Skip to main content
Top
Published in: Clinical Pharmacokinetics 4/2019

01-04-2019 | Review Article

Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer

Authors: Takeshi Hirota, Shota Muraki, Ichiro Ieiri

Published in: Clinical Pharmacokinetics | Issue 4/2019

Login to get access

Abstract

The identification of anaplastic lymphoma kinase rearrangements in 2–5% of patients with non-small-cell lung cancer led to rapid advances in the clinical development of oral tyrosine kinase inhibitors. Anaplastic lymphoma kinase inhibitors are an effective treatment in preclinical models and patients with anaplastic lymphoma kinase-translocated cancers. Four anaplastic lymphoma kinase inhibitors (crizotinib, ceritinib, alectinib, and brigatinib) have recently been approved. Post-marketing studies provided additional pharmacokinetic information on their pharmacokinetic parameters. The pharmacokinetic properties of approved anaplastic lymphoma kinase inhibitors have been reviewed herein. Findings from additional studies on the effects of drug-metabolizing enzymes, drug transporters, and drug–drug interactions have been incorporated. Crizotinib, ceritinib, and alectinib reach their maximum plasma concentrations after approximately 6 h and brigatinib after 1–4 h. These drugs are primarily metabolized by cytochrome P450 3A with other cytochrome P450 enzymes. They are mainly excreted in the feces, with only a minor fraction being eliminated in urine. Crizotinib, ceritinib, and brigatinib are substrates for the adenosine triphosphate binding-cassette transporter B1, whereas alectinib is not. The different substrate specificities of the transporters play a key role in superior blood–brain barrier penetration by alectinib than by crizotinib and ceritinib. Although the absorption, distribution, and excretion of anaplastic lymphoma kinase inhibitors are regulated by drug transporters, their transporter-mediated pharmacokinetics have not yet been elucidated in detail in patients with non-small-cell lung cancer. Further research to analyze the contribution of drug transporters to the pharmacokinetics of anaplastic lymphoma kinase inhibitors in patients with non-small-cell lung cancer will be helpful for understanding the mechanisms of the inter-individual differences in the pharmacokinetics of anaplastic lymphoma kinase inhibitors.
Literature
1.
go back to reference Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer: is it becoming a reality? Nat Rev Clin Oncol. 2010;7:401–14.CrossRefPubMed Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer: is it becoming a reality? Nat Rev Clin Oncol. 2010;7:401–14.CrossRefPubMed
2.
go back to reference Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.CrossRefPubMed Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.CrossRefPubMed
3.
go back to reference Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26:3543–51.CrossRefPubMed Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26:3543–51.CrossRefPubMed
4.
go back to reference Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.CrossRefPubMed Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.CrossRefPubMed
5.
go back to reference Orscheschek K, Merz H, Hell J, Binder T, Bartels H, Feller AC. Large-cell anaplastic lymphoma-specific translocation (t [2, 5] [p23;q35]) in Hodgkin’s disease: indication of a common pathogenesis? Lancet. 1995;345:87–90.CrossRefPubMed Orscheschek K, Merz H, Hell J, Binder T, Bartels H, Feller AC. Large-cell anaplastic lymphoma-specific translocation (t [2, 5] [p23;q35]) in Hodgkin’s disease: indication of a common pathogenesis? Lancet. 1995;345:87–90.CrossRefPubMed
6.
go back to reference Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.CrossRefPubMed Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.CrossRefPubMed
7.
go back to reference Roskoski R. Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res. 2013;68:68–94.CrossRefPubMed Roskoski R. Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res. 2013;68:68–94.CrossRefPubMed
8.
go back to reference Bullrich F, Morris SW, Hummel M, Pileri S, Stein H, Croce CM. Nucleophosmin (NPM) gene rearrangements in Ki-1-positive lymphomas. Cancer Res. 1994;54:2873–7.PubMed Bullrich F, Morris SW, Hummel M, Pileri S, Stein H, Croce CM. Nucleophosmin (NPM) gene rearrangements in Ki-1-positive lymphomas. Cancer Res. 1994;54:2873–7.PubMed
9.
go back to reference Shackelford RE, Vora M, Mayhall K, Cotelingam J. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer. 2014;5:1–14.PubMedPubMedCentral Shackelford RE, Vora M, Mayhall K, Cotelingam J. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer. 2014;5:1–14.PubMedPubMedCentral
10.
go back to reference Mano H. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 2008;99:2349–55.CrossRefPubMed Mano H. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 2008;99:2349–55.CrossRefPubMed
11.
go back to reference Horn L, Pao W. EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol. 2009;27:4232–5.CrossRefPubMed Horn L, Pao W. EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol. 2009;27:4232–5.CrossRefPubMed
12.
go back to reference Zhao F, Xu M, Lei H, Zhou Z, Wang L, Li P, et al. Clinicopathological characteristics of patients with non-small-cell lung cancer who harbor EML4-ALK fusion gene: a meta-analysis. PLoS ONE. 2015;10:e0117333.CrossRefPubMedPubMedCentral Zhao F, Xu M, Lei H, Zhou Z, Wang L, Li P, et al. Clinicopathological characteristics of patients with non-small-cell lung cancer who harbor EML4-ALK fusion gene: a meta-analysis. PLoS ONE. 2015;10:e0117333.CrossRefPubMedPubMedCentral
13.
go back to reference Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27:4247–53.CrossRefPubMedPubMedCentral Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27:4247–53.CrossRefPubMedPubMedCentral
15.
go back to reference Blackhall FH, Peters S, Bubendorf L, Dafni U, Kerr KM, Hager H, et al. Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. J Clin Oncol. 2014;32:2780–7.CrossRefPubMed Blackhall FH, Peters S, Bubendorf L, Dafni U, Kerr KM, Hager H, et al. Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. J Clin Oncol. 2014;32:2780–7.CrossRefPubMed
16.
go back to reference Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363:1734–9.CrossRefPubMed Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363:1734–9.CrossRefPubMed
17.
go back to reference Kwak EL, Bang Y-JJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.CrossRefPubMedPubMedCentral Kwak EL, Bang Y-JJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.CrossRefPubMedPubMedCentral
18.
go back to reference Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18:1590–9.CrossRefPubMedPubMedCentral Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18:1590–9.CrossRefPubMedPubMedCentral
19.
go back to reference Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung P-PP, Pairish M, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54:6342–63.CrossRefPubMed Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung P-PP, Pairish M, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54:6342–63.CrossRefPubMed
20.
go back to reference Camidge DR, Bang Y-JJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–9.CrossRefPubMedPubMedCentral Camidge DR, Bang Y-JJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–9.CrossRefPubMedPubMedCentral
21.
go back to reference Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12.CrossRefPubMedPubMedCentral Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12.CrossRefPubMedPubMedCentral
22.
go back to reference Shaw AT, Kim D-WW, Nakagawa K, Seto T, Crinó L, Ahn M-JJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.CrossRefPubMed Shaw AT, Kim D-WW, Nakagawa K, Seto T, Crinó L, Ahn M-JJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.CrossRefPubMed
24.
go back to reference Qian H, Gao F, Wang H, Ma F. The efficacy and safety of crizotinib in the treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer: a meta-analysis of clinical trials. BMC Cancer. 2014;14:683.CrossRefPubMedPubMedCentral Qian H, Gao F, Wang H, Ma F. The efficacy and safety of crizotinib in the treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer: a meta-analysis of clinical trials. BMC Cancer. 2014;14:683.CrossRefPubMedPubMedCentral
25.
go back to reference Malik SM, Maher VE, Bijwaard KE, Becker RL, Zhang L, Tang SW, et al. U.S. Food and Drug Administration approval: crizotinib for treatment of advanced or metastatic non-small cell lung cancer that is anaplastic lymphoma kinase positive. Clin Cancer Res. 2014;20:2029–34.CrossRefPubMed Malik SM, Maher VE, Bijwaard KE, Becker RL, Zhang L, Tang SW, et al. U.S. Food and Drug Administration approval: crizotinib for treatment of advanced or metastatic non-small cell lung cancer that is anaplastic lymphoma kinase positive. Clin Cancer Res. 2014;20:2029–34.CrossRefPubMed
26.
go back to reference Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68:4971–6.CrossRefPubMed Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68:4971–6.CrossRefPubMed
27.
go back to reference Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 2010;70:10038–43.CrossRefPubMedPubMedCentral Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 2010;70:10038–43.CrossRefPubMedPubMedCentral
28.
go back to reference Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18:1472–82.CrossRefPubMedPubMedCentral Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18:1472–82.CrossRefPubMedPubMedCentral
29.
go back to reference Tan W, Wilner KD, Bang Y, Kwak EL, Maki RG, Camidge DR, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients [abstract]. J Clin Oncol. 2010;28:2596.CrossRef Tan W, Wilner KD, Bang Y, Kwak EL, Maki RG, Camidge DR, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients [abstract]. J Clin Oncol. 2010;28:2596.CrossRef
30.
go back to reference Johnson TR, Tan W, Goulet L, Smith EB, Yamazaki S, Walker GS, et al. Metabolism, excretion and pharmacokinetics of [14C]crizotinib following oral administration to healthy subjects. Xenobiotica. 2015;45:45–59.CrossRefPubMed Johnson TR, Tan W, Goulet L, Smith EB, Yamazaki S, Walker GS, et al. Metabolism, excretion and pharmacokinetics of [14C]crizotinib following oral administration to healthy subjects. Xenobiotica. 2015;45:45–59.CrossRefPubMed
31.
go back to reference Xu H, O’Gorman M, Boutros T, Brega N, Kantaridis C, Tan W, et al. Evaluation of crizotinib absolute bioavailability, the bioequivalence of three oral formulations, and the effect of food on crizotinib pharmacokinetics in healthy subjects. J Clin Pharmacol. 2015;55:104–13.CrossRefPubMed Xu H, O’Gorman M, Boutros T, Brega N, Kantaridis C, Tan W, et al. Evaluation of crizotinib absolute bioavailability, the bioequivalence of three oral formulations, and the effect of food on crizotinib pharmacokinetics in healthy subjects. J Clin Pharmacol. 2015;55:104–13.CrossRefPubMed
32.
go back to reference Tan W, Yamazaki S, Johnson TR, Wang R, O’Gorman MT, Kirkovsky L, et al. Effects of renal function on crizotinib pharmacokinetics: dose recommendations for patients with ALK-positive non-small cell lung cancer. Clin Drug Investig. 2017;37:363–73.CrossRefPubMed Tan W, Yamazaki S, Johnson TR, Wang R, O’Gorman MT, Kirkovsky L, et al. Effects of renal function on crizotinib pharmacokinetics: dose recommendations for patients with ALK-positive non-small cell lung cancer. Clin Drug Investig. 2017;37:363–73.CrossRefPubMed
33.
go back to reference Shi J, Montay G, Chapel S, Hardy P, Barrett JS, Sack M, et al. Pharmacokinetics and safety of the ketolide telithromycin in patients with renal impairment. J Clin Pharmacol. 2004;44:234–44.CrossRefPubMed Shi J, Montay G, Chapel S, Hardy P, Barrett JS, Sack M, et al. Pharmacokinetics and safety of the ketolide telithromycin in patients with renal impairment. J Clin Pharmacol. 2004;44:234–44.CrossRefPubMed
35.
go back to reference Li C, Alvey C, Bello A, Wilner KD, Tan W. Pharmacokinetics (PK) of crizotinib (PF-02341066) in patients with advanced non- small cell lung cancer (NSCLC) and other solid tumors. ASCO Meet Abstr. 2011;29:e13065. Li C, Alvey C, Bello A, Wilner KD, Tan W. Pharmacokinetics (PK) of crizotinib (PF-02341066) in patients with advanced non- small cell lung cancer (NSCLC) and other solid tumors. ASCO Meet Abstr. 2011;29:e13065.
36.
go back to reference Tan W, Wilner KD, Bang Y, Kwak EL, Maki RG, Camidge DR, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients. ASCO Meet Abstr. 2010;28:2596. Tan W, Wilner KD, Bang Y, Kwak EL, Maki RG, Camidge DR, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients. ASCO Meet Abstr. 2010;28:2596.
37.
go back to reference El-Khoueiry AB, Sarantopoulos J, O’Bryant CL, Ciombor KK, Xu H, O’Gorman M, et al. Evaluation of hepatic impairment on pharmacokinetics and safety of crizotinib in patients with advanced cancer. Cancer Chemother Pharmacol. 2018;81:659–70.CrossRefPubMed El-Khoueiry AB, Sarantopoulos J, O’Bryant CL, Ciombor KK, Xu H, O’Gorman M, et al. Evaluation of hepatic impairment on pharmacokinetics and safety of crizotinib in patients with advanced cancer. Cancer Chemother Pharmacol. 2018;81:659–70.CrossRefPubMed
38.
go back to reference Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.CrossRefPubMed Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.CrossRefPubMed
39.
go back to reference Zhou WJ, Zhang X, Cheng C, Wang F, Wang XK, Liang YJ, et al. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br J Pharmacol. 2012;166:1669–83.CrossRefPubMedPubMedCentral Zhou WJ, Zhang X, Cheng C, Wang F, Wang XK, Liang YJ, et al. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br J Pharmacol. 2012;166:1669–83.CrossRefPubMedPubMedCentral
40.
go back to reference Tang SC, Nguyen LN, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014;134:1484–94.CrossRefPubMed Tang SC, Nguyen LN, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014;134:1484–94.CrossRefPubMed
41.
go back to reference Raza A, Kopp SR, Kotze AC. Synergism between ivermectin and the tyrosine kinase/P-glycoprotein inhibitor crizotinib against Haemonchus contortus larvae in vitro. Vet Parasitol. 2016;227:64–8.CrossRefPubMed Raza A, Kopp SR, Kotze AC. Synergism between ivermectin and the tyrosine kinase/P-glycoprotein inhibitor crizotinib against Haemonchus contortus larvae in vitro. Vet Parasitol. 2016;227:64–8.CrossRefPubMed
42.
go back to reference Eliesen GAMA, van den Broek P, van den Heuvel JJ, Bilos A, Pertijs J, van Drongelen J, et al. Editor’s highlight: placental disposition and effects of crizotinib: an ex vivo study in the isolated dual-side perfused human cotyledon. Toxicol Sci. 2017;157:500–9.CrossRefPubMed Eliesen GAMA, van den Broek P, van den Heuvel JJ, Bilos A, Pertijs J, van Drongelen J, et al. Editor’s highlight: placental disposition and effects of crizotinib: an ex vivo study in the isolated dual-side perfused human cotyledon. Toxicol Sci. 2017;157:500–9.CrossRefPubMed
43.
go back to reference Costa DB, Kobayashi S, Pandya SS, Yeo W-LL, Shen Z, Tan W, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29:e443–5.CrossRefPubMed Costa DB, Kobayashi S, Pandya SS, Yeo W-LL, Shen Z, Tan W, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29:e443–5.CrossRefPubMed
44.
go back to reference Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999;274:17159–63.CrossRefPubMed Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999;274:17159–63.CrossRefPubMed
45.
go back to reference König J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000;278:G156–64.CrossRefPubMed König J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000;278:G156–64.CrossRefPubMed
46.
go back to reference Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008;38:778–801.CrossRefPubMed Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008;38:778–801.CrossRefPubMed
47.
go back to reference Abe T, Suzuki T, Unno M, Tokui T, Ito S. Thyroid hormone transporters: recent advances. Trends Endocrinol Metab. 2002;13:215–20.CrossRefPubMed Abe T, Suzuki T, Unno M, Tokui T, Ito S. Thyroid hormone transporters: recent advances. Trends Endocrinol Metab. 2002;13:215–20.CrossRefPubMed
48.
go back to reference Sato T, Yamaguchi H, Kogawa T, Abe T, Mano N. Organic anion transporting polypeptides 1B1 and 1B3 play an important role in uremic toxin handling and drug-uremic toxin interactions in the liver. J Pharm Pharm Sci. 2014;17:475–84.CrossRefPubMed Sato T, Yamaguchi H, Kogawa T, Abe T, Mano N. Organic anion transporting polypeptides 1B1 and 1B3 play an important role in uremic toxin handling and drug-uremic toxin interactions in the liver. J Pharm Pharm Sci. 2014;17:475–84.CrossRefPubMed
49.
go back to reference Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013;19:1458–66.CrossRefPubMedPubMedCentral Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013;19:1458–66.CrossRefPubMedPubMedCentral
50.
go back to reference Sato T, Ito H, Hirata A, Abe T, Mano N, Yamaguchi H. Interactions of crizotinib and gefitinib with organic anion-transporting polypeptides (OATP)1B1, OATP1B3 and OATP2B1: gefitinib shows contradictory interaction with OATP1B3. Xenobiotica. 2018;48:73–8.CrossRefPubMed Sato T, Ito H, Hirata A, Abe T, Mano N, Yamaguchi H. Interactions of crizotinib and gefitinib with organic anion-transporting polypeptides (OATP)1B1, OATP1B3 and OATP2B1: gefitinib shows contradictory interaction with OATP1B3. Xenobiotica. 2018;48:73–8.CrossRefPubMed
51.
go back to reference Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–8.CrossRefPubMed Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–8.CrossRefPubMed
52.
go back to reference Kurata Y, Ieiri I, Kimura M, Morita T, Irie S, Urae A, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002;72:209–19.CrossRefPubMed Kurata Y, Ieiri I, Kimura M, Morita T, Irie S, Urae A, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002;72:209–19.CrossRefPubMed
53.
go back to reference Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics. 2003;4:397–410.CrossRefPubMed Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics. 2003;4:397–410.CrossRefPubMed
54.
go back to reference Dessilly G, Elens L, Panin N, Karmani L. Demoulin J-BB, Haufroid V. ABCB1 1199G>A polymorphism (rs2229109) affects the transport of imatinib, nilotinib and dasatinib. Pharmacogenomics. 2016;17:883–90.CrossRefPubMed Dessilly G, Elens L, Panin N, Karmani L. Demoulin J-BB, Haufroid V. ABCB1 1199G>A polymorphism (rs2229109) affects the transport of imatinib, nilotinib and dasatinib. Pharmacogenomics. 2016;17:883–90.CrossRefPubMed
55.
go back to reference Fujiwara Y, Hamada A, Mizugaki H, Aikawa H, Hata T, Horinouchi H, et al. Pharmacokinetic profiles of significant adverse events with crizotinib in Japanese patients with ABCB1 polymorphism. Cancer Sci. 2016;107:1117–23.CrossRefPubMedPubMedCentral Fujiwara Y, Hamada A, Mizugaki H, Aikawa H, Hata T, Horinouchi H, et al. Pharmacokinetic profiles of significant adverse events with crizotinib in Japanese patients with ABCB1 polymorphism. Cancer Sci. 2016;107:1117–23.CrossRefPubMedPubMedCentral
56.
go back to reference Xu H, O’Gorman M, Tan W, Brega N, Bello A. The effects of ketoconazole and rifampin on the single-dose pharmacokinetics of crizotinib in healthy subjects. Eur J Clin Pharmacol. 2015;71:1441–9.CrossRefPubMed Xu H, O’Gorman M, Tan W, Brega N, Bello A. The effects of ketoconazole and rifampin on the single-dose pharmacokinetics of crizotinib in healthy subjects. Eur J Clin Pharmacol. 2015;71:1441–9.CrossRefPubMed
57.
go back to reference Ou SI, Govindan R, Eaton KD, Otterson GA, Gutierrez ME, Mita AC, et al. Phase I results from a study of crizotinib in combination with erlotinib in patients with advanced nonsquamous non-small cell lung cancer. J Thorac Oncol. 2017;12:145–51.CrossRefPubMed Ou SI, Govindan R, Eaton KD, Otterson GA, Gutierrez ME, Mita AC, et al. Phase I results from a study of crizotinib in combination with erlotinib in patients with advanced nonsquamous non-small cell lung cancer. J Thorac Oncol. 2017;12:145–51.CrossRefPubMed
58.
go back to reference Kubomura Y, Ise Y, Wako T, Katayama S, Noro R, Kubota K. A drug interaction between crizotinib and warfarin in non-small-cell lung cancer: a case report. J Nippon Med Sch. 2017;84:291–3.CrossRefPubMed Kubomura Y, Ise Y, Wako T, Katayama S, Noro R, Kubota K. A drug interaction between crizotinib and warfarin in non-small-cell lung cancer: a case report. J Nippon Med Sch. 2017;84:291–3.CrossRefPubMed
59.
go back to reference Cropp JS, Bussey HI. A review of enzyme induction of warfarin metabolism with recommendations for patient management. Pharmacotherapy. 1997;17:917–28.PubMed Cropp JS, Bussey HI. A review of enzyme induction of warfarin metabolism with recommendations for patient management. Pharmacotherapy. 1997;17:917–28.PubMed
60.
go back to reference Ferrari M, Pengo V, Barolo M, Bezzo F, Padrini R. Assessing the relative potency of (S)- and (R)-warfarin with a new PK-PD model, in relation to VKORC1 genotypes. Eur J Clin Pharmacol. 2017;73:699–707.CrossRefPubMed Ferrari M, Pengo V, Barolo M, Bezzo F, Padrini R. Assessing the relative potency of (S)- and (R)-warfarin with a new PK-PD model, in relation to VKORC1 genotypes. Eur J Clin Pharmacol. 2017;73:699–707.CrossRefPubMed
61.
go back to reference Yamazaki S, Johnson TR, Smith BJ. Prediction of drug-drug interactions with crizotinib as the CYP3A substrate using a physiologically based pharmacokinetic model. Drug Metab Dispos. 2015;43:1417–29.CrossRefPubMed Yamazaki S, Johnson TR, Smith BJ. Prediction of drug-drug interactions with crizotinib as the CYP3A substrate using a physiologically based pharmacokinetic model. Drug Metab Dispos. 2015;43:1417–29.CrossRefPubMed
62.
go back to reference Wang E, Nickens DJ, Bello A, Khosravan R, Amantea M, Wilner KD, et al. Clinical implications of the pharmacokinetics of crizotinib in populations of patients with non-small cell lung cancer. Clin Cancer Res. 2016;22:5722–8.CrossRefPubMed Wang E, Nickens DJ, Bello A, Khosravan R, Amantea M, Wilner KD, et al. Clinical implications of the pharmacokinetics of crizotinib in populations of patients with non-small cell lung cancer. Clin Cancer Res. 2016;22:5722–8.CrossRefPubMed
63.
go back to reference Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4:662–73.CrossRefPubMedPubMedCentral Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4:662–73.CrossRefPubMedPubMedCentral
64.
65.
go back to reference Marsilje TH, Pei W, Chen B, Lu W, Uno T, Jin Y, et al. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J Med Chem. 2013;56:5675–90.CrossRefPubMed Marsilje TH, Pei W, Chen B, Lu W, Uno T, Jin Y, et al. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J Med Chem. 2013;56:5675–90.CrossRefPubMed
67.
go back to reference Khozin S, Blumenthal GM, Zhang L, Tang S, Brower M, Fox E, et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res. 2015;21:2436–9.CrossRefPubMed Khozin S, Blumenthal GM, Zhang L, Tang S, Brower M, Fox E, et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res. 2015;21:2436–9.CrossRefPubMed
68.
go back to reference Kim D, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR, et al. Efficacy and safety of ceritinib in patients with advanced anaplastic lymphoma kinase (ALK)-rearranged (ALK +) non-small cell lung cancer (NSCLC): an update of ASCEND-1. Int J Radiat Oncol Biol Phys. 2014;9(5):S33–4.CrossRef Kim D, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR, et al. Efficacy and safety of ceritinib in patients with advanced anaplastic lymphoma kinase (ALK)-rearranged (ALK +) non-small cell lung cancer (NSCLC): an update of ASCEND-1. Int J Radiat Oncol Biol Phys. 2014;9(5):S33–4.CrossRef
69.
go back to reference Katayama R, Friboulet L, Koike S, Lockerman EL, Khan TM, Gainor JF, et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin Cancer Res. 2014;20:5686–96.CrossRefPubMedPubMedCentral Katayama R, Friboulet L, Koike S, Lockerman EL, Khan TM, Gainor JF, et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin Cancer Res. 2014;20:5686–96.CrossRefPubMedPubMedCentral
70.
go back to reference Nishio M, Murakami H, Horiike A, Takahashi T, Hirai F, Suenaga N, et al. Phase I study of ceritinib (LDK378) in Japanese patients with advanced, anaplastic lymphoma kinase-rearranged non-small-cell lung cancer or other tumors. J Thorac Oncol. 2015;10:1058–66.CrossRefPubMedPubMedCentral Nishio M, Murakami H, Horiike A, Takahashi T, Hirai F, Suenaga N, et al. Phase I study of ceritinib (LDK378) in Japanese patients with advanced, anaplastic lymphoma kinase-rearranged non-small-cell lung cancer or other tumors. J Thorac Oncol. 2015;10:1058–66.CrossRefPubMedPubMedCentral
73.
go back to reference Lau YY, Gu W, Lin T, Viraswami-Appanna K, Cai C, Scott JW, et al. Assessment of drug-drug interaction potential between ceritinib and proton pump inhibitors in healthy subjects and in patients with ALK-positive non-small cell lung cancer. Cancer Chemother Pharmacol. 2017;79:1119–28.CrossRefPubMed Lau YY, Gu W, Lin T, Viraswami-Appanna K, Cai C, Scott JW, et al. Assessment of drug-drug interaction potential between ceritinib and proton pump inhibitors in healthy subjects and in patients with ALK-positive non-small cell lung cancer. Cancer Chemother Pharmacol. 2017;79:1119–28.CrossRefPubMed
74.
go back to reference Lau YY, Gu W, Lin T, Song D, Yu R, Scott JW. Effects of meal type on the oral bioavailability of the ALK inhibitor ceritinib in healthy adult subjects. J Clin Pharmacol. 2016;56:559–66.CrossRefPubMed Lau YY, Gu W, Lin T, Song D, Yu R, Scott JW. Effects of meal type on the oral bioavailability of the ALK inhibitor ceritinib in healthy adult subjects. J Clin Pharmacol. 2016;56:559–66.CrossRefPubMed
75.
go back to reference Hong Y, Passos VQ. Huang P-HH, Lau YY. Population pharmacokinetics of ceritinib in adult patients with tumors characterized by genetic abnormalities in anaplastic lymphoma kinase. J Clin Pharmacol. 2017;57:652–62.CrossRefPubMed Hong Y, Passos VQ. Huang P-HH, Lau YY. Population pharmacokinetics of ceritinib in adult patients with tumors characterized by genetic abnormalities in anaplastic lymphoma kinase. J Clin Pharmacol. 2017;57:652–62.CrossRefPubMed
77.
go back to reference Kort A, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2). Pharmacol Res. 2015;102:200–7.CrossRefPubMed Kort A, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2). Pharmacol Res. 2015;102:200–7.CrossRefPubMed
78.
go back to reference Katayama R, Sakashita T, Yanagitani N, Ninomiya H, Horiike A, Friboulet L, et al. P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. EBioMedicine. 2016;3:54–66.CrossRefPubMed Katayama R, Sakashita T, Yanagitani N, Ninomiya H, Horiike A, Friboulet L, et al. P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. EBioMedicine. 2016;3:54–66.CrossRefPubMed
79.
go back to reference Hu J, Zhang X, Wang F, Wang X, Yang K, Xu M, et al. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget. 2015;6:44643–59.PubMedPubMedCentral Hu J, Zhang X, Wang F, Wang X, Yang K, Xu M, et al. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget. 2015;6:44643–59.PubMedPubMedCentral
82.
go back to reference Abbas R, Hug BA, Leister C, Gaaloul ME, Chalon S, Sonnichsen D. A phase I ascending single-dose study of the safety, tolerability, and pharmacokinetics of bosutinib (SKI-606) in healthy adult subjects. Cancer Chemother Pharmacol. 2012;69:221–7.CrossRefPubMed Abbas R, Hug BA, Leister C, Gaaloul ME, Chalon S, Sonnichsen D. A phase I ascending single-dose study of the safety, tolerability, and pharmacokinetics of bosutinib (SKI-606) in healthy adult subjects. Cancer Chemother Pharmacol. 2012;69:221–7.CrossRefPubMed
83.
go back to reference Cho BC, Kim D-WW, Bearz A, Laurie SA, McKeage M, Borra G, et al. ASCEND-8: a randomized phase 1 study of ceritinib, 450 mg or 600 mg, taken with a low-fat meal versus 750 mg in fasted state in patients with anaplastic lymphoma kinase (ALK)-rearranged metastatic non-small cell lung cancer (NSCLC). J Thorac Oncol. 2017;12:1357–67.CrossRefPubMed Cho BC, Kim D-WW, Bearz A, Laurie SA, McKeage M, Borra G, et al. ASCEND-8: a randomized phase 1 study of ceritinib, 450 mg or 600 mg, taken with a low-fat meal versus 750 mg in fasted state in patients with anaplastic lymphoma kinase (ALK)-rearranged metastatic non-small cell lung cancer (NSCLC). J Thorac Oncol. 2017;12:1357–67.CrossRefPubMed
84.
go back to reference Wilder-Smith C, Röhss K, Bokelund Singh S, Sagar M, Nagy P. The effects of dose and timing of esomeprazole administration on 24-h, daytime and night-time acid inhibition in healthy volunteers. Aliment Pharmacol Ther. 2010;32:1249–56.CrossRefPubMed Wilder-Smith C, Röhss K, Bokelund Singh S, Sagar M, Nagy P. The effects of dose and timing of esomeprazole administration on 24-h, daytime and night-time acid inhibition in healthy volunteers. Aliment Pharmacol Ther. 2010;32:1249–56.CrossRefPubMed
85.
go back to reference Kinoshita K, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, et al. Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg Med Chem. 2012;20:1271–80.CrossRefPubMed Kinoshita K, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, et al. Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg Med Chem. 2012;20:1271–80.CrossRefPubMed
86.
go back to reference Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, et al. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 2014;13:2910–8.CrossRefPubMed Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, et al. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 2014;13:2910–8.CrossRefPubMed
87.
go back to reference Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15:1119–28.CrossRefPubMed Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15:1119–28.CrossRefPubMed
88.
go back to reference Gainor JF. Ou S-HIH, Logan J, Borges LF, Shaw AT. The central nervous system as a sanctuary site in ALK-positive non-small-cell lung cancer. J Thorac Oncol. 2013;8:1570–3.CrossRefPubMed Gainor JF. Ou S-HIH, Logan J, Borges LF, Shaw AT. The central nervous system as a sanctuary site in ALK-positive non-small-cell lung cancer. J Thorac Oncol. 2013;8:1570–3.CrossRefPubMed
89.
go back to reference Costa DB, Shaw AT, Ou S-HIH, Solomon BJ, Riely GJ, Ahn M-JJ, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. 2015;33:1881–8.CrossRefPubMedPubMedCentral Costa DB, Shaw AT, Ou S-HIH, Solomon BJ, Riely GJ, Ahn M-JJ, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. 2015;33:1881–8.CrossRefPubMedPubMedCentral
90.
go back to reference Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol. 2013;14:590–8.CrossRefPubMed Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol. 2013;14:590–8.CrossRefPubMed
91.
go back to reference Gadgeel SM, Shaw AT, Govindan R, Gandhi L, Socinski MA, Camidge DR, et al. Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small-cell lung cancer. J Clin Oncol. 2016;34:4079–85.CrossRefPubMed Gadgeel SM, Shaw AT, Govindan R, Gandhi L, Socinski MA, Camidge DR, et al. Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small-cell lung cancer. J Clin Oncol. 2016;34:4079–85.CrossRefPubMed
94.
go back to reference Takeuchi S, Murayama T, Yoshimura K, Kawakami T, Takahara S, Imai Y, et al. Phase I/II study of alectinib in lung cancer with RET fusion gene: study protocol. J Med Invest. 2017;64:317–20.CrossRefPubMed Takeuchi S, Murayama T, Yoshimura K, Kawakami T, Takahara S, Imai Y, et al. Phase I/II study of alectinib in lung cancer with RET fusion gene: study protocol. J Med Invest. 2017;64:317–20.CrossRefPubMed
95.
go back to reference Morcos PN, Yu L, Bogman K, Sato M, Katsuki H, Kawashima K, et al. Absorption, distribution, metabolism and excretion (ADME) of the ALK inhibitor alectinib: results from an absolute bioavailability and mass balance study in healthy subjects. Xenobiotica. 2017;47:217–29.CrossRefPubMed Morcos PN, Yu L, Bogman K, Sato M, Katsuki H, Kawashima K, et al. Absorption, distribution, metabolism and excretion (ADME) of the ALK inhibitor alectinib: results from an absolute bioavailability and mass balance study in healthy subjects. Xenobiotica. 2017;47:217–29.CrossRefPubMed
96.
go back to reference Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.CrossRefPubMed Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.CrossRefPubMed
97.
go back to reference Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74:1023–8.CrossRefPubMed Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74:1023–8.CrossRefPubMed
98.
go back to reference Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19:679–90.CrossRefPubMed Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19:679–90.CrossRefPubMed
99.
go back to reference Morcos PN, Parrott N, Banken L, Timpe C, Lindenberg M, Guerini E, et al. Effect of the wetting agent sodium lauryl sulfate on the pharmacokinetics of alectinib: results from a bioequivalence study in healthy subjects. Clin Pharmacol Drug Dev. 2017;6:266–79.CrossRefPubMed Morcos PN, Parrott N, Banken L, Timpe C, Lindenberg M, Guerini E, et al. Effect of the wetting agent sodium lauryl sulfate on the pharmacokinetics of alectinib: results from a bioequivalence study in healthy subjects. Clin Pharmacol Drug Dev. 2017;6:266–79.CrossRefPubMed
100.
go back to reference Hida T, Nakagawa K, Seto T, Satouchi M, Nishio M, Hotta K, et al. Pharmacologic study (JP28927) of alectinib in Japanese patients with ALK + non-small-cell lung cancer with or without prior crizotinib therapy. Cancer Sci. 2016;107:1642–6.CrossRefPubMedPubMedCentral Hida T, Nakagawa K, Seto T, Satouchi M, Nishio M, Hotta K, et al. Pharmacologic study (JP28927) of alectinib in Japanese patients with ALK + non-small-cell lung cancer with or without prior crizotinib therapy. Cancer Sci. 2016;107:1642–6.CrossRefPubMedPubMedCentral
101.
go back to reference Nakagawa T, Fowler S, Takanashi K, Youdim K, Yamauchi T, Kawashima K, et al. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes. Xenobiotica. 2018;48:546–54.CrossRefPubMed Nakagawa T, Fowler S, Takanashi K, Youdim K, Yamauchi T, Kawashima K, et al. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes. Xenobiotica. 2018;48:546–54.CrossRefPubMed
102.
go back to reference Sekiguchi N, Nagao S, Takanashi K, Kato M, Kaneko A, Morita K, et al. Preclinical evaluation of the potential for cytochrome P450 inhibition and induction of the selective ALK inhibitor, alectinib. Xenobiotica. 2017;47:1042–51.CrossRefPubMed Sekiguchi N, Nagao S, Takanashi K, Kato M, Kaneko A, Morita K, et al. Preclinical evaluation of the potential for cytochrome P450 inhibition and induction of the selective ALK inhibitor, alectinib. Xenobiotica. 2017;47:1042–51.CrossRefPubMed
103.
go back to reference Cleary Y, Gertz M, Morcos PN, Yu L, Youdim K, Phipps A, et al. Model-based assessments of CYP-mediated drug–drug interaction risk of alectinib: physiologically based pharmacokinetic modeling supported clinical development. Clin Pharmacol Ther. 2017. https://doi.org/10.1002/cpt.956 (Epub ahead of print). Cleary Y, Gertz M, Morcos PN, Yu L, Youdim K, Phipps A, et al. Model-based assessments of CYP-mediated drug–drug interaction risk of alectinib: physiologically based pharmacokinetic modeling supported clinical development. Clin Pharmacol Ther. 2017. https://​doi.​org/​10.​1002/​cpt.​956 (Epub ahead of print).
104.
go back to reference Morcos PN, Cleary Y, Guerini E, Dall G, Bogman K, De Petris L, et al. Clinical drug-drug interactions through cytochrome P450 3A (CYP3A) for the selective ALK inhibitor alectinib. Clin Pharmacol Drug Dev. 2017;6:280–91.CrossRefPubMed Morcos PN, Cleary Y, Guerini E, Dall G, Bogman K, De Petris L, et al. Clinical drug-drug interactions through cytochrome P450 3A (CYP3A) for the selective ALK inhibitor alectinib. Clin Pharmacol Drug Dev. 2017;6:280–91.CrossRefPubMed
106.
go back to reference Yang K, Chen Y, To KK, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303.CrossRefPubMedPubMedCentral Yang K, Chen Y, To KK, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303.CrossRefPubMedPubMedCentral
107.
go back to reference Morcos PN, Guerini E, Parrott N, Dall G, Blotner S, Bogman K, et al. Effect of food and esomeprazole on the pharmacokinetics of alectinib, a highly selective ALK inhibitor, in healthy subjects. Clin Pharmacol Drug Dev. 2017;6:388–97.CrossRefPubMed Morcos PN, Guerini E, Parrott N, Dall G, Blotner S, Bogman K, et al. Effect of food and esomeprazole on the pharmacokinetics of alectinib, a highly selective ALK inhibitor, in healthy subjects. Clin Pharmacol Drug Dev. 2017;6:388–97.CrossRefPubMed
108.
go back to reference Hsu J, Carnac R, Henschel V, Bogman K, Martin-Facklam M, Guerini E, et al. Population pharmacokinetics (popPK) and exposure-response (ER) analyses to confirm alectinib 600 mg BID dose selection in a crizotinib-progressed or intolerant population [abstract]. J Clin Oncol. 2016;34 Suppl:e20598. Hsu J, Carnac R, Henschel V, Bogman K, Martin-Facklam M, Guerini E, et al. Population pharmacokinetics (popPK) and exposure-response (ER) analyses to confirm alectinib 600 mg BID dose selection in a crizotinib-progressed or intolerant population [abstract]. J Clin Oncol. 2016;34 Suppl:e20598.
109.
go back to reference Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, Keats J, et al. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res. 2016;22:5527–38.CrossRefPubMed Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, Keats J, et al. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res. 2016;22:5527–38.CrossRefPubMed
110.
go back to reference Gettinger SN, Bazhenova LA, Langer CJ, Salgia R, Gold KA, Rosell R, et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 2016;17:1683–96.CrossRefPubMed Gettinger SN, Bazhenova LA, Langer CJ, Salgia R, Gold KA, Rosell R, et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 2016;17:1683–96.CrossRefPubMed
Metadata
Title
Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer
Authors
Takeshi Hirota
Shota Muraki
Ichiro Ieiri
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 4/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-018-0689-7

Other articles of this Issue 4/2019

Clinical Pharmacokinetics 4/2019 Go to the issue