Skip to main content
Top
Published in: Clinical Pharmacokinetics 7/2018

01-07-2018 | Review Article

A Review of the Methods and Associated Mathematical Models Used in the Measurement of Fat-Free Mass

Authors: Jaydeep Sinha, Stephen B. Duffull, Hesham S. Al-Sallami

Published in: Clinical Pharmacokinetics | Issue 7/2018

Login to get access

Abstract

Fat-free mass (FFM) represents the lean component of the body devoid of fat. It has been shown to be a useful predictor of drug dose requirements, particularly in obesity where the excess fat mass does not contribute to drug clearance. However, measuring FFM involves complex and/or expensive experimental methodologies that preclude their use in routine clinical practice. Thus, models to predict FFM from readily measurable variables, such as body weight and height, have been developed and are used in both population pharmacokinetic modelling and clinical practice. In this review, methods used to measure FFM are explained and compared in terms of their assumptions, precision, and limitations. These methods are broadly classified into six different principles: densitometry, hydrometry, bioimpedance, whole-body counting, dual energy X-ray absorptiometry, and medical imaging. They vary in their processes and key biological assumptions that are often not applicable in certain populations (e.g. children, elderly, and certain disease states). This review provides a summary of the various methods of FFM measurement and estimation, and links these methods to a scientific framework to help clinicians and researchers understand the usefulness and potential limitations of these methods.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Josef Brozek AH, editor. Techniques for measuring body composition. Washington, DC: National Academy of Sciences-National Research Council; 1961. p. 223–44. Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Josef Brozek AH, editor. Techniques for measuring body composition. Washington, DC: National Academy of Sciences-National Research Council; 1961. p. 223–44.
3.
go back to reference Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Clin Pharmacokinet. 1994;26(4):292–307.CrossRefPubMed Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Clin Pharmacokinet. 1994;26(4):292–307.CrossRefPubMed
4.
go back to reference De Baerdemaeker LE, Mortier EP, Struys MM. Pharmacokinetics in obese patients. Contin Educ Anaesth Crit Care Pain. 2004;4(5):152–5.CrossRef De Baerdemaeker LE, Mortier EP, Struys MM. Pharmacokinetics in obese patients. Contin Educ Anaesth Crit Care Pain. 2004;4(5):152–5.CrossRef
5.
6.
go back to reference Han P, Duffull S, Kirkpatrick C, Green B. Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther. 2007;82(5):505–8.CrossRefPubMed Han P, Duffull S, Kirkpatrick C, Green B. Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther. 2007;82(5):505–8.CrossRefPubMed
7.
go back to reference Eleveld DJ, Proost JH, Absalom AR, Struys MM. Obesity and allometric scaling of pharmacokinetics. Clin Pharmacokinet. 2011;50(11):751–3.CrossRefPubMed Eleveld DJ, Proost JH, Absalom AR, Struys MM. Obesity and allometric scaling of pharmacokinetics. Clin Pharmacokinet. 2011;50(11):751–3.CrossRefPubMed
8.
go back to reference Leykin Y, Miotto L, Pellis T. Pharmacokinetic considerations in the obese. Best Prac Res Clin Anaesthesiol. 2011;25(1):27–36.CrossRef Leykin Y, Miotto L, Pellis T. Pharmacokinetic considerations in the obese. Best Prac Res Clin Anaesthesiol. 2011;25(1):27–36.CrossRef
9.
go back to reference De Baerdemaeker LEC, Van Limmen JGM, Van Nieuwenhove Y. How should obesity be measured and how should anesthetic drug dosage be calculated? In: Leykin Y, Brodsky JB, editors. Controversies in the anesthetic management of the obese surgical patient. Milan: Springer; 2013. pp. 15–30.CrossRef De Baerdemaeker LEC, Van Limmen JGM, Van Nieuwenhove Y. How should obesity be measured and how should anesthetic drug dosage be calculated?  In: Leykin Y, Brodsky JB, editors. Controversies in the anesthetic management of the obese surgical patient. Milan: Springer; 2013. pp. 15–30.CrossRef
10.
go back to reference Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987;46(4):537–56.CrossRefPubMed Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987;46(4):537–56.CrossRefPubMed
11.
go back to reference Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17(1):527–58.CrossRefPubMed Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17(1):527–58.CrossRefPubMed
12.
go back to reference Mattsson S, Thomas BJ. Development of methods for body composition studies. Phys Med Biol. 2006;51(13):R203.CrossRefPubMed Mattsson S, Thomas BJ. Development of methods for body composition studies. Phys Med Biol. 2006;51(13):R203.CrossRefPubMed
16.
go back to reference Fidanza F, Keys A, Anderson JT. Density of body fat in man and other mammals. J Appl Physiol. 1953;6:252–6.CrossRefPubMed Fidanza F, Keys A, Anderson JT. Density of body fat in man and other mammals. J Appl Physiol. 1953;6:252–6.CrossRefPubMed
17.
go back to reference Brožek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110(1):113–40.PubMedCrossRef Brožek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110(1):113–40.PubMedCrossRef
18.
go back to reference Siri WE. The gross composition of the body. In: Lawrence JH, editor. Advances in biological and medical physics. New York: Academic Press; 1956. p. 239–80. Siri WE. The gross composition of the body. In: Lawrence JH, editor. Advances in biological and medical physics. New York: Academic Press; 1956. p. 239–80.
19.
go back to reference Going SB. Hydrodensitometry and air displacement plethysmography. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp. 17–33. Going SB. Hydrodensitometry and air displacement plethysmography. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp. 17–33.
21.
go back to reference Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Exerc. 1995;27(12):1692–7.CrossRefPubMed Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Exerc. 1995;27(12):1692–7.CrossRefPubMed
22.
go back to reference Ruppel GL. Manual of pulmonary function testing. 9th ed. St Louis: Mosby Elsevier; 2009. Ruppel GL. Manual of pulmonary function testing. 9th ed. St Louis: Mosby Elsevier; 2009.
23.
go back to reference Du Bois D, Du Bois E. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5(5):303.PubMed Du Bois D, Du Bois E. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5(5):303.PubMed
24.
go back to reference Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(03):497–504.CrossRefPubMed Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(03):497–504.CrossRefPubMed
25.
go back to reference Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1979;12(3):175–81. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1979;12(3):175–81.
26.
go back to reference Schoeller DA. Hydrometry. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human kinetics; 2005. pp. 35–49. Schoeller DA. Hydrometry. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human kinetics; 2005. pp. 35–49.
27.
go back to reference Vaisman N, Pencharz PB, Koren G, Johnson JK. Comparison of oral and intravenous administration of sodium bromide for extracellular water measurements. Am J Clin Nutr. 1987;46(1):1–4.CrossRefPubMed Vaisman N, Pencharz PB, Koren G, Johnson JK. Comparison of oral and intravenous administration of sodium bromide for extracellular water measurements. Am J Clin Nutr. 1987;46(1):1–4.CrossRefPubMed
29.
go back to reference Miller ME, Cosgriff J, Forbes GB. Bromide space determination using anion-exchange chromatography for measurement of bromide. Am J Clin Nutr. 1989;50(1):168–71.CrossRefPubMed Miller ME, Cosgriff J, Forbes GB. Bromide space determination using anion-exchange chromatography for measurement of bromide. Am J Clin Nutr. 1989;50(1):168–71.CrossRefPubMed
30.
go back to reference Brodie BB, Brand E, Leshin S. The use of bromide as a measure of extracellular fluid. J Biol Chem. 1939;130(2):555–63. Brodie BB, Brand E, Leshin S. The use of bromide as a measure of extracellular fluid. J Biol Chem. 1939;130(2):555–63.
31.
go back to reference Kim J, Wang Z, Gallagher D, Kotler DP, Ma K, Heymsfield SB. Extracellular water: sodium bromide dilution estimates compared with other markers in patients with acquired immunodeficiency syndrome. J Parenter Enter Nutr. 1999;23(2):61–6.CrossRef Kim J, Wang Z, Gallagher D, Kotler DP, Ma K, Heymsfield SB. Extracellular water: sodium bromide dilution estimates compared with other markers in patients with acquired immunodeficiency syndrome. J Parenter Enter Nutr. 1999;23(2):61–6.CrossRef
32.
go back to reference Moore FD, Lister J, Boyden CM, Ball MR, Sullivan N, Dagher FJ. The skeleton as a feature of body composition: values predicted by isotope dilution and observed by cadaver dissection in an adult human female. Hum Biol. 1968;40(2):135–88.PubMed Moore FD, Lister J, Boyden CM, Ball MR, Sullivan N, Dagher FJ. The skeleton as a feature of body composition: values predicted by isotope dilution and observed by cadaver dissection in an adult human female. Hum Biol. 1968;40(2):135–88.PubMed
33.
go back to reference Barnes BA, Gordon EB, Cope O. Skeletal muscle analyses in health and in certain metabolic disorders. I. The method of analysis and the values in normal muscle. J Clin Investig. 1957;36(8):1239.CrossRefPubMedPubMedCentral Barnes BA, Gordon EB, Cope O. Skeletal muscle analyses in health and in certain metabolic disorders. I. The method of analysis and the values in normal muscle. J Clin Investig. 1957;36(8):1239.CrossRefPubMedPubMedCentral
34.
go back to reference Maffy R. The body fluids: volume, composition, and physical chemistry. In: Brenner BM, Rector FC, editors. The kidney. Philadelphia: WB Saunders; 1976. p. 65–103. Maffy R. The body fluids: volume, composition, and physical chemistry. In: Brenner BM, Rector FC, editors. The kidney. Philadelphia: WB Saunders; 1976. p. 65–103.
35.
go back to reference Kushner RF. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr. 1992;11(2):199–209.PubMed Kushner RF. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr. 1992;11(2):199–209.PubMed
36.
go back to reference Aroom KR, Harting MT, Cox CS, Radharkrishnan RS, Smith C, Gill BS. Bioimpedance analysis: a guide to simple design and implementation. J Surg Res. 2009;153(1):23–30.CrossRefPubMed Aroom KR, Harting MT, Cox CS, Radharkrishnan RS, Smith C, Gill BS. Bioimpedance analysis: a guide to simple design and implementation. J Surg Res. 2009;153(1):23–30.CrossRefPubMed
37.
go back to reference Lukaski H, Bolonchuk W. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med. 1988;59(12):1163–9.PubMed Lukaski H, Bolonchuk W. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med. 1988;59(12):1163–9.PubMed
38.
go back to reference Lukaski HC, Johnson PE, Bolonchuk W, Lykken G. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American journal of clinical nutrition. 1985;41(4):810–7.CrossRefPubMed Lukaski HC, Johnson PE, Bolonchuk W, Lykken G. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American journal of clinical nutrition. 1985;41(4):810–7.CrossRefPubMed
39.
go back to reference Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.CrossRefPubMed Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.CrossRefPubMed
40.
go back to reference Wu C-S, Chen Y-Y, Chuang C-L, Chiang L-M, Dwyer GB, Hsu Y-L, et al. Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy Asian individuals. Nutr J. 2015;14(1):1.CrossRef Wu C-S, Chen Y-Y, Chuang C-L, Chiang L-M, Dwyer GB, Hsu Y-L, et al. Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy Asian individuals. Nutr J. 2015;14(1):1.CrossRef
41.
go back to reference Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.CrossRefPubMed Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.CrossRefPubMed
42.
go back to reference Ellis KJ. Whole-body counting and neutron activation analysis. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human Body Composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp. 51–62. Ellis KJ. Whole-body counting and neutron activation analysis. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human Body Composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp. 51–62.
43.
go back to reference Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.CrossRefPubMedPubMedCentral Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.CrossRefPubMedPubMedCentral
45.
go back to reference Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol Endocrinol Metab. 1996;271(6):E941–51.CrossRef Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol Endocrinol Metab. 1996;271(6):E941–51.CrossRef
46.
go back to reference Lohman TG, Chen Z. Dual-energy X-ray absorptiometry. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp 63–77. Lohman TG, Chen Z. Dual-energy X-ray absorptiometry. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp 63–77.
47.
go back to reference Ross R, Janssen I. Computed tomography and magnetic resonance imaging. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human kinetics; 2005. pp 89–108. Ross R, Janssen I. Computed tomography and magnetic resonance imaging. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human kinetics; 2005. pp 89–108.
48.
go back to reference Kvist H, Chowdhury B, Grangård U, Tylen U, Sjöström L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr. 1988;48(6):1351–61.CrossRefPubMed Kvist H, Chowdhury B, Grangård U, Tylen U, Sjöström L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr. 1988;48(6):1351–61.CrossRefPubMed
49.
go back to reference Kim CG, Kim WH, Kim MH, Kim D-W. Direct determination of lean body mass by CT in F-18 FDG PET/CT studies: comparison with estimates using predictive equations. Nucl Med Mol Imaging. 2013;47(2):98–103.CrossRefPubMedPubMedCentral Kim CG, Kim WH, Kim MH, Kim D-W. Direct determination of lean body mass by CT in F-18 FDG PET/CT studies: comparison with estimates using predictive equations. Nucl Med Mol Imaging. 2013;47(2):98–103.CrossRefPubMedPubMedCentral
50.
go back to reference Snijder M, Visser M, Dekker J, Seidell J, Fuerst T, Tylavsky F, et al. The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry. Int J Obes. 2002;26(7):984.CrossRef Snijder M, Visser M, Dekker J, Seidell J, Fuerst T, Tylavsky F, et al. The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry. Int J Obes. 2002;26(7):984.CrossRef
52.
go back to reference James WPT, Waterlow JC. Research on obesity: a report of the DHSS/MRC Group. London: Her Majesty’s Stationery Office: UK Department of Health and Social Security/Medical Research Council Group on Obesity Research; 1976. James WPT, Waterlow JC. Research on obesity: a report of the DHSS/MRC Group. London: Her Majesty’s Stationery Office: UK Department of Health and Social Security/Medical Research Council Group on Obesity Research; 1976.
53.
go back to reference Boer P. Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol Renal Physiol. 1984;247(4):F632–6.CrossRef Boer P. Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol Renal Physiol. 1984;247(4):F632–6.CrossRef
54.
go back to reference Garrow JS, Webster J. Quetelet’s index (W/H2) as a measure of fatness. International journal of obesity. 1984;9(2):147–53. Garrow JS, Webster J. Quetelet’s index (W/H2) as a measure of fatness. International journal of obesity. 1984;9(2):147–53.
55.
go back to reference Heitmann BL. Evaluation of body fat estimated from body mass index, skinfolds and impedance. A comparative study. Eur J Clin Nutr. 1990;44(11):831–7.PubMed Heitmann BL. Evaluation of body fat estimated from body mass index, skinfolds and impedance. A comparative study. Eur J Clin Nutr. 1990;44(11):831–7.PubMed
56.
go back to reference Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age-and sex-specific prediction formulas. Br J Nutr. 1991;65(02):105–14.CrossRefPubMed Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age-and sex-specific prediction formulas. Br J Nutr. 1991;65(02):105–14.CrossRefPubMed
57.
58.
go back to reference Bucaloiu ID, Wood GC, Norfolk ER, Still CD, Hartle JE, Perkins RM. Fat-free weight prediction in morbidly obese females. Int J Nephrol Renovasc Dis. 2011;4:149.CrossRefPubMedPubMedCentral Bucaloiu ID, Wood GC, Norfolk ER, Still CD, Hartle JE, Perkins RM. Fat-free weight prediction in morbidly obese females. Int J Nephrol Renovasc Dis. 2011;4:149.CrossRefPubMedPubMedCentral
59.
go back to reference Al-Sallami HS, Goulding A, Grant A, Taylor R, Holford N, Duffull SB. Prediction of fat-free mass in children. Clin Pharmacokinet. 2015;54(11):1169–78.CrossRefPubMed Al-Sallami HS, Goulding A, Grant A, Taylor R, Holford N, Duffull SB. Prediction of fat-free mass in children. Clin Pharmacokinet. 2015;54(11):1169–78.CrossRefPubMed
60.
go back to reference La Colla L, Albertin A, La Colla G, Porta A, Aldegheri G, Di Candia D, et al. Predictive performance of the ‘Minto’ remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass. Clin Pharmacokinet. 2010;49(2):131–9.CrossRefPubMed La Colla L, Albertin A, La Colla G, Porta A, Aldegheri G, Di Candia D, et al. Predictive performance of the ‘Minto’ remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass. Clin Pharmacokinet. 2010;49(2):131–9.CrossRefPubMed
61.
go back to reference Lohman TG. Assessment of body composition in children. Pediatr Exerc Sci. 1989;1(1):19–30.CrossRef Lohman TG. Assessment of body composition in children. Pediatr Exerc Sci. 1989;1(1):19–30.CrossRef
62.
go back to reference Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5):1169–75.CrossRefPubMed Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5):1169–75.CrossRefPubMed
64.
go back to reference Cohn S, Vartsky D, Yasumura S, Vaswani A, Ellis K. Indexes of body cell mass: nitrogen versus potassium. Am J Physiol Endocrinol Metab. 1983;244(3):E305–10.CrossRef Cohn S, Vartsky D, Yasumura S, Vaswani A, Ellis K. Indexes of body cell mass: nitrogen versus potassium. Am J Physiol Endocrinol Metab. 1983;244(3):E305–10.CrossRef
65.
go back to reference Cleroux J, Van Nguyen P, Taylor A, Leenen F. Effects of beta 1-vs. beta 1+ beta 2-blockade on exercise endurance and muscle metabolism in humans. J Appl Physiol. 1989;66(2):548–54.CrossRefPubMed Cleroux J, Van Nguyen P, Taylor A, Leenen F. Effects of beta 1-vs. beta 1+ beta 2-blockade on exercise endurance and muscle metabolism in humans. J Appl Physiol. 1989;66(2):548–54.CrossRefPubMed
66.
go back to reference Sica DA. Antihypertensive therapy and its effects on potassium homeostasis. J Clin Hypertens. 2006;8(1):67–73.CrossRef Sica DA. Antihypertensive therapy and its effects on potassium homeostasis. J Clin Hypertens. 2006;8(1):67–73.CrossRef
67.
go back to reference Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. The Lancet. 2016;387(10026):1377–96.CrossRef Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. The Lancet. 2016;387(10026):1377–96.CrossRef
68.
go back to reference Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. The Lancet. 2011;378(9793):815–25.CrossRef Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. The Lancet. 2011;378(9793):815–25.CrossRef
69.
go back to reference McLeay SC, Morrish GA, Kirkpatrick CM, Green B. The relationship between drug clearance and body size. Clin Pharmacokinet. 2012;51(5):319–30.CrossRefPubMed McLeay SC, Morrish GA, Kirkpatrick CM, Green B. The relationship between drug clearance and body size. Clin Pharmacokinet. 2012;51(5):319–30.CrossRefPubMed
70.
go back to reference Bhavnani SM, Rubino CM, Ambrose PG, Drusano GL. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis. 2010;50(12):1568–74.CrossRefPubMed Bhavnani SM, Rubino CM, Ambrose PG, Drusano GL. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis. 2010;50(12):1568–74.CrossRefPubMed
71.
go back to reference Ingrande J, Brodsky JB, Lemmens HJ. Lean body weight scalar for the anesthetic induction dose of propofol in morbidly obese subjects. Anesth Analg. 2011;113(1):57–62.CrossRefPubMed Ingrande J, Brodsky JB, Lemmens HJ. Lean body weight scalar for the anesthetic induction dose of propofol in morbidly obese subjects. Anesth Analg. 2011;113(1):57–62.CrossRefPubMed
72.
go back to reference Cortinez LI, Anderson BJ, Holford NH, Puga V, de la Fuente N, Auad H, et al. Dexmedetomidine pharmacokinetics in the obese. Eur J Clin Pharmacol. 2015;71(12):1501–8.CrossRefPubMed Cortinez LI, Anderson BJ, Holford NH, Puga V, de la Fuente N, Auad H, et al. Dexmedetomidine pharmacokinetics in the obese. Eur J Clin Pharmacol. 2015;71(12):1501–8.CrossRefPubMed
Metadata
Title
A Review of the Methods and Associated Mathematical Models Used in the Measurement of Fat-Free Mass
Authors
Jaydeep Sinha
Stephen B. Duffull
Hesham S. Al-Sallami
Publication date
01-07-2018
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 7/2018
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-017-0622-5

Other articles of this Issue 7/2018

Clinical Pharmacokinetics 7/2018 Go to the issue