedCrossRef Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol. 2001;41:535–67.PubMedCrossRef
17.
go back to reference Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet. 1998;35(5):361–90.PubMedCrossRef Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet. 1998;35(5):361–90.PubMedCrossRef
18.
go back to reference Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.PubMedCrossRef Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.PubMedCrossRef
19.
go back to reference van Schaik RH. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updates. 2008;11(3):77–98.CrossRef van Schaik RH. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updates. 2008;11(3):77–98.CrossRef
20.
go back to reference Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. Cham: Springer International Publishing; 2015. p. 523–785.CrossRef Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. Cham: Springer International Publishing; 2015. p. 523–785.CrossRef
21.
go back to reference Zhang HF, Wang HH, Gao N, Wei JY, Tian X, Zhao Y, et al. Physiological content and intrinsic activities of 10 cytochrome P450 isoforms in human normal liver microsomes. J Pharmacol Exp Ther. 2016;358(1):83–93.PubMedCrossRef Zhang HF, Wang HH, Gao N, Wei JY, Tian X, Zhao Y, et al. Physiological content and intrinsic activities of 10 cytochrome P450 isoforms in human normal liver microsomes. J Pharmacol Exp Ther. 2016;358(1):83–93.PubMedCrossRef
22.
23.
go back to reference Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie.” Drug Metab Dispos. 2006;34(5):880–6.PubMedCrossRef Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie.” Drug Metab Dispos. 2006;34(5):880–6.PubMedCrossRef
24.
go back to reference Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61(5):541–58.PubMedCrossRef Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61(5):541–58.PubMedCrossRef
25.
go back to reference Cizkova K, Konieczna A, Erdosova B, Ehrmann J. Time-dependent expression of cytochrome p450 epoxygenases during human prenatal development. Organogenesis. 2014;10(1):53–61.PubMedPubMedCentralCrossRef Cizkova K, Konieczna A, Erdosova B, Ehrmann J. Time-dependent expression of cytochrome p450 epoxygenases during human prenatal development. Organogenesis. 2014;10(1):53–61.PubMedPubMedCentralCrossRef
26.
go back to reference Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.PubMedCrossRef Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.PubMedCrossRef
29.
go back to reference Guengerich FP, Yoshimoto FK. Formation and cleavage of C–C bonds by enzymatic oxidation–reduction reactions. Chem Rev. 2018;118(14):6573–655.PubMedCrossRef Guengerich FP, Yoshimoto FK. Formation and cleavage of C–C bonds by enzymatic oxidation–reduction reactions. Chem Rev. 2018;118(14):6573–655.PubMedCrossRef
30.
go back to reference Lewis DF, Pratt JM. The P450 catalytic cycle and oxygenation mechanism. Drug Metab Rev. 1998;30(4):739–86.PubMedCrossRef Lewis DF, Pratt JM. The P450 catalytic cycle and oxygenation mechanism. Drug Metab Rev. 1998;30(4):739–86.PubMedCrossRef
31.
go back to reference Benet LZ, Cummins CL, Wu CY. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int J Pharm. 2004;277:3–9.PubMedCrossRef Benet LZ, Cummins CL, Wu CY. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int J Pharm. 2004;277:3–9.PubMedCrossRef
32.
go back to reference Alqahtani S, Bukhari I, Albassam A, Alenazi M. An update on the potential role of intestinal first-pass metabolism for the prediction of drug–drug interactions: the role of PBPK modeling. Expert Opin Drug Metab Toxicol. 2018;14(6):625–34.PubMedCrossRef Alqahtani S, Bukhari I, Albassam A, Alenazi M. An update on the potential role of intestinal first-pass metabolism for the prediction of drug–drug interactions: the role of PBPK modeling. Expert Opin Drug Metab Toxicol. 2018;14(6):625–34.PubMedCrossRef
33.
go back to reference Dufek MB, Knight BM, Bridges AS, Thakker DR. P-glycoprotein increases portal bioavailability of loperamide in mouse by reducing first-pass intestinal metabolism. Drug Metab Dispos. 2013;41(3):642–50.PubMedCrossRef Dufek MB, Knight BM, Bridges AS, Thakker DR. P-glycoprotein increases portal bioavailability of loperamide in mouse by reducing first-pass intestinal metabolism. Drug Metab Dispos. 2013;41(3):642–50.PubMedCrossRef
34.
go back to reference Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55(1):3–29.PubMedCrossRef Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55(1):3–29.PubMedCrossRef
35.
go back to reference Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets. 2018;19(1):38–54.PubMedCrossRef Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets. 2018;19(1):38–54.PubMedCrossRef
36.
go back to reference Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004;310(3):1062–75.PubMedCrossRef Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004;310(3):1062–75.PubMedCrossRef
37.
go back to reference Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97(1):30–9.PubMedCrossRef Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97(1):30–9.PubMedCrossRef
38.
go back to reference White IN. Tamoxifen: is it safe? Comparison of activation and detoxication mechanisms in rodents and in humans. Curr Drug Metab. 2003;4(3):223–39.PubMedCrossRef White IN. Tamoxifen: is it safe? Comparison of activation and detoxication mechanisms in rodents and in humans. Curr Drug Metab. 2003;4(3):223–39.PubMedCrossRef
39.
go back to reference Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res. 1997;57(16):3402–6.PubMed Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res. 1997;57(16):3402–6.PubMed
40.
go back to reference Purnapatre K, Khattar SK, Saini KS. Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett. 2008;259(1):1–15.PubMedCrossRef Purnapatre K, Khattar SK, Saini KS. Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett. 2008;259(1):1–15.PubMedCrossRef
41.
go back to reference Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet. 2008;23(2):87–94.PubMedCrossRef Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet. 2008;23(2):87–94.PubMedCrossRef
42.
go back to reference Doherty MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet. 2002;41(4):235–53.PubMedCrossRef Doherty MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet. 2002;41(4):235–53.PubMedCrossRef
43.
go back to reference Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki Y, Noguchi S. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer. 2002;97(1):129–32.PubMedCrossRef Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki Y, Noguchi S. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer. 2002;97(1):129–32.PubMedCrossRef
44.
go back to reference Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53(3):1098–108.PubMedCrossRef Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53(3):1098–108.PubMedCrossRef
45.
go back to reference Yang J, Tucker GT, Rostami-Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther. 2004;76(4):391.PubMedCrossRef Yang J, Tucker GT, Rostami-Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther. 2004;76(4):391.PubMedCrossRef
46.
go back to reference Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome p450-mediated metabolism to drug–drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome p450-mediated metabolism to drug–drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef
47.
go back to reference van Waterschoot RA, Schinkel AH. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev. 2011;63(2):390–410.PubMedCrossRef van Waterschoot RA, Schinkel AH. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev. 2011;63(2):390–410.PubMedCrossRef
48.
go back to reference Holtbecker N, Fromm MF, Kroemer HK, Ohnhaus EE, Heidemann H. The nifedipine–rifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos. 1996;24(10):1121–3.PubMed Holtbecker N, Fromm MF, Kroemer HK, Ohnhaus EE, Heidemann H. The nifedipine–rifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos. 1996;24(10):1121–3.PubMed
49.
go back to reference Lampen A, Zhang Y, Hackbarth I, Benet LZ, Sewing KF, Christians U. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 1998;285(3):1104–12.PubMed Lampen A, Zhang Y, Hackbarth I, Benet LZ, Sewing KF, Christians U. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 1998;285(3):1104–12.PubMed
50.
go back to reference Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.PubMedCrossRef Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.PubMedCrossRef
51.
go back to reference Wu CY, Benet LZ, Hebert MF, Gupta SK, Rowland M, Gomez DY, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58(5):492–7.PubMedCrossRef Wu CY, Benet LZ, Hebert MF, Gupta SK, Rowland M, Gomez DY, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58(5):492–7.PubMedCrossRef
52.
go back to reference Khokhar JY, Tyndale RF. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology. 2011;36(3):692–700.PubMedCrossRef Khokhar JY, Tyndale RF. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology. 2011;36(3):692–700.PubMedCrossRef
53.
go back to reference Meyer RP, Gehlhaus M, Knoth R, Volk B. Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab. 2007;8(4):297–306.PubMedCrossRef Meyer RP, Gehlhaus M, Knoth R, Volk B. Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab. 2007;8(4):297–306.PubMedCrossRef
54.
go back to reference Yu LJ, Matias J, Scudiero DA, Hite KM, Monks A, Sausville EA, et al. P450 enzyme expression patterns in the NCI human tumor cell line panel. Drug Metab Dispos. 2001;29(3):304–12.PubMed Yu LJ, Matias J, Scudiero DA, Hite KM, Monks A, Sausville EA, et al. P450 enzyme expression patterns in the NCI human tumor cell line panel. Drug Metab Dispos. 2001;29(3):304–12.PubMed
55.
go back to reference Navarro-Mabarak C, Camacho-Carranza R, Espinosa-Aguirre JJ. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases. Drug Metab Rev. 2018;50(2):95–108.PubMedCrossRef Navarro-Mabarak C, Camacho-Carranza R, Espinosa-Aguirre JJ. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases. Drug Metab Rev. 2018;50(2):95–108.PubMedCrossRef
57.
go back to reference Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol. 2000;59(12):1501–11.PubMedCrossRef Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol. 2000;59(12):1501–11.PubMedCrossRef
58.
go back to reference Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J Neurochem. 2008;107(6):1518–28.PubMedCrossRef Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J Neurochem. 2008;107(6):1518–28.PubMedCrossRef
59.
go back to reference Walther B, Ghersi-Egea JF, Minn A, Siest G. Subcellular distribution of cytochrome P-450 in the brain. Brain Res. 1986;375(2):338–44.PubMedCrossRef Walther B, Ghersi-Egea JF, Minn A, Siest G. Subcellular distribution of cytochrome P-450 in the brain. Brain Res. 1986;375(2):338–44.PubMedCrossRef
60.
go back to reference Miksys S, Rao Y, Sellers EM, Kwan M, Mendis D, Tyndale RF. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica. 2000;30(6):547–64.PubMedCrossRef Miksys S, Rao Y, Sellers EM, Kwan M, Mendis D, Tyndale RF. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica. 2000;30(6):547–64.PubMedCrossRef
61.
go back to reference Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem. 2002;82(6):1376–87.PubMedCrossRef Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem. 2002;82(6):1376–87.PubMedCrossRef
62.
go back to reference Upadhya SC, Tirumalai PS, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys. 2000;373(1):23–34.PubMedCrossRef Upadhya SC, Tirumalai PS, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys. 2000;373(1):23–34.PubMedCrossRef
63.
go back to reference Booth Depaz IM, Toselli F, Wilce PA, Gillam EM. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls. Drug Metab Dispos. 2013;41(6):1187–94.PubMedCrossRef Booth Depaz IM, Toselli F, Wilce PA, Gillam EM. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls. Drug Metab Dispos. 2013;41(6):1187–94.PubMedCrossRef
64.
go back to reference Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain; a review. Curr Drug Metab. 2001;2(3):245–63.PubMedCrossRef Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain; a review. Curr Drug Metab. 2001;2(3):245–63.PubMedCrossRef
65.
go back to reference Meyer RP, Lindberg RL, Hoffmann F, Meyer UA. Cytosolic persistence of mouse brain CYP1A1 in chronic heme deficiency. Biol Chem. 2005;386(11):1157–64.PubMedCrossRef Meyer RP, Lindberg RL, Hoffmann F, Meyer UA. Cytosolic persistence of mouse brain CYP1A1 in chronic heme deficiency. Biol Chem. 2005;386(11):1157–64.PubMedCrossRef
66.
go back to reference Meyer RP, Podvinec M, Meyer UA. Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol. 2002;62(5):1061–7.PubMedCrossRef Meyer RP, Podvinec M, Meyer UA. Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol. 2002;62(5):1061–7.PubMedCrossRef
67.
go back to reference Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.PubMedCrossRef Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.PubMedCrossRef
68.
go back to reference Chen ZR, Somogyi AA, Reynolds G, Bochner F. Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol. 1991;31(4):381–90.PubMedPubMedCentralCrossRef Chen ZR, Somogyi AA, Reynolds G, Bochner F. Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol. 1991;31(4):381–90.PubMedPubMedCentralCrossRef
69.
go back to reference Sindrup SH, Arendt-Nielsen L, Brøsen K, Bjerring P, Angelo HR, Eriksen B, et al. The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol. 1992;42(6):587–91.PubMedCrossRef Sindrup SH, Arendt-Nielsen L, Brøsen K, Bjerring P, Angelo HR, Eriksen B, et al. The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol. 1992;42(6):587–91.PubMedCrossRef
70.
go back to reference Chen ZR, Irvine RJ, Bochner F, Somogyi AA. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci. 1990;46(15):1067–74.PubMedCrossRef Chen ZR, Irvine RJ, Bochner F, Somogyi AA. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci. 1990;46(15):1067–74.PubMedCrossRef
71.
go back to reference Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology. 2001;94(1):110–9.PubMedCrossRef Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology. 2001;94(1):110–9.PubMedCrossRef
72.
go back to reference Miksys S, Wadji FB, Tolledo EC, Remington G, Nobrega JN, Tyndale RF. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2017;78:140–8.PubMedCrossRef Miksys S, Wadji FB, Tolledo EC, Remington G, Nobrega JN, Tyndale RF. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2017;78:140–8.PubMedCrossRef
73.
go back to reference Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 2003;43:149–73.PubMedCrossRef Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 2003;43:149–73.PubMedCrossRef
74.
go back to reference Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25(11):1679–91.PubMedCrossRef Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25(11):1679–91.PubMedCrossRef
75.
go back to reference Toussaint C, Albin N, Massaad L, Grunenwald D, Parise O, Morizet J, et al. Main drug- and carcinogen-metabolizing enzyme systems in human non-small cell lung cancer and peritumoral tissues. Cancer Res. 1993;53(19):4608–12.PubMed Toussaint C, Albin N, Massaad L, Grunenwald D, Parise O, Morizet J, et al. Main drug- and carcinogen-metabolizing enzyme systems in human non-small cell lung cancer and peritumoral tissues. Cancer Res. 1993;53(19):4608–12.PubMed
76.
go back to reference Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, et al. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev. 2018;37:409–23.PubMedCrossRef Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, et al. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev. 2018;37:409–23.PubMedCrossRef
77.
go back to reference Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev. 2019;51(2):196–223.PubMedCrossRef Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev. 2019;51(2):196–223.PubMedCrossRef
78.
go back to reference Fleming I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vasc Pharmacol. 2016;86:31–40.CrossRef Fleming I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vasc Pharmacol. 2016;86:31–40.CrossRef
79.
go back to reference Fleming I. Vascular cytochrome p450 enzymes: physiology and pathophysiology. Trends Cardiovasc Med. 2008;18(1):20–5.PubMedCrossRef Fleming I. Vascular cytochrome p450 enzymes: physiology and pathophysiology. Trends Cardiovasc Med. 2008;18(1):20–5.PubMedCrossRef
80.
go back to reference Fleming I. The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Rev. 2011;30:541–55.PubMedCrossRef Fleming I. The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Rev. 2011;30:541–55.PubMedCrossRef
81.
go back to reference Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Ren Physiol. 2005;289(3):F496-503.CrossRef Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Ren Physiol. 2005;289(3):F496-503.CrossRef
82.
go back to reference Capdevila JH, Wang W, Falck JR. Arachidonic acid monooxygenase: genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat. 2015;120:40–9.PubMedPubMedCentralCrossRef Capdevila JH, Wang W, Falck JR. Arachidonic acid monooxygenase: genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat. 2015;120:40–9.PubMedPubMedCentralCrossRef
83.
go back to reference Capdevila J, Wang W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr Opin Nephrol Hypertens. 2013;22(2):163–9.PubMedPubMedCentralCrossRef Capdevila J, Wang W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr Opin Nephrol Hypertens. 2013;22(2):163–9.PubMedPubMedCentralCrossRef
85.
go back to reference Cheranov SY, Karpurapu M, Wang D, Zhang B, Venema RC, Rao GN. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood. 2008;111(12):5581–91.PubMedPubMedCentralCrossRef Cheranov SY, Karpurapu M, Wang D, Zhang B, Venema RC, Rao GN. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood. 2008;111(12):5581–91.PubMedPubMedCentralCrossRef
86.
go back to reference Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). J Biol Chem. 2011;286(20):17543–59.PubMedPubMedCentralCrossRef Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). J Biol Chem. 2011;286(20):17543–59.PubMedPubMedCentralCrossRef
87.
go back to reference Jiang JG, Chen CL, Card JW, Yang S, Chen JX, Fu XN, et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005;65(11):4707–15.PubMedCrossRef Jiang JG, Chen CL, Card JW, Yang S, Chen JX, Fu XN, et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005;65(11):4707–15.PubMedCrossRef
88.
go back to reference Webler AC, Michaelis UR, Popp R, Barbosa-Sicard E, Murugan A, Falck JR, et al. Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. Am J Physiol Cell Physiol. 2008;295(5):C1292–301.PubMedPubMedCentralCrossRef Webler AC, Michaelis UR, Popp R, Barbosa-Sicard E, Murugan A, Falck JR, et al. Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. Am J Physiol Cell Physiol. 2008;295(5):C1292–301.PubMedPubMedCentralCrossRef
89.
go back to reference Guo Z, Sevrioukova IF, Denisov IG, Zhang X, Chiu TL, Thomas DG, et al. Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chem Biol. 2017;24(10):1259-75.e6.PubMedPubMedCentralCrossRef Guo Z, Sevrioukova IF, Denisov IG, Zhang X, Chiu TL, Thomas DG, et al. Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chem Biol. 2017;24(10):1259-75.e6.PubMedPubMedCentralCrossRef
90.
go back to reference McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI. Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol. 2001;62(2):207–12.PubMedCrossRef McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI. Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol. 2001;62(2):207–12.PubMedCrossRef
91.
go back to reference Lin H, Hu B, He X, Mao J, Wang Y, Wang J, et al. Overcoming taxol-resistance in A549 cells: a comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol. 2020;171:113733.PubMedCrossRef Lin H, Hu B, He X, Mao J, Wang Y, Wang J, et al. Overcoming taxol-resistance in A549 cells: a comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol. 2020;171:113733.PubMedCrossRef
92.
go back to reference Martinez VG, O’Connor R, Liang Y, Clynes M. CYP1B1 expression is induced by docetaxel: effect on cell viability and drug resistance. Br J Cancer. 2008;98(3):564–70.PubMedPubMedCentralCrossRef Martinez VG, O’Connor R, Liang Y, Clynes M. CYP1B1 expression is induced by docetaxel: effect on cell viability and drug resistance. Br J Cancer. 2008;98(3):564–70.PubMedPubMedCentralCrossRef
93.
go back to reference Dutour R, Roy J, Cortés-Benítez F, Maltais R, Poirier D. Targeting cytochrome P450 (CYP) 1B1 enzyme with four series of A-ring substituted estrane derivatives: design, synthesis, inhibitory activity, and selectivity. J Med Chem. 2018;61(20):9229–45.PubMedCrossRef Dutour R, Roy J, Cortés-Benítez F, Maltais R, Poirier D. Targeting cytochrome P450 (CYP) 1B1 enzyme with four series of A-ring substituted estrane derivatives: design, synthesis, inhibitory activity, and selectivity. J Med Chem. 2018;61(20):9229–45.PubMedCrossRef
94.
go back to reference Swanson HI, Njar VC, Yu Z, Castro DJ, Gonzalez FJ, Williams DE, et al. Targeting drug-metabolizing enzymes for effective chemoprevention and chemotherapy. Drug Metab Dispos. 2010;38(4):539–44.PubMedPubMedCentralCrossRef Swanson HI, Njar VC, Yu Z, Castro DJ, Gonzalez FJ, Williams DE, et al. Targeting drug-metabolizing enzymes for effective chemoprevention and chemotherapy. Drug Metab Dispos. 2010;38(4):539–44.PubMedPubMedCentralCrossRef
95.
go back to reference Raccor BS, Kaspera R. Extra-hepatic isozymes from the CYP1 and CYP2 families as potential chemotherapeutic targets. Curr Top Med Chem. 2013;13(12):1441–53.PubMedCrossRef Raccor BS, Kaspera R. Extra-hepatic isozymes from the CYP1 and CYP2 families as potential chemotherapeutic targets. Curr Top Med Chem. 2013;13(12):1441–53.PubMedCrossRef
96.
go back to reference Francis S, Delgoda R. A patent review on the development of human cytochrome P450 inhibitors. Expert Opin Ther Pat. 2014;24(6):699–717.PubMedCrossRef Francis S, Delgoda R. A patent review on the development of human cytochrome P450 inhibitors. Expert Opin Ther Pat. 2014;24(6):699–717.PubMedCrossRef
98.
go back to reference Travica S, Pors K, Loadman PM, Shnyder SD, Johansson I, Alandas MN, et al. Colon cancer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins. Clin Cancer Res. 2013;19(11):2952–61.PubMedCrossRef Travica S, Pors K, Loadman PM, Shnyder SD, Johansson I, Alandas MN, et al. Colon cancer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins. Clin Cancer Res. 2013;19(11):2952–61.PubMedCrossRef
99.
go back to reference Peter Guengerich F, Chun YJ, Kim D, Gillam EM, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res. 2003;523:173–82.PubMedCrossRef Peter Guengerich F, Chun YJ, Kim D, Gillam EM, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res. 2003;523:173–82.PubMedCrossRef
100.
go back to reference Karlgren M, Ingelman-Sundberg M. Tumour-specific expression of CYP2W1: its potential as a drug target in cancer therapy. Expert Opin Ther Targets. 2007;11(1):61–7.PubMedCrossRef Karlgren M, Ingelman-Sundberg M. Tumour-specific expression of CYP2W1: its potential as a drug target in cancer therapy. Expert Opin Ther Targets. 2007;11(1):61–7.PubMedCrossRef
101.
go back to reference Michaelis UR, Fisslthaler B, Barbosa-Sicard E, Falck JR, Fleming I, Busse R. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J Cell Sci. 2005;118:5489–98.PubMedCrossRef Michaelis UR, Fisslthaler B, Barbosa-Sicard E, Falck JR, Fleming I, Busse R. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J Cell Sci. 2005;118:5489–98.PubMedCrossRef
102.
go back to reference Karkhanis A, Hong Y, Chan ECY. Inhibition and inactivation of human CYP2J2: implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol. 2017;135:12–21.PubMedCrossRef Karkhanis A, Hong Y, Chan ECY. Inhibition and inactivation of human CYP2J2: implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol. 2017;135:12–21.PubMedCrossRef
103.
104.
go back to reference Dhaini HR, Thomas DG, Giordano TJ, Johnson TD, Biermann JS, Leu K, et al. Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J Clin Oncol. 2003;21(13):2481–5.PubMedCrossRef Dhaini HR, Thomas DG, Giordano TJ, Johnson TD, Biermann JS, Leu K, et al. Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J Clin Oncol. 2003;21(13):2481–5.PubMedCrossRef
105.
go back to reference Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.PubMedCrossRef Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.PubMedCrossRef
106.
go back to reference Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.PubMedCrossRef Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.PubMedCrossRef
107.
go back to reference Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360(9340):1155–62.PubMedCrossRef Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360(9340):1155–62.PubMedCrossRef
108.
go back to reference Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116(3):496–526.PubMedCrossRef Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116(3):496–526.PubMedCrossRef
109.
go back to reference Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25(4):193–200.PubMedCrossRef Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25(4):193–200.PubMedCrossRef
110.
go back to reference Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenom J. 2005;5(1):6–13.CrossRef Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenom J. 2005;5(1):6–13.CrossRef
111.
go back to reference Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev. 2010;9(4):457–74.PubMedCrossRef Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev. 2010;9(4):457–74.PubMedCrossRef
112.
go back to reference Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8.PubMedCrossRef Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8.PubMedCrossRef
113.
go back to reference Zineh I, Pacanowski M, Woodcock J. Pharmacogenetics and coumarin dosing–recalibrating expectations. N Engl J Med. 2013;369(24):2273–5.PubMedCrossRef Zineh I, Pacanowski M, Woodcock J. Pharmacogenetics and coumarin dosing–recalibrating expectations. N Engl J Med. 2013;369(24):2273–5.PubMedCrossRef
114.
go back to reference Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303.PubMedCrossRef Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303.PubMedCrossRef
115.
go back to reference Türk D, Hanke N, Wolf S, Frechen S, Eissing T, Wendl T, et al. Physiologically based pharmacokinetic models for prediction of complex CYP2C8 and OATP1B1 (SLCO1B1) drug–drug–gene interactions: a modeling network of gemfibrozil, repaglinide, pioglitazone, rifampicin, clarithromycin and itraconazole. Clin Pharmacokinet. 2019;58(12):1595–607.PubMedPubMedCentralCrossRef Türk D, Hanke N, Wolf S, Frechen S, Eissing T, Wendl T, et al. Physiologically based pharmacokinetic models for prediction of complex CYP2C8 and OATP1B1 (SLCO1B1) drug–drug–gene interactions: a modeling network of gemfibrozil, repaglinide, pioglitazone, rifampicin, clarithromycin and itraconazole. Clin Pharmacokinet. 2019;58(12):1595–607.PubMedPubMedCentralCrossRef
116.
go back to reference Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17(3):165–84.PubMedPubMedCentralCrossRef Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17(3):165–84.PubMedPubMedCentralCrossRef
117.
go back to reference Mann A, Miksys SL, Gaedigk A, Kish SJ, Mash DC, Tyndale RF. The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson’s disease patients. Neurobiol Aging. 2012;33(9):2160–71.PubMedCrossRef Mann A, Miksys SL, Gaedigk A, Kish SJ, Mash DC, Tyndale RF. The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson’s disease patients. Neurobiol Aging. 2012;33(9):2160–71.PubMedCrossRef
118.
go back to reference Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.PubMedCrossRef Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.PubMedCrossRef
119.
go back to reference Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011;32(12):708–14.PubMedPubMedCentralCrossRef Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011;32(12):708–14.PubMedPubMedCentralCrossRef
120.
go back to reference Guo Y, Hu B, Xie Y, Billiar TR, Sperry JL, Huang M, et al. Regulation of drug-metabolizing enzymes by local and systemic liver injuries. Expert Opin Drug Metab Toxicol. 2016;12(3):245–51.PubMedPubMedCentralCrossRef Guo Y, Hu B, Xie Y, Billiar TR, Sperry JL, Huang M, et al. Regulation of drug-metabolizing enzymes by local and systemic liver injuries. Expert Opin Drug Metab Toxicol. 2016;12(3):245–51.PubMedPubMedCentralCrossRef
121.
go back to reference Raunio H, Juvonen R, Pasanen M, Pelkonen O, Pääkkö P, Soini Y. Cytochrome P4502A6 (CYP2A6) expression in human hepatocellular carcinoma. Hepatology. 1998;27(2):427–32.PubMedCrossRef Raunio H, Juvonen R, Pasanen M, Pelkonen O, Pääkkö P, Soini Y. Cytochrome P4502A6 (CYP2A6) expression in human hepatocellular carcinoma. Hepatology. 1998;27(2):427–32.PubMedCrossRef
122.
go back to reference Matsuda Y, Yamakawa K, Saoo K, Hosokawa K, Yokohira M, Kuno T, et al. CYP2A6 overexpression in human lung cancers correlates with a high malignant status. Oncol Rep. 2007;18(1):53–7.PubMed Matsuda Y, Yamakawa K, Saoo K, Hosokawa K, Yokohira M, Kuno T, et al. CYP2A6 overexpression in human lung cancers correlates with a high malignant status. Oncol Rep. 2007;18(1):53–7.PubMed
123.
go back to reference Renton KW. Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol. 2005;1(4):629–40.PubMedCrossRef Renton KW. Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol. 2005;1(4):629–40.PubMedCrossRef
125.
go back to reference Lee JI, Zhang L, Men AY, Kenna LA, Huang SM. CYP-mediated therapeutic protein–drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet. 2010;49(5):295–310.PubMedCrossRef Lee JI, Zhang L, Men AY, Kenna LA, Huang SM. CYP-mediated therapeutic protein–drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet. 2010;49(5):295–310.PubMedCrossRef
126.
127.
go back to reference Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8.PubMedCrossRef Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8.PubMedCrossRef
128.
go back to reference Morgan ET, Goralski KB, Piquette-Miller M, Renton KW, Robertson GR, Chaluvadi MR, et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos. 2008;36(2):205–16.PubMedCrossRef Morgan ET, Goralski KB, Piquette-Miller M, Renton KW, Robertson GR, Chaluvadi MR, et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos. 2008;36(2):205–16.PubMedCrossRef
129.
go back to reference Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–93.PubMedCrossRef Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–93.PubMedCrossRef
131.
go back to reference Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 2006;46:123–49.PubMedCrossRef Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 2006;46:123–49.PubMedCrossRef
132.
go back to reference El-Kadi AO, Bleau AM, Dumont I, Maurice H, du Souich P. Role of reactive oxygen intermediates in the decrease of hepatic cytochrome P450 activity by serum of humans and rabbits with an acute inflammatory reaction. Drug Metab Dispos. 2000;28(9):1112–20.PubMed El-Kadi AO, Bleau AM, Dumont I, Maurice H, du Souich P. Role of reactive oxygen intermediates in the decrease of hepatic cytochrome P450 activity by serum of humans and rabbits with an acute inflammatory reaction. Drug Metab Dispos. 2000;28(9):1112–20.PubMed
133.
go back to reference Neyrinck AM, Cani PD, Dewulf EM, De Backer F, Bindels LB, Delzenne NM. Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochem Biophys Res Commun. 2009;385(3):351–6.PubMedCrossRef Neyrinck AM, Cani PD, Dewulf EM, De Backer F, Bindels LB, Delzenne NM. Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochem Biophys Res Commun. 2009;385(3):351–6.PubMedCrossRef
134.
go back to reference Tindberg N, Bengtsson I, Hu Y. A novel lipopolysaccharide-modulated Jun binding repressor in intron 2 of CYP2E1. J Neurochem. 2004;89(6):1336–46.PubMedCrossRef Tindberg N, Bengtsson I, Hu Y. A novel lipopolysaccharide-modulated Jun binding repressor in intron 2 of CYP2E1. J Neurochem. 2004;89(6):1336–46.PubMedCrossRef
136.
go back to reference Go RE, Hwang KA, Choi KC. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015;147:24–30.PubMedCrossRef Go RE, Hwang KA, Choi KC. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015;147:24–30.PubMedCrossRef
137.
go back to reference Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, et al. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 1996;56(13):2979–84.PubMed Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, et al. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 1996;56(13):2979–84.PubMed
138.
go back to reference Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6(12):947–60.PubMedCrossRef Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6(12):947–60.PubMedCrossRef
139.
go back to reference Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ, Yang S, et al. Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 2007;67(14):6665–74.PubMedCrossRef Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ, Yang S, et al. Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 2007;67(14):6665–74.PubMedCrossRef
140.
go back to reference Shu Y, He D, Li W, Wang M, Zhao S, Liu L, et al. Hepatoprotective effect of Citrus aurantium L. against APAP-induced liver injury by regulating liver lipid metabolism and apoptosis. Int J Biol Sci. 2020;16(5):752–65.PubMedPubMedCentralCrossRef Shu Y, He D, Li W, Wang M, Zhao S, Liu L, et al. Hepatoprotective effect of Citrus aurantium L. against APAP-induced liver injury by regulating liver lipid metabolism and apoptosis. Int J Biol Sci. 2020;16(5):752–65.PubMedPubMedCentralCrossRef
141.
go back to reference Horley NJ, Beresford KJ, Chawla T, McCann GJ, Ruparelia KC, Gatchie L, et al. Discovery and characterization of novel CYP1B1 inhibitors based on heterocyclic chalcones: overcoming cisplatin resistance in CYP1B1-overexpressing lines. Eur J Med Chem. 2017;129:159–74.PubMedCrossRef Horley NJ, Beresford KJ, Chawla T, McCann GJ, Ruparelia KC, Gatchie L, et al. Discovery and characterization of novel CYP1B1 inhibitors based on heterocyclic chalcones: overcoming cisplatin resistance in CYP1B1-overexpressing lines. Eur J Med Chem. 2017;129:159–74.PubMedCrossRef
142.
go back to reference Cui J, Meng Q, Zhang X, Cui Q, Zhou W, Li S. Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J Med Chem. 2015;58(8):3534–47.PubMedCrossRef Cui J, Meng Q, Zhang X, Cui Q, Zhou W, Li S. Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J Med Chem. 2015;58(8):3534–47.PubMedCrossRef
143.
go back to reference Wang YM, Lin W, Chai SC, Wu J, Ong SS, Schuetz EG, et al. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1. Toxicol Appl Pharmacol. 2013;272(1):96–107.PubMedPubMedCentralCrossRef Wang YM, Lin W, Chai SC, Wu J, Ong SS, Schuetz EG, et al. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1. Toxicol Appl Pharmacol. 2013;272(1):96–107.PubMedPubMedCentralCrossRef
144.
go back to reference Hisaka A, Nakamura M, Tsukihashi A, Koh S, Suzuki H. Assessment of intestinal availability (FG) of substrate drugs of cytochrome p450s by analyzing changes in pharmacokinetic properties caused by drug–drug interactions. Drug Metab Dispos. 2014;42(10):1640–5.PubMedCrossRef Hisaka A, Nakamura M, Tsukihashi A, Koh S, Suzuki H. Assessment of intestinal availability (FG) of substrate drugs of cytochrome p450s by analyzing changes in pharmacokinetic properties caused by drug–drug interactions. Drug Metab Dispos. 2014;42(10):1640–5.PubMedCrossRef
145.
go back to reference Ioannides C. Effect of diet and nutrition on the expression of cytochromes P450. Xenobiotica. 1999;29(2):109–54.PubMedCrossRef Ioannides C. Effect of diet and nutrition on the expression of cytochromes P450. Xenobiotica. 1999;29(2):109–54.PubMedCrossRef
146.
go back to reference Yue J, Khokhar J, Miksys S, Tyndale RF. Differential induction of ethanol-metabolizing CYP2E1 and nicotine-metabolizing CYP2B1/2 in rat liver by chronic nicotine treatment and voluntary ethanol intake. Eur J Pharmacol. 2009;609:88–95.PubMedPubMedCentralCrossRef Yue J, Khokhar J, Miksys S, Tyndale RF. Differential induction of ethanol-metabolizing CYP2E1 and nicotine-metabolizing CYP2B1/2 in rat liver by chronic nicotine treatment and voluntary ethanol intake. Eur J Pharmacol. 2009;609:88–95.PubMedPubMedCentralCrossRef
147.
go back to reference Zhong Y, Dong G, Luo H, Cao J, Wang C, Wu J, et al. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem. Toxicology. 2012;302:275–84.PubMedCrossRef Zhong Y, Dong G, Luo H, Cao J, Wang C, Wu J, et al. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem. Toxicology. 2012;302:275–84.PubMedCrossRef
148.
go back to reference Miksys S, Lerman C, Shields PG, Mash DC, Tyndale RF. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology. 2003;45(1):122–32.PubMedCrossRef Miksys S, Lerman C, Shields PG, Mash DC, Tyndale RF. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology. 2003;45(1):122–32.PubMedCrossRef
149.
go back to reference Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.PubMedCrossRef Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.PubMedCrossRef
150.
go back to reference Verbeurgt P, Mamiya T, Oesterheld J. How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics. 2014;15(5):655–65.PubMedCrossRef Verbeurgt P, Mamiya T, Oesterheld J. How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics. 2014;15(5):655–65.PubMedCrossRef
151.
go back to reference Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, et al. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet. 2005;44(3):279–304.PubMedCrossRef Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, et al. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet. 2005;44(3):279–304.PubMedCrossRef
152.
go back to reference Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metabol Dispos. 2006;34(1):191–7.CrossRef Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metabol Dispos. 2006;34(1):191–7.CrossRef
153.
go back to reference Karonen T, Filppula A, Laitila J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast. Clin Pharmacol Ther. 2010;88(2):223–30.PubMedCrossRef Karonen T, Filppula A, Laitila J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast. Clin Pharmacol Ther. 2010;88(2):223–30.PubMedCrossRef
154.
go back to reference Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241.PubMedCrossRef Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241.PubMedCrossRef
155.
go back to reference Riess H, Prandoni P, Harder S, Kreher S, Bauersachs R. Direct oral anticoagulants for the treatment of venous thromboembolism in cancer patients: potential for drug–drug interactions. Crit Rev Oncol Hematol. 2018;132:169–79.PubMedCrossRef Riess H, Prandoni P, Harder S, Kreher S, Bauersachs R. Direct oral anticoagulants for the treatment of venous thromboembolism in cancer patients: potential for drug–drug interactions. Crit Rev Oncol Hematol. 2018;132:169–79.PubMedCrossRef
156.
go back to reference Larson KB, Wang K, Delille C, Otofokun I, Acosta EP. Pharmacokinetic enhancers in HIV therapeutics. Clin Pharmacokinet. 2014;53(10):865–72.PubMedCrossRef Larson KB, Wang K, Delille C, Otofokun I, Acosta EP. Pharmacokinetic enhancers in HIV therapeutics. Clin Pharmacokinet. 2014;53(10):865–72.PubMedCrossRef
157.
go back to reference Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, et al. St John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA. 2000;97(13):7500–2.PubMedCrossRefPubMedCentral Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, et al. St John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA. 2000;97(13):7500–2.PubMedCrossRefPubMedCentral
158.
go back to reference Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):6366–9.PubMedPubMedCentralCrossRef Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):6366–9.PubMedPubMedCentralCrossRef
159.
go back to reference Jana S, Paliwal J. Molecular mechanisms of cytochrome p450 induction: potential for drug–drug interactions. Curr Protein Pept Sci. 2007;8(6):619–28.PubMedCrossRef Jana S, Paliwal J. Molecular mechanisms of cytochrome p450 induction: potential for drug–drug interactions. Curr Protein Pept Sci. 2007;8(6):619–28.PubMedCrossRef
160.
go back to reference Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003;55(4):649–73.PubMedCrossRef Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003;55(4):649–73.PubMedCrossRef
161.
go back to reference Mutoh S, Sobhany M, Moore R, Perera L, Pedersen L, Sueyoshi T, et al. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci Signal. 2013;6(274):ra31.PubMedPubMedCentralCrossRef Mutoh S, Sobhany M, Moore R, Perera L, Pedersen L, Sueyoshi T, et al. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci Signal. 2013;6(274):ra31.PubMedPubMedCentralCrossRef
162.
go back to reference Kocarek TA, Zangar RC, Novak RF. Post-transcriptional regulation of rat CYP2E1 expression: role of CYP2E1 mRNA untranslated regions in control of translational efficiency and message stability. Arch Biochem Biophys. 2000;376(1):180–90.PubMedCrossRef Kocarek TA, Zangar RC, Novak RF. Post-transcriptional regulation of rat CYP2E1 expression: role of CYP2E1 mRNA untranslated regions in control of translational efficiency and message stability. Arch Biochem Biophys. 2000;376(1):180–90.PubMedCrossRef
163.
164.
go back to reference Malki MA, Pearson ER. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenom J. 2020;20(3):355–66.CrossRef Malki MA, Pearson ER. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenom J. 2020;20(3):355–66.CrossRef
165.
go back to reference Storelli F, Samer C, Reny JL, Desmeules J, Daali Y. Complex drug–drug–gene-disease interactions involving cytochromes P450: systematic review of published case reports and clinical perspectives. Clin Pharmacokinet. 2018;57(10):1267–93.PubMedCrossRef Storelli F, Samer C, Reny JL, Desmeules J, Daali Y. Complex drug–drug–gene-disease interactions involving cytochromes P450: systematic review of published case reports and clinical perspectives. Clin Pharmacokinet. 2018;57(10):1267–93.PubMedCrossRef
166.
go back to reference Laine K, Tybring G, Härtter S, Andersson K, Svensson JO, Widén J, et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther. 2001;70(4):327–35.PubMedCrossRef Laine K, Tybring G, Härtter S, Andersson K, Svensson JO, Widén J, et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther. 2001;70(4):327–35.PubMedCrossRef
167.
go back to reference Bahar MA, Setiawan D, Hak E, Wilffert B. Pharmacogenetics of drug–drug interaction and drug–drug–gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics. 2017;18(7):701–39.PubMedCrossRef Bahar MA, Setiawan D, Hak E, Wilffert B. Pharmacogenetics of drug–drug interaction and drug–drug–gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics. 2017;18(7):701–39.PubMedCrossRef
168.
go back to reference Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.PubMedCrossRef Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.PubMedCrossRef
Metadata
Title
Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes
Authors
Yurong Song
Chenxi Li
Guangzhi Liu
Rui Liu
Youwen Chen
Wen Li
Zhiwen Cao
Baosheng Zhao
Cheng Lu
Yuanyan Liu
Publication date
01-05-2021
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 5/2021
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-021-01001-5

Other articles of this Issue 5/2021

Clinical Pharmacokinetics 5/2021 Go to the issue