Skip to main content
Top
Published in: Clinical Pharmacokinetics 3/2019

01-03-2019 | Review Article

Therapeutic Drug Monitoring of Oral Anti-Hormonal Drugs in Oncology

Authors: Stefanie L. Groenland, Merel van Nuland, Remy B. Verheijen, Jan H. M. Schellens, Jos H. Beijnen, Alwin D. R. Huitema, Neeltje Steeghs

Published in: Clinical Pharmacokinetics | Issue 3/2019

Login to get access

Abstract

Oral anti-hormonal drugs are essential in the treatment of breast and prostate cancer. It is well known that the interpatient variability in pharmacokinetic exposure is high for these agents and exposure–response relationships exist for many oral anti-hormonal drugs. Yet, they are still administered at fixed doses. This could lead to underdosing and thus suboptimal efficacy in some patients, while other patients could be overdosed resulting in unnecessary side effects. Therapeutic drug monitoring (TDM), individualized dosing based on measured blood concentrations of the drug, could therefore be a valid option to further optimize treatment. In this review, we provide an overview of relevant clinical pharmacokinetic and pharmacodynamic characteristics of oral anti-hormonal drugs in oncology and translate these into practical guidelines for TDM. For some agents, TDM targets are not well established yet and as a reference the median pharmacokinetic exposure could be targeted (exemestane: minimum plasma concentration (Cmin) 4.1 ng/mL and enzalutamide: Cmin 11.4 mg/L). However, for most drugs, exposure–efficacy analyses could be translated into specific targets (abiraterone: Cmin 8.4 ng/mL, anastrozole: Cmin 34.2 ng/mL, and letrozole: Cmin 85.6 ng/mL). Moreover, prospective clinical trials have shown TDM to be feasible for tamoxifen, for which the exposure–efficacy threshold of its active metabolite endoxifen is 5.97 ng/mL. Based on the available data, we therefore conclude that individualized dosing based on drug concentrations is feasible and promising for oral anti-hormonal drugs and should be developed further and implemented into clinical practice.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66:7–30.CrossRef
3.
go back to reference Verheijen R, Yu H, Schellens J, Beijnen J, Steeghs N, Huitema A. Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. Clin Pharmacol Ther. 2017;102:765–76.CrossRef Verheijen R, Yu H, Schellens J, Beijnen J, Steeghs N, Huitema A. Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. Clin Pharmacol Ther. 2017;102:765–76.CrossRef
4.
go back to reference Yu H, Steeghs N, Nijenhuis C, Schellens J, Beijnen J, Huitema A. Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet. 2014;53:305–25.CrossRef Yu H, Steeghs N, Nijenhuis C, Schellens J, Beijnen J, Huitema A. Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet. 2014;53:305–25.CrossRef
5.
go back to reference Beumer JH. Without therapeutic drug monitoring, there is no personalized cancer care. Clin Pharmacol Ther. 2013;93:228–30.CrossRef Beumer JH. Without therapeutic drug monitoring, there is no personalized cancer care. Clin Pharmacol Ther. 2013;93:228–30.CrossRef
6.
go back to reference Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of therapeutic drug monitoring of anticancer drugs part 1: cytotoxics. Eur J Cancer. 2014;50:2010–9.CrossRef Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of therapeutic drug monitoring of anticancer drugs part 1: cytotoxics. Eur J Cancer. 2014;50:2010–9.CrossRef
7.
go back to reference Widmer N, Bardin C, Chatelut E, Paci A, Beijnen J, Levêque D, et al. Review of therapeutic drug monitoring of anticancer drugs part two: targeted therapies. Eur J Cancer. 2014;50:2020–36.CrossRef Widmer N, Bardin C, Chatelut E, Paci A, Beijnen J, Levêque D, et al. Review of therapeutic drug monitoring of anticancer drugs part two: targeted therapies. Eur J Cancer. 2014;50:2020–36.CrossRef
8.
go back to reference Fox P, Balleine RL, Lee C, Gao B, Balakrishnar B, Menzies AM, et al. Dose escalation of tamoxifen in patients with low endoxifen level: evidence for therapeutic drug monitoring: the TADE study. Clin Cancer Res. 2016;22:3164–71.CrossRef Fox P, Balleine RL, Lee C, Gao B, Balakrishnar B, Menzies AM, et al. Dose escalation of tamoxifen in patients with low endoxifen level: evidence for therapeutic drug monitoring: the TADE study. Clin Cancer Res. 2016;22:3164–71.CrossRef
9.
go back to reference De Wit D, Guchelaar HJ, Den Hartigh J, Gelderblom H, Van Erp NP. Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov Today. 2015;20:18–36.CrossRef De Wit D, Guchelaar HJ, Den Hartigh J, Gelderblom H, Van Erp NP. Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov Today. 2015;20:18–36.CrossRef
11.
go back to reference James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377:338–51.CrossRef James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377:338–51.CrossRef
12.
go back to reference Chi KN, Spratlin J, Kollmannsberger C, North S, Pankras C, Gonzalez M, et al. Food effects on abiraterone pharmacokinetics in healthy subjects and patients with metastatic castration-resistant prostate cancer. J Clin Pharmacol. 2015;55:1406–14.CrossRef Chi KN, Spratlin J, Kollmannsberger C, North S, Pankras C, Gonzalez M, et al. Food effects on abiraterone pharmacokinetics in healthy subjects and patients with metastatic castration-resistant prostate cancer. J Clin Pharmacol. 2015;55:1406–14.CrossRef
13.
go back to reference Carton E, Noe G, Huillard O, Golmard L, Giroux J, Cessot A, et al. Relation between plasma trough concentration of abiraterone and prostate-specific antigen response in metastatic castration-resistant prostate cancer patients. Eur J Cancer. 2017;72:54–61.CrossRef Carton E, Noe G, Huillard O, Golmard L, Giroux J, Cessot A, et al. Relation between plasma trough concentration of abiraterone and prostate-specific antigen response in metastatic castration-resistant prostate cancer patients. Eur J Cancer. 2017;72:54–61.CrossRef
14.
go back to reference Stuyckens K, Saad F, Xu XS, Ryan CJ, Smith MR, Griffin TW, et al. Population pharmacokinetic analysis of abiraterone in chemotherapy-naïve and docetaxel-treated patients with metastatic castration-resistant prostate cancer. Clin Pharmacokinet. 2014;53:1149–60.CrossRef Stuyckens K, Saad F, Xu XS, Ryan CJ, Smith MR, Griffin TW, et al. Population pharmacokinetic analysis of abiraterone in chemotherapy-naïve and docetaxel-treated patients with metastatic castration-resistant prostate cancer. Clin Pharmacokinet. 2014;53:1149–60.CrossRef
15.
go back to reference Attard G, Reid AHM, Yap TA, Raynaud F, Dowsett M, Settatree S, et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol. 2008;26:4563–71.CrossRef Attard G, Reid AHM, Yap TA, Raynaud F, Dowsett M, Settatree S, et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol. 2008;26:4563–71.CrossRef
16.
go back to reference Steven X, Charles X, Kim JR, Matthew S, Saad F, Griffin TW, et al. Modeling the relationship between exposure to abiraterone and prostate-specific antigen dynamics in patients with metastatic castration-resistant prostate cancer. Clin Pharmacokinet. 2017;56:55–63.CrossRef Steven X, Charles X, Kim JR, Matthew S, Saad F, Griffin TW, et al. Modeling the relationship between exposure to abiraterone and prostate-specific antigen dynamics in patients with metastatic castration-resistant prostate cancer. Clin Pharmacokinet. 2017;56:55–63.CrossRef
17.
go back to reference Li Z, Bishop AC, Alyamani M, Garcia JA, Dreicer R, Bunch D, et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature. 2015;523:347–51.CrossRef Li Z, Bishop AC, Alyamani M, Garcia JA, Dreicer R, Bunch D, et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature. 2015;523:347–51.CrossRef
18.
go back to reference Emamekhoo H, Li Z, Sharifi N. Clinical significance of D4A in prostate cancer therapy with abiraterone. Cell Cycle. 2015;14:3213–4.CrossRef Emamekhoo H, Li Z, Sharifi N. Clinical significance of D4A in prostate cancer therapy with abiraterone. Cell Cycle. 2015;14:3213–4.CrossRef
20.
go back to reference Gibbons JA, Ouatas T, Krauwinkel W, Ohtsu Y, van der Walt J-S, Beddo V, et al. Clinical pharmacokinetic studies of enzalutamide. Clin Pharmacokinet. 2015;54:1043–55.CrossRef Gibbons JA, Ouatas T, Krauwinkel W, Ohtsu Y, van der Walt J-S, Beddo V, et al. Clinical pharmacokinetic studies of enzalutamide. Clin Pharmacokinet. 2015;54:1043–55.CrossRef
21.
go back to reference Scher HI, Anand A, Rathkopf D, Shelkey J, Morris MJ, Danila DC, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375:1437–46.CrossRef Scher HI, Anand A, Rathkopf D, Shelkey J, Morris MJ, Danila DC, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375:1437–46.CrossRef
22.
go back to reference Armstrong AJ, Saad F, Phung D, Dmuchowski C, Shore ND, Fizazi K, et al. Clinical outcomes and survival surrogacy studies of prostate-specific antigen declines following enzalutamide in men with metastatic castration-resistant prostate cancer previously treated with docetaxel. Cancer. 2017;123:2303–11.CrossRef Armstrong AJ, Saad F, Phung D, Dmuchowski C, Shore ND, Fizazi K, et al. Clinical outcomes and survival surrogacy studies of prostate-specific antigen declines following enzalutamide in men with metastatic castration-resistant prostate cancer previously treated with docetaxel. Cancer. 2017;123:2303–11.CrossRef
23.
go back to reference de Vries Schultink AHM, Zwart W, Linn SC, Beijnen JH, Huitema ADR. Effects of pharmacogenetics on the pharmacokinetics and pharmacodynamics of tamoxifen. Clin Pharmacokinet. 2015;54:797–810.CrossRef de Vries Schultink AHM, Zwart W, Linn SC, Beijnen JH, Huitema ADR. Effects of pharmacogenetics on the pharmacokinetics and pharmacodynamics of tamoxifen. Clin Pharmacokinet. 2015;54:797–810.CrossRef
24.
go back to reference Jager NGL, Rosing H, Schellens JHM, Linn SC, Beijnen JH. Tamoxifen dose and serum concentrations of tamoxifen and six of its metabolites in routine clinical outpatient care. Breast Cancer Res Treat. 2014;143:477–83.CrossRef Jager NGL, Rosing H, Schellens JHM, Linn SC, Beijnen JH. Tamoxifen dose and serum concentrations of tamoxifen and six of its metabolites in routine clinical outpatient care. Breast Cancer Res Treat. 2014;143:477–83.CrossRef
25.
go back to reference Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther. 2006;80:61–74.CrossRef Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther. 2006;80:61–74.CrossRef
26.
go back to reference Mürdter TE, Schroth W, Bacchus-Gerybadze L, Winter S, Heinkele G, Simon W, et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther. 2011;89:1–10.CrossRef Mürdter TE, Schroth W, Bacchus-Gerybadze L, Winter S, Heinkele G, Simon W, et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther. 2011;89:1–10.CrossRef
27.
go back to reference Jager N, Koornstra R, Vincent A, van Schaik R, Huitema A, Korse C, et al. Hot flashes are not predictive for serum concentrations of tamoxifen and its metabolites. BMC Cancer. 2013;13:612.CrossRef Jager N, Koornstra R, Vincent A, van Schaik R, Huitema A, Korse C, et al. Hot flashes are not predictive for serum concentrations of tamoxifen and its metabolites. BMC Cancer. 2013;13:612.CrossRef
28.
go back to reference Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther. 2011;89:718–25.CrossRef Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther. 2011;89:718–25.CrossRef
29.
go back to reference de Vries Schultink AHM, Alexi X, van Werkhoven E, Madlensky L, Natarajan L, Flatt SW, et al. An antiestrogenic activity score for tamoxifen and its metabolites is associated with breast cancer outcome. Breast Cancer Res Treat. 2017;161(3):567–74.CrossRef de Vries Schultink AHM, Alexi X, van Werkhoven E, Madlensky L, Natarajan L, Flatt SW, et al. An antiestrogenic activity score for tamoxifen and its metabolites is associated with breast cancer outcome. Breast Cancer Res Treat. 2017;161(3):567–74.CrossRef
30.
go back to reference Neven P, Jongen L, Lintermans A, Van Asten K, Blomme C, Lambrechts D, et al. Tamoxifen metabolism and efficacy in breast cancer: a prospective multicentre trial. Clin Cancer Res. 2018;24(10):2312–8.CrossRef Neven P, Jongen L, Lintermans A, Van Asten K, Blomme C, Lambrechts D, et al. Tamoxifen metabolism and efficacy in breast cancer: a prospective multicentre trial. Clin Cancer Res. 2018;24(10):2312–8.CrossRef
31.
go back to reference Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97:30–9.CrossRef Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97:30–9.CrossRef
32.
go back to reference Dezentje V, den Hartigh J, Guchelaar H, Hessing T, van der Straaten T, Vletter-Bogaartz J. Association between endoxifen serum concentration and predicted CYP2D6 phenotype in a prospective cohort of patients with early-stage breast cancer. J Clin Oncol. 2011;15(Suppl.):562.CrossRef Dezentje V, den Hartigh J, Guchelaar H, Hessing T, van der Straaten T, Vletter-Bogaartz J. Association between endoxifen serum concentration and predicted CYP2D6 phenotype in a prospective cohort of patients with early-stage breast cancer. J Clin Oncol. 2011;15(Suppl.):562.CrossRef
36.
37.
go back to reference Pauwels S, Lintermans A, Neven P, Verhaeghe J, Jans I, Billen J, et al. Need for estradiol assays with a lower functional sensitivity in clinical studies examining postmenopausal women treated with aromatase inhibitors. J Clin Oncol. 2013;31:509.CrossRef Pauwels S, Lintermans A, Neven P, Verhaeghe J, Jans I, Billen J, et al. Need for estradiol assays with a lower functional sensitivity in clinical studies examining postmenopausal women treated with aromatase inhibitors. J Clin Oncol. 2013;31:509.CrossRef
38.
go back to reference Ketha H, Girtman A, Singh RJ. Estradiol assays: the path ahead. Steroids. 2015;99:39–44.CrossRef Ketha H, Girtman A, Singh RJ. Estradiol assays: the path ahead. Steroids. 2015;99:39–44.CrossRef
39.
go back to reference Ingle JN, Buzdar AU, Schaid DJ, Goetz MP, Batzler A, Robson ME, et al. Variation in anastrozole metabolism and pharmacodynamics in women with early breast cancer. Cancer Res. 2010;70:3278–86.CrossRef Ingle JN, Buzdar AU, Schaid DJ, Goetz MP, Batzler A, Robson ME, et al. Variation in anastrozole metabolism and pharmacodynamics in women with early breast cancer. Cancer Res. 2010;70:3278–86.CrossRef
40.
go back to reference Folkerd EJ, Dixon JM, Renshaw L, A’Hern RP, Dowsett M. Suppression of plasma estrogen levels by letrozole and anastrozole is related to body mass index in patients with breast cancer. J Clin Oncol. 2012;30:2977–80.CrossRef Folkerd EJ, Dixon JM, Renshaw L, A’Hern RP, Dowsett M. Suppression of plasma estrogen levels by letrozole and anastrozole is related to body mass index in patients with breast cancer. J Clin Oncol. 2012;30:2977–80.CrossRef
41.
go back to reference Oberguggenberger A, Meraner V, Sztankay M, Beer B, Weigel G, Oberacher H, et al. Can we use gonadotropin plasma concentration as surrogate marker for BMI-related incomplete estrogen suppression in breast cancer patients receiving anastrozole? BMC Cancer. 2017;17:1–7.CrossRef Oberguggenberger A, Meraner V, Sztankay M, Beer B, Weigel G, Oberacher H, et al. Can we use gonadotropin plasma concentration as surrogate marker for BMI-related incomplete estrogen suppression in breast cancer patients receiving anastrozole? BMC Cancer. 2017;17:1–7.CrossRef
42.
go back to reference Ingle JN, Kalari KR, Buzdar AU, Robson ME, Goetz MP, Desta Z, et al. Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole. Steroids. 2015;99:32–8.CrossRef Ingle JN, Kalari KR, Buzdar AU, Robson ME, Goetz MP, Desta Z, et al. Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole. Steroids. 2015;99:32–8.CrossRef
43.
go back to reference Micheal F, Saranya S, Aparna N, Sridevi N, Chithra R, Judith MP. Concepts of bioequivalence and its impact on truncated area under curve (AUC) of drugs with long half life in point estimate and intra-subject variability. J Pharm Sci Res. 2012;4:1890–6. Micheal F, Saranya S, Aparna N, Sridevi N, Chithra R, Judith MP. Concepts of bioequivalence and its impact on truncated area under curve (AUC) of drugs with long half life in point estimate and intra-subject variability. J Pharm Sci Res. 2012;4:1890–6.
44.
go back to reference Plourde P, Dyroff M, Dukes M. Arimidex: a potent and selective fourth-generation aromatase inhibitor. Breast Cancer Res Treat. 1994;30:103–11.CrossRef Plourde P, Dyroff M, Dukes M. Arimidex: a potent and selective fourth-generation aromatase inhibitor. Breast Cancer Res Treat. 1994;30:103–11.CrossRef
45.
go back to reference Geisler J, King N, Dowsett M, Ottestad L, Lundgren S, Walton P, et al. Influence of anastrozole (Arimidex), a selective, non-steroidal aromatase inhibitor, on in vivo aromatisation and plasma oestrogen levels in postmenopausal women with breast cancer. Br J Cancer. 1996;74:1286–91.CrossRef Geisler J, King N, Dowsett M, Ottestad L, Lundgren S, Walton P, et al. Influence of anastrozole (Arimidex), a selective, non-steroidal aromatase inhibitor, on in vivo aromatisation and plasma oestrogen levels in postmenopausal women with breast cancer. Br J Cancer. 1996;74:1286–91.CrossRef
46.
go back to reference Mandic S, Kratzsch J, Mandic D, Debeljak Z, Lukic I, Horvat V, et al. Falsely elevated serum oestradiol due to exemestane therapy. Ann Clin Biochem. 2017;54(3):402–5.CrossRef Mandic S, Kratzsch J, Mandic D, Debeljak Z, Lukic I, Horvat V, et al. Falsely elevated serum oestradiol due to exemestane therapy. Ann Clin Biochem. 2017;54(3):402–5.CrossRef
47.
go back to reference Hertz DL, Kidwell KM, Seewald NJ, Gersch CL, Desta Z, Flockhart DA, et al. Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in postmenopausal patients with breast cancer. Pharmacogenom J. 2017;17(6):521–7.CrossRef Hertz DL, Kidwell KM, Seewald NJ, Gersch CL, Desta Z, Flockhart DA, et al. Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in postmenopausal patients with breast cancer. Pharmacogenom J. 2017;17(6):521–7.CrossRef
48.
go back to reference Hertz DL, Speth KA, Kidwell KM, Gersch CL, Desta Z, Storniolo AM, et al. Variable aromatase inhibitor plasma concentrations do not correlate with circulating estrogen concentrations in post-menopausal breast cancer patients. Breast Cancer Res Treat. 2017;165(3):659–68.CrossRef Hertz DL, Speth KA, Kidwell KM, Gersch CL, Desta Z, Storniolo AM, et al. Variable aromatase inhibitor plasma concentrations do not correlate with circulating estrogen concentrations in post-menopausal breast cancer patients. Breast Cancer Res Treat. 2017;165(3):659–68.CrossRef
49.
go back to reference Wang Y, Chia Y, Nedelman J, Schran H, Mahon F, Molimard M. A therapeutic drug monitoring algorithm for refining the imatinib trough level obtained at different sampling times. Ther Drug Monit. 2009;31:579–84.CrossRef Wang Y, Chia Y, Nedelman J, Schran H, Mahon F, Molimard M. A therapeutic drug monitoring algorithm for refining the imatinib trough level obtained at different sampling times. Ther Drug Monit. 2009;31:579–84.CrossRef
50.
go back to reference Desta Z, Kreutz Y, Nguyen AT, Li L, Skaar T, Kamdem LK, et al. Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with CYP2A6 genetic variants, body mass index, and age. Clin Pharmacol Ther. 2011;90:693–700.CrossRef Desta Z, Kreutz Y, Nguyen AT, Li L, Skaar T, Kamdem LK, et al. Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with CYP2A6 genetic variants, body mass index, and age. Clin Pharmacol Ther. 2011;90:693–700.CrossRef
51.
go back to reference De Jonge ME, Huitema ADR, Schellens JHM, Rodenhuis S, Beijnen JH. Individualised cancer chemotherapy: strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: a review. Clin Pharmacokinet. 2005;44:147–73.CrossRef De Jonge ME, Huitema ADR, Schellens JHM, Rodenhuis S, Beijnen JH. Individualised cancer chemotherapy: strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: a review. Clin Pharmacokinet. 2005;44:147–73.CrossRef
53.
go back to reference van Nuland M, Hillebrand MJX, Rosing H, Schellens JHM, Beijnen JH. Development and validation of an LC–MS/MS method for the simultaneous quantification of abiraterone, enzalutamide, and their major metabolites in human plasma. Ther Drug Monit. 2017;39:243–51.CrossRef van Nuland M, Hillebrand MJX, Rosing H, Schellens JHM, Beijnen JH. Development and validation of an LC–MS/MS method for the simultaneous quantification of abiraterone, enzalutamide, and their major metabolites in human plasma. Ther Drug Monit. 2017;39:243–51.CrossRef
54.
go back to reference de Krou S, Rosing H, Nuijen B, Schellens JHM, Beijnen JH. Fast and adequate liquid chromatography-tandem mass spectrometric determination of Z-endoxifen serum levels for terapeutic drug monitoring. Ther Drug Monit. 2017;39:132–7.CrossRef de Krou S, Rosing H, Nuijen B, Schellens JHM, Beijnen JH. Fast and adequate liquid chromatography-tandem mass spectrometric determination of Z-endoxifen serum levels for terapeutic drug monitoring. Ther Drug Monit. 2017;39:132–7.CrossRef
55.
go back to reference van Nuland M, Rosing H, de Vries J, Ovaa H, Schellens JHM, Beijnen JH. An LC–MS/MS method for quantification of the active abiraterone metabolite Δ(4)-abiraterone (D4A) in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1068–10699:119–24.CrossRef van Nuland M, Rosing H, de Vries J, Ovaa H, Schellens JHM, Beijnen JH. An LC–MS/MS method for quantification of the active abiraterone metabolite Δ(4)-abiraterone (D4A) in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1068–10699:119–24.CrossRef
56.
go back to reference Shao R, Yu L, Lou H, Ruan Z, Jiang B, Chen J. Development and validation of a rapid LC–MS/MS method to quantify letrozole in human plasma and its application to therapeutic drug monitoring. Biomed Chromatogr. 2016;30:632–7.CrossRef Shao R, Yu L, Lou H, Ruan Z, Jiang B, Chen J. Development and validation of a rapid LC–MS/MS method to quantify letrozole in human plasma and its application to therapeutic drug monitoring. Biomed Chromatogr. 2016;30:632–7.CrossRef
57.
go back to reference Yu J, He J, Zhang Y, Qin F, Xiong Z, Li F. Development of a liquid chromatography–tandem mass spectrometry method for determination of butoconazole nitrate in human plasma and its application to a pharmacokinetic study. Biomed Chromatogr. 2011;25:511–6.CrossRef Yu J, He J, Zhang Y, Qin F, Xiong Z, Li F. Development of a liquid chromatography–tandem mass spectrometry method for determination of butoconazole nitrate in human plasma and its application to a pharmacokinetic study. Biomed Chromatogr. 2011;25:511–6.CrossRef
58.
go back to reference Wang L-Z, Goh S-H, Wong AL-A, Thuya W-L, Lau J-YA, Wan S-C, et al. Validation of a rapid and sensitive LC–MS/MS method for determination of exemestane and its metabolites, 17beta-hydroxyexemestane and 17beta-hydroxyexemestane-17-O-beta-d-glucuronide: application to human pharmacokinetics study. PLoS One. 2015;10(3):e0118553.CrossRef Wang L-Z, Goh S-H, Wong AL-A, Thuya W-L, Lau J-YA, Wan S-C, et al. Validation of a rapid and sensitive LC–MS/MS method for determination of exemestane and its metabolites, 17beta-hydroxyexemestane and 17beta-hydroxyexemestane-17-O-beta-d-glucuronide: application to human pharmacokinetics study. PLoS One. 2015;10(3):e0118553.CrossRef
59.
go back to reference Cardoso E, Csajka C, Schneider MP, Widmer N. Effect of adherence on pharmacokinetic/pharmacodynamic relationships of oral targeted anticancer drugs. Clin Pharmacokinet. 2018;57(1):1–6.CrossRef Cardoso E, Csajka C, Schneider MP, Widmer N. Effect of adherence on pharmacokinetic/pharmacodynamic relationships of oral targeted anticancer drugs. Clin Pharmacokinet. 2018;57(1):1–6.CrossRef
60.
go back to reference Gervasini G, Jara C, Olier C, Romero N, Martinez R, Carrillo JA. Polymorphisms in ABCB1 and CYP19A1 genes affect anastrozole plasma concentrations and clinical outcomes in postmenopausal breast cancer patients. Br J Clin Pharmacol. 2017;83:562–71.CrossRef Gervasini G, Jara C, Olier C, Romero N, Martinez R, Carrillo JA. Polymorphisms in ABCB1 and CYP19A1 genes affect anastrozole plasma concentrations and clinical outcomes in postmenopausal breast cancer patients. Br J Clin Pharmacol. 2017;83:562–71.CrossRef
61.
go back to reference Dowsett M, Cuzick J, Howell A. Jackson I; ATAC Trialists’ Group. Pharmacokinetics of anastrozole and tamoxifen alone, and in combination, during adjuvant endocrine therapy for early breast cancer in postmenopausal women: a sub-protocol of the “Arimidex™ and tamoxifen alone or in combination” (ATAC) trial. Br J Cancer. 2001;85:317–24.CrossRef Dowsett M, Cuzick J, Howell A. Jackson I; ATAC Trialists’ Group. Pharmacokinetics of anastrozole and tamoxifen alone, and in combination, during adjuvant endocrine therapy for early breast cancer in postmenopausal women: a sub-protocol of the “Arimidex™ and tamoxifen alone or in combination” (ATAC) trial. Br J Cancer. 2001;85:317–24.CrossRef
62.
go back to reference Hubalek M, Oberguggenberger A, Beer B, Meraner V, Sztankay M, Oberacher H, et al. Does obesity interfere with anastrozole treatment? Positive association between body mass index and anastrozole plasma levels. Clin Breast Cancer. 2014;14:291–6.CrossRef Hubalek M, Oberguggenberger A, Beer B, Meraner V, Sztankay M, Oberacher H, et al. Does obesity interfere with anastrozole treatment? Positive association between body mass index and anastrozole plasma levels. Clin Breast Cancer. 2014;14:291–6.CrossRef
64.
go back to reference Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C, Trunet PF. Letrozole, a new oral non-steroidal aromatase inhibitor in treating postmenopausal patients with advanced breast cancer: a pilot study. Ann Oncol. 1996;7:99–102.CrossRef Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C, Trunet PF. Letrozole, a new oral non-steroidal aromatase inhibitor in treating postmenopausal patients with advanced breast cancer: a pilot study. Ann Oncol. 1996;7:99–102.CrossRef
65.
go back to reference Binkhorst L, Kloth JSL, de Wit AS, de Bruijn P, Lam MH, Chaves I, et al. Circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Breast Cancer Res Treat. 2015;152:119–28.CrossRef Binkhorst L, Kloth JSL, de Wit AS, de Bruijn P, Lam MH, Chaves I, et al. Circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Breast Cancer Res Treat. 2015;152:119–28.CrossRef
Metadata
Title
Therapeutic Drug Monitoring of Oral Anti-Hormonal Drugs in Oncology
Authors
Stefanie L. Groenland
Merel van Nuland
Remy B. Verheijen
Jan H. M. Schellens
Jos H. Beijnen
Alwin D. R. Huitema
Neeltje Steeghs
Publication date
01-03-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 3/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-018-0683-0

Other articles of this Issue 3/2019

Clinical Pharmacokinetics 3/2019 Go to the issue