Skip to main content
Top
Published in: Clinical Pharmacokinetics 11/2016

Open Access 01-11-2016 | Original Research Article

A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients

Authors: Nielka P. van Erp, Carla M. van Herpen, Djoeke de Wit, Annelieke Willemsen, David M. Burger, Alwin D. R. Huitema, Ellen Kapiteijn, Rob ter Heine, PhD, PharmD

Published in: Clinical Pharmacokinetics | Issue 11/2016

Login to get access

Abstract

Introduction and Objective

Everolimus (a drug from the class of mammalian target of rapamycin [mTOR] inhibitors) is associated with frequent toxicity-related dose reductions. Everolimus accumulates in erythrocytes, but the extent to which hematocrit affects everolimus plasma pharmacokinetics and pharmacodynamics is unknown. We aimed to investigate the everolimus pharmacokinetics/pharmacodynamics and the influence of hematocrit in cancer patients.

Methods

A semi-physiological pharmacokinetic model for everolimus was developed from pharmacokinetic data from 73 patients by non-linear mixed-effects modeling. Using a simulation study with a known pharmacodynamic model describing S6K1 (a downstream mTOR effector) inhibition, we investigated the impact of hematocrit.

Results

The apparent volume of distribution of the central and peripheral compartment were estimated to be 207 L with a relative standard error (RSE) of 5.0 % and 485 L (RSE 4.2 %), respectively, with an inter-compartmental clearance of 72.1 L/h (RSE 3.2 %). The apparent intrinsic clearance was 198 L/h (RSE 4.3 %). A decrease in hematocrit from 45 % to 20 % resulted in a predicted reduction in whole-blood exposure of ~50 %, but everolimus plasma pharmacokinetics and pharmacodynamics were not affected. The predicted S6K1 inhibition was at a plateau level in the approved dose of 10 mg once daily.

Conclusions

A population pharmacokinetic model was developed for everolimus in cancer patients. Hematocrit influenced whole-blood pharmacokinetics, but not plasma pharmacokinetics or pharmacodynamics. Everolimus whole-blood concentrations should always be corrected for hematocrit. Since predicted mTOR inhibition was at a plateau level in the approved dose, dose reductions may have only a limited impact on mTOR inhibition.
Literature
1.
go back to reference O’Reilly T, McSheehy PM. Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol. 2010;3(2):65–79.CrossRefPubMedPubMedCentral O’Reilly T, McSheehy PM. Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol. 2010;3(2):65–79.CrossRefPubMedPubMedCentral
2.
go back to reference O’Donnell A, Faivre S, Burris HA III, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1588–95.CrossRefPubMed O’Donnell A, Faivre S, Burris HA III, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1588–95.CrossRefPubMed
3.
go back to reference Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors. 2007;25(4):209–26.CrossRefPubMed Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors. 2007;25(4):209–26.CrossRefPubMed
4.
go back to reference Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.CrossRefPubMed Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.CrossRefPubMed
5.
go back to reference Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56.CrossRefPubMed Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56.CrossRefPubMed
6.
go back to reference Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.CrossRefPubMedPubMedCentral Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.CrossRefPubMedPubMedCentral
7.
go back to reference Rugo HS, Pritchard KI, Gnant M, Noguchi S, Piccart M, Hortobagyi G, et al. Incidence and time course of everolimus-related adverse events in postmenopausal women with hormone receptor-positive advanced breast cancer: insights from BOLERO-2. Ann Oncol. 2014;25(4):808–15.CrossRefPubMedPubMedCentral Rugo HS, Pritchard KI, Gnant M, Noguchi S, Piccart M, Hortobagyi G, et al. Incidence and time course of everolimus-related adverse events in postmenopausal women with hormone receptor-positive advanced breast cancer: insights from BOLERO-2. Ann Oncol. 2014;25(4):808–15.CrossRefPubMedPubMedCentral
8.
go back to reference Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors. Cancer. 2010;116(18):4256–65.CrossRefPubMed Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors. Cancer. 2010;116(18):4256–65.CrossRefPubMed
11.
go back to reference Størset E, Holford N, Hennig S, Bergmann TK, Bergan S, Bremer S, et al. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling. Br J Clin Pharmacol. 2014;78(3):509–23.CrossRefPubMedPubMedCentral Størset E, Holford N, Hennig S, Bergmann TK, Bergan S, Bremer S, et al. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling. Br J Clin Pharmacol. 2014;78(3):509–23.CrossRefPubMedPubMedCentral
12.
go back to reference Kovarik JM, Sabia HD, Figueiredo J, Zimmermann H, Reynolds C, Dilzer SC, et al. Influence of hepatic impairment on everolimus pharmacoltinetics: Implications for dose adjustment. Clin Pharmacol Ther. 2001;70:425–30.CrossRefPubMed Kovarik JM, Sabia HD, Figueiredo J, Zimmermann H, Reynolds C, Dilzer SC, et al. Influence of hepatic impairment on everolimus pharmacoltinetics: Implications for dose adjustment. Clin Pharmacol Ther. 2001;70:425–30.CrossRefPubMed
14.
go back to reference Moes DJA, Press RR, den Hartigh J, van der Straaten T, de Fijter JW, Guchelaar H-J. Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients. Clin Pharmacokinet. 2012;51(7):467–80.CrossRefPubMed Moes DJA, Press RR, den Hartigh J, van der Straaten T, de Fijter JW, Guchelaar H-J. Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients. Clin Pharmacokinet. 2012;51(7):467–80.CrossRefPubMed
15.
go back to reference Felipe C, Oliveira N, Hannun P, de Paula MI, Tedesco-Silva H, Medina-Pestana JO. Pharmacokinetics and long-term safety and tolerability of everolimus in renal transplant recipients converted from cyclosporine. Ther Drug Monit. 2016;38(1):64–72.CrossRefPubMed Felipe C, Oliveira N, Hannun P, de Paula MI, Tedesco-Silva H, Medina-Pestana JO. Pharmacokinetics and long-term safety and tolerability of everolimus in renal transplant recipients converted from cyclosporine. Ther Drug Monit. 2016;38(1):64–72.CrossRefPubMed
16.
go back to reference Tanaka C, O’Reilly T, Kovarik JM, Shand N, Hazell K, Judson I, et al. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol. 2008;26(10):1596–602.PubMed Tanaka C, O’Reilly T, Kovarik JM, Shand N, Hazell K, Judson I, et al. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol. 2008;26(10):1596–602.PubMed
18.
go back to reference Keizer RJ, Karlsson M, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol. 2013;2(6):e50.CrossRef Keizer RJ, Karlsson M, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol. 2013;2(6):e50.CrossRef
19.
go back to reference ter Heine R, Scherpbier HJ, Crommentuyn K, Bekker V, Beijnen JH, Kuijpers TW, et al. A pharmacokinetic and pharmacogenetic study of efavirenz in children: dosing guidelines can result in subtherapeutic concentrations. Antivir Ther. 2008;13(6):779–87.PubMed ter Heine R, Scherpbier HJ, Crommentuyn K, Bekker V, Beijnen JH, Kuijpers TW, et al. A pharmacokinetic and pharmacogenetic study of efavirenz in children: dosing guidelines can result in subtherapeutic concentrations. Antivir Ther. 2008;13(6):779–87.PubMed
20.
go back to reference Rousseau A, Leger F, Le Meur Y, Saint-Marcoux F, Paintaud G, Buchler M, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit. 2004;26(1):23–30.CrossRefPubMed Rousseau A, Leger F, Le Meur Y, Saint-Marcoux F, Paintaud G, Buchler M, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit. 2004;26(1):23–30.CrossRefPubMed
21.
go back to reference Gordi T, Xie R, Huong NV, Huong DX, Karlsson MO, Ashton M. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol. 2005;59(2):189–98.CrossRefPubMedPubMedCentral Gordi T, Xie R, Huong NV, Huong DX, Karlsson MO, Ashton M. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol. 2005;59(2):189–98.CrossRefPubMedPubMedCentral
22.
go back to reference O’Reilly T, McSheehy PMJ. Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol. 2010;3(2):65–79.CrossRefPubMedPubMedCentral O’Reilly T, McSheehy PMJ. Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol. 2010;3(2):65–79.CrossRefPubMedPubMedCentral
23.
go back to reference Knight K, Wade S, Balducci L. Prevalence and outcomes of anemia in cancer: a systematic review of the literature. Am J Med. 2004;116(7):11–26.CrossRef Knight K, Wade S, Balducci L. Prevalence and outcomes of anemia in cancer: a systematic review of the literature. Am J Med. 2004;116(7):11–26.CrossRef
24.
go back to reference Hinderling PH. Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol Rev. 1997;49(3):279–95.PubMed Hinderling PH. Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol Rev. 1997;49(3):279–95.PubMed
25.
go back to reference Ravaud A, Urva SR, Grosch K, Cheung WK, Anak O, Sellami DB. Relationship between everolimus exposure and safety and efficacy: meta-analysis of clinical trials in oncology. Eur J Cancer. 2014;50(3):486–95.CrossRefPubMed Ravaud A, Urva SR, Grosch K, Cheung WK, Anak O, Sellami DB. Relationship between everolimus exposure and safety and efficacy: meta-analysis of clinical trials in oncology. Eur J Cancer. 2014;50(3):486–95.CrossRefPubMed
26.
go back to reference Thiery-Vuillemin A, Mouillet G, Nguyen Tan Hon T, Montcuquet P, Maurina T, Almotlak H, et al. Impact of everolimus blood concentration on its anti-cancer activity in patients with metastatic renal cell carcinoma. Cancer Chemother Pharmacol. 2014;73(5):999–1007.CrossRefPubMed Thiery-Vuillemin A, Mouillet G, Nguyen Tan Hon T, Montcuquet P, Maurina T, Almotlak H, et al. Impact of everolimus blood concentration on its anti-cancer activity in patients with metastatic renal cell carcinoma. Cancer Chemother Pharmacol. 2014;73(5):999–1007.CrossRefPubMed
27.
go back to reference Lemaitre F, Bezian E, Goldwirt L, Fernandez C, Farinotti R, Varnous S, et al. Population pharmacokinetics of everolimus in cardiac recipients: comedications, ABCB1, and CYP3A5 polymorphisms. Ther Drug Monit. 2012;34(6):686–94.CrossRefPubMed Lemaitre F, Bezian E, Goldwirt L, Fernandez C, Farinotti R, Varnous S, et al. Population pharmacokinetics of everolimus in cardiac recipients: comedications, ABCB1, and CYP3A5 polymorphisms. Ther Drug Monit. 2012;34(6):686–94.CrossRefPubMed
28.
go back to reference Kovarik JM, Hsu CH, McMahon L, Berthier S, Rordorf C. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther. 2001;70(3):247–54.CrossRefPubMed Kovarik JM, Hsu CH, McMahon L, Berthier S, Rordorf C. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther. 2001;70(3):247–54.CrossRefPubMed
29.
go back to reference Lettieri JT, Portelli ST. Effects of competitive red blood cell binding and reduced hematocrit on the blood and plasma levels of [14C] Indapamide in the rat. J Pharmacol Exp Ther. 1983;224(2):269–72.PubMed Lettieri JT, Portelli ST. Effects of competitive red blood cell binding and reduced hematocrit on the blood and plasma levels of [14C] Indapamide in the rat. J Pharmacol Exp Ther. 1983;224(2):269–72.PubMed
30.
go back to reference Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1603–10.CrossRefPubMed Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1603–10.CrossRefPubMed
Metadata
Title
A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients
Authors
Nielka P. van Erp
Carla M. van Herpen
Djoeke de Wit
Annelieke Willemsen
David M. Burger
Alwin D. R. Huitema
Ellen Kapiteijn
Rob ter Heine, PhD, PharmD
Publication date
01-11-2016
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 11/2016
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-016-0414-3

Other articles of this Issue 11/2016

Clinical Pharmacokinetics 11/2016 Go to the issue