Skip to main content
Top
Published in: Clinical Pharmacokinetics 6/2016

Open Access 01-06-2016 | Review Article

Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models

Authors: Sheila Annie Peters, Christopher R. Jones, Anna-Lena Ungell, Oliver J. D. Hatley

Published in: Clinical Pharmacokinetics | Issue 6/2016

Login to get access

Abstract

Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models—in vivo, in situ and in vitrohave been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.
Literature
2.
go back to reference Liu G, Franssen E, Fitch MI, Warner E. Patient preferences for oral versus intravenous palliative chemotherapy. J Clin Oncol. 1997;15(1):110–5.PubMed Liu G, Franssen E, Fitch MI, Warner E. Patient preferences for oral versus intravenous palliative chemotherapy. J Clin Oncol. 1997;15(1):110–5.PubMed
3.
go back to reference Rafil F, Franklin W, Heflich RH, Cerniglia CE. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl Environ Microbiol. 1991;57(4):962–8.PubMedPubMedCentral Rafil F, Franklin W, Heflich RH, Cerniglia CE. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl Environ Microbiol. 1991;57(4):962–8.PubMedPubMedCentral
4.
go back to reference Nishimuta H, Houston JB, Galetin A. Hepatic, intestinal, renal, and plasma hydrolysis of prodrugs in human, cynomolgus monkey, dog, and rat: implications for in vitro–in vivo extrapolation of clearance of prodrugs. Drug Metab Dispos. 2014;42(9):1522–31.PubMedCrossRef Nishimuta H, Houston JB, Galetin A. Hepatic, intestinal, renal, and plasma hydrolysis of prodrugs in human, cynomolgus monkey, dog, and rat: implications for in vitro–in vivo extrapolation of clearance of prodrugs. Drug Metab Dispos. 2014;42(9):1522–31.PubMedCrossRef
5.
6.
go back to reference McCabe M, Sane RS, Keith-Luzzi M, Xu J, King I, Whitcher-Johnstone A, et al. Defining the role of gut bacteria in the metabolism of deleobuvir: in vitro and in vivo studies. Drug Metab Dispos. 2015;43(10):1612–8.PubMedCrossRef McCabe M, Sane RS, Keith-Luzzi M, Xu J, King I, Whitcher-Johnstone A, et al. Defining the role of gut bacteria in the metabolism of deleobuvir: in vitro and in vivo studies. Drug Metab Dispos. 2015;43(10):1612–8.PubMedCrossRef
7.
go back to reference Kaminsky LS, Zhang Q-Y. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos. 2003;31(12):1520–5.PubMedCrossRef Kaminsky LS, Zhang Q-Y. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos. 2003;31(12):1520–5.PubMedCrossRef
8.
go back to reference Darwich AS, Aslam U, Ashcroft DM, Rostami-Hodjegan A. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metab Dispos. 2014;42(12):2016–22.PubMedCrossRef Darwich AS, Aslam U, Ashcroft DM, Rostami-Hodjegan A. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metab Dispos. 2014;42(12):2016–22.PubMedCrossRef
9.
go back to reference Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34(5):880–6.PubMedPubMedCentralCrossRef Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34(5):880–6.PubMedPubMedCentralCrossRef
10.
go back to reference Yang J, Tucker GT, Rostami Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther. 2004;76(4):391. Yang J, Tucker GT, Rostami Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther. 2004;76(4):391.
11.
go back to reference Kolars JC, Watkins P, Merion RM, Awni W. First-pass metabolism of cyclosporin by the gut. Lancet. 1991;338(8781):1488–90.PubMedCrossRef Kolars JC, Watkins P, Merion RM, Awni W. First-pass metabolism of cyclosporin by the gut. Lancet. 1991;338(8781):1488–90.PubMedCrossRef
12.
go back to reference Paine MF, Shen DD, Kunze KL, Perkins JD, Marsh CL, McVicar JP, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60(1):14–24.PubMedCrossRef Paine MF, Shen DD, Kunze KL, Perkins JD, Marsh CL, McVicar JP, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60(1):14–24.PubMedCrossRef
13.
go back to reference von Richter O, Greiner B, Fromm MF, Fraser R, Omari T, Barclay ML, et al. Determination of in vivo absorption, metabolism, and transport of drugs by the human intestinal wall and liver with a novel perfusion technique. Clin Pharmacol Ther. 2001;70(3):217–27.CrossRef von Richter O, Greiner B, Fromm MF, Fraser R, Omari T, Barclay ML, et al. Determination of in vivo absorption, metabolism, and transport of drugs by the human intestinal wall and liver with a novel perfusion technique. Clin Pharmacol Ther. 2001;70(3):217–27.CrossRef
14.
go back to reference Benet L, Cummins C, Wu C. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int J Pharm. 2004;277(1):3–9.PubMedCrossRef Benet L, Cummins C, Wu C. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int J Pharm. 2004;277(1):3–9.PubMedCrossRef
16.
go back to reference Siissalo S, Heikkinen AT. In vitro methods to study the interplay of drug metabolism and efflux in the intestine. Curr Drug Metab. 2013;14(1):102–11.PubMedCrossRef Siissalo S, Heikkinen AT. In vitro methods to study the interplay of drug metabolism and efflux in the intestine. Curr Drug Metab. 2013;14(1):102–11.PubMedCrossRef
17.
go back to reference Fagerholm U. Prediction of human pharmacokinetics: gut-wall metabolism. J Pharm Pharmacol. 2007;59(10):1335–43.PubMedCrossRef Fagerholm U. Prediction of human pharmacokinetics: gut-wall metabolism. J Pharm Pharmacol. 2007;59(10):1335–43.PubMedCrossRef
18.
go back to reference Hellriegel ET, Bjornsson TD, Hauck WW. Interpatient variability in bioavailability is related to the extent of absorption: implications for bioavailability and bioequivalence studies. Clin Pharmacol Ther. 1996;60(6):601–7.PubMedCrossRef Hellriegel ET, Bjornsson TD, Hauck WW. Interpatient variability in bioavailability is related to the extent of absorption: implications for bioavailability and bioequivalence studies. Clin Pharmacol Ther. 1996;60(6):601–7.PubMedCrossRef
19.
go back to reference Fahmi OA, Hurst S, Plowchalk D, Cook J, Guo F, Youdim K, et al. Comparison of different algorithms for predicting clinical drug–drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction. Drug Metab Dispos. 2009;37(8):1658–66.PubMedCrossRef Fahmi OA, Hurst S, Plowchalk D, Cook J, Guo F, Youdim K, et al. Comparison of different algorithms for predicting clinical drug–drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction. Drug Metab Dispos. 2009;37(8):1658–66.PubMedCrossRef
20.
go back to reference Fahmi OA, Maurer TS, Kish M, Cardenas E, Boldt S, Nettleton D. A combined model for predicting CYP3A4 clinical net drug–drug interaction based on CYP3A4 inhibition, inactivation, and induction determined in vitro. Drug Metab Dispos. 2008;36(8):1698–708.PubMedCrossRef Fahmi OA, Maurer TS, Kish M, Cardenas E, Boldt S, Nettleton D. A combined model for predicting CYP3A4 clinical net drug–drug interaction based on CYP3A4 inhibition, inactivation, and induction determined in vitro. Drug Metab Dispos. 2008;36(8):1698–708.PubMedCrossRef
21.
go back to reference Galetin A, Gertz M, Houston JB. Potential role of intestinal first-pass metabolism in the prediction of drug–drug interactions. Expert Opin Drug Metab Toxicol. 2008;4(7):909–22.PubMedCrossRef Galetin A, Gertz M, Houston JB. Potential role of intestinal first-pass metabolism in the prediction of drug–drug interactions. Expert Opin Drug Metab Toxicol. 2008;4(7):909–22.PubMedCrossRef
22.
go back to reference Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome P450-mediated metabolism to drug–drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome P450-mediated metabolism to drug–drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef
23.
go back to reference Vieira ML, Kirby B, Ragueneau-Majlessi I, Galetin A, Chien J, Einolf H, et al. Evaluation of various static in vitro–in vivo extrapolation models for risk assessment of the CYP3A inhibition potential of an investigational drug. Clin Pharmacol Ther. 2014;95(2):189–98.PubMedCrossRef Vieira ML, Kirby B, Ragueneau-Majlessi I, Galetin A, Chien J, Einolf H, et al. Evaluation of various static in vitro–in vivo extrapolation models for risk assessment of the CYP3A inhibition potential of an investigational drug. Clin Pharmacol Ther. 2014;95(2):189–98.PubMedCrossRef
24.
go back to reference Peters SA, Schroeder PE, Giri N, Dolgos H. Evaluation of the use of static and dynamic models to predict drug–drug interaction and its associated variability: impact on drug discovery and early development. Drug Metab Dispos. 2012;40(8):1495–507.PubMedCrossRef Peters SA, Schroeder PE, Giri N, Dolgos H. Evaluation of the use of static and dynamic models to predict drug–drug interaction and its associated variability: impact on drug discovery and early development. Drug Metab Dispos. 2012;40(8):1495–507.PubMedCrossRef
25.
go back to reference König J, Müller F, Fromm MF. Transporters and drug–drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65(3):944–66.PubMedCrossRef König J, Müller F, Fromm MF. Transporters and drug–drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65(3):944–66.PubMedCrossRef
26.
go back to reference Müller F, Fromm MF. Transporter-mediated drug–drug interactions. Pharmacogenomics. 2011;12(7):1017–37.PubMedCrossRef Müller F, Fromm MF. Transporter-mediated drug–drug interactions. Pharmacogenomics. 2011;12(7):1017–37.PubMedCrossRef
27.
go back to reference Yoshida K, Maeda K, Sugiyama Y. Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug–drug interactions and genetic polymorphisms. Ann Rev Pharmacol Toxicol. 2013;53:581–612.CrossRef Yoshida K, Maeda K, Sugiyama Y. Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug–drug interactions and genetic polymorphisms. Ann Rev Pharmacol Toxicol. 2013;53:581–612.CrossRef
28.
go back to reference Zakeri-Milani P, Valizadeh H. Intestinal transporters: enhanced absorption through P-glycoprotein-related drug interactions. Expert Opin Drug Metab Toxicol. 2014;10(6):859–71.PubMedCrossRef Zakeri-Milani P, Valizadeh H. Intestinal transporters: enhanced absorption through P-glycoprotein-related drug interactions. Expert Opin Drug Metab Toxicol. 2014;10(6):859–71.PubMedCrossRef
29.
go back to reference Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.PubMedCrossRef Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.PubMedCrossRef
30.
go back to reference Komura H, Iwaki M. In vitro and in vivo small intestinal metabolism of CYP3A and UGT substrates in preclinical animals species and humans: species differences. Drug Metab Rev. 2011;43(4):476–98.PubMedCrossRef Komura H, Iwaki M. In vitro and in vivo small intestinal metabolism of CYP3A and UGT substrates in preclinical animals species and humans: species differences. Drug Metab Rev. 2011;43(4):476–98.PubMedCrossRef
31.
go back to reference Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94.PubMedCrossRef Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94.PubMedCrossRef
32.
go back to reference Tucker TG, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MW. Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum. Biochem Pharmacol. 2012;83(2):279–85.PubMedCrossRef Tucker TG, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MW. Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum. Biochem Pharmacol. 2012;83(2):279–85.PubMedCrossRef
33.
go back to reference Gröer C, Brück S, Lai Y, Paulick A, Busemann A, Heidecke C, et al. LC–MS/MS-based quantification of clinically relevant intestinal uptake and efflux transporter proteins. J Pharm Biomed Anal. 2013;85:253–61.PubMedCrossRef Gröer C, Brück S, Lai Y, Paulick A, Busemann A, Heidecke C, et al. LC–MS/MS-based quantification of clinically relevant intestinal uptake and efflux transporter proteins. J Pharm Biomed Anal. 2013;85:253–61.PubMedCrossRef
34.
go back to reference Shi S, Li Y. Interplay of drug-metabolizing enzymes and transporters in drug absorption and disposition. Curr Drug Metab. 2015;15(10):915–41.CrossRef Shi S, Li Y. Interplay of drug-metabolizing enzymes and transporters in drug absorption and disposition. Curr Drug Metab. 2015;15(10):915–41.CrossRef
35.
go back to reference Mohri K, Uesawa Y. Enzymatic activities in the microsomes prepared from rat small intestinal epithelial cells by differential procedures. Pharm Res. 2001;18(8):1232–6.PubMedCrossRef Mohri K, Uesawa Y. Enzymatic activities in the microsomes prepared from rat small intestinal epithelial cells by differential procedures. Pharm Res. 2001;18(8):1232–6.PubMedCrossRef
36.
go back to reference Sharer JE, Shipley LA, Vandenbranden MR, Binkley SN, Wrighton SA. Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey. Drug Metab Dispos. 1995;23(11):1231–41.PubMed Sharer JE, Shipley LA, Vandenbranden MR, Binkley SN, Wrighton SA. Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey. Drug Metab Dispos. 1995;23(11):1231–41.PubMed
37.
go back to reference Kolars JC, Lown KS, Schmiedlin-Ren P, Ghosh M, Fang C, Wrighton SA, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics. 1994;4(5):247–59.PubMedCrossRef Kolars JC, Lown KS, Schmiedlin-Ren P, Ghosh M, Fang C, Wrighton SA, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics. 1994;4(5):247–59.PubMedCrossRef
38.
go back to reference Hebert MF, Roberts JP, Prueksaritanont T, Benet LZ. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther. 1992;52(5):453–7.PubMedCrossRef Hebert MF, Roberts JP, Prueksaritanont T, Benet LZ. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther. 1992;52(5):453–7.PubMedCrossRef
39.
go back to reference Tsunoda SM, Velez RL, Moltke LL, Greenblatt DJ. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther. 1999;66(5):461–71.PubMedCrossRef Tsunoda SM, Velez RL, Moltke LL, Greenblatt DJ. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther. 1999;66(5):461–71.PubMedCrossRef
40.
go back to reference Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.PubMedCrossRef Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.PubMedCrossRef
41.
go back to reference Lennernäs H, Ahrenstedt Ö, Hällgren R, Knutson L, Ryde M, Paalzow LK. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm Res. 1992;9(10):1243–51.PubMedCrossRef Lennernäs H, Ahrenstedt Ö, Hällgren R, Knutson L, Ryde M, Paalzow LK. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm Res. 1992;9(10):1243–51.PubMedCrossRef
42.
go back to reference Lennernäs H, Nylander S, Ungell A-L. Jejunal permeability: a comparison between the Ussing Chamber technique and the single-pass perfusion in humans. Pharm Res. 1997;14(5):667–71.PubMedCrossRef Lennernäs H, Nylander S, Ungell A-L. Jejunal permeability: a comparison between the Ussing Chamber technique and the single-pass perfusion in humans. Pharm Res. 1997;14(5):667–71.PubMedCrossRef
43.
go back to reference van de Kerkhof EG, de Graaf IA, Groothuis GM. In vitro methods to study intestinal drug metabolism. Curr Drug Metab. 2007;8(7):658–75.PubMedCrossRef van de Kerkhof EG, de Graaf IA, Groothuis GM. In vitro methods to study intestinal drug metabolism. Curr Drug Metab. 2007;8(7):658–75.PubMedCrossRef
44.
go back to reference Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev. 1999;51(2):135–58.PubMed Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev. 1999;51(2):135–58.PubMed
45.
go back to reference Cubitt HE, Houston JB, Galetin A. Relative importance of intestinal and hepatic glucuronidation: impact on the prediction of drug clearance. Pharm Res. 2009;26(5):1073–83.PubMedCrossRef Cubitt HE, Houston JB, Galetin A. Relative importance of intestinal and hepatic glucuronidation: impact on the prediction of drug clearance. Pharm Res. 2009;26(5):1073–83.PubMedCrossRef
46.
go back to reference Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome p450-mediated metabolism to drug–drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome p450-mediated metabolism to drug–drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef
47.
go back to reference Eeckhoudt S, Horsmans Y, Verbeeck R-K. Differential induction of midazolam metabolism in the small intestine and liver by oral and intravenous dexamethasone pretreatment in rat. Xenobiotica. 2002;32(11):975–84.PubMedCrossRef Eeckhoudt S, Horsmans Y, Verbeeck R-K. Differential induction of midazolam metabolism in the small intestine and liver by oral and intravenous dexamethasone pretreatment in rat. Xenobiotica. 2002;32(11):975–84.PubMedCrossRef
48.
go back to reference Kotegawa T, Laurijssens BE, von Moltke LL, Cotreau MM, Perloff MD, Venkatakrishnan K, et al. In vitro, pharmacokinetic, and pharmacodynamic interactions of ketoconazole and midazolam in the rat. J Pharmacol Exper Ther. 2002;302(3):1228–37.CrossRef Kotegawa T, Laurijssens BE, von Moltke LL, Cotreau MM, Perloff MD, Venkatakrishnan K, et al. In vitro, pharmacokinetic, and pharmacodynamic interactions of ketoconazole and midazolam in the rat. J Pharmacol Exper Ther. 2002;302(3):1228–37.CrossRef
49.
go back to reference Kadono K, Akabane T, Tabata K, Gato K, Terashita S, Teramura T. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor. Drug Metab Dispos. 2010;38(7):1230–7.PubMedCrossRef Kadono K, Akabane T, Tabata K, Gato K, Terashita S, Teramura T. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor. Drug Metab Dispos. 2010;38(7):1230–7.PubMedCrossRef
50.
go back to reference Kato M, Chiba K, Hisaka A, Ishigami M, Kayama M, Mizuno N, et al. The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative analysis based on information from the literature. Drug Metab Pharmacokinet. 2003;18(6):365–72.PubMedCrossRef Kato M, Chiba K, Hisaka A, Ishigami M, Kayama M, Mizuno N, et al. The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative analysis based on information from the literature. Drug Metab Pharmacokinet. 2003;18(6):365–72.PubMedCrossRef
51.
go back to reference Gertz M, Davis JD, Harrison A, Houston JB, Galetin A. Grapefruit juice-drug interaction studies as a method to assess the extent of intestinal availability: utility and limitations. Curr Drug Metab. 2008;9(8):785–95.PubMedCrossRef Gertz M, Davis JD, Harrison A, Houston JB, Galetin A. Grapefruit juice-drug interaction studies as a method to assess the extent of intestinal availability: utility and limitations. Curr Drug Metab. 2008;9(8):785–95.PubMedCrossRef
52.
go back to reference Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther. 1995;57(5):485–91.PubMedCrossRef Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther. 1995;57(5):485–91.PubMedCrossRef
53.
go back to reference Farkas D, Oleson LE, Zhao Y, Harmatz JS, Zinny MA, Court MH, et al. Pomegranate juice does not impair clearance of oral or intravenous midazolam, a probe for cytochrome P450-3A activity: comparison with grapefruit juice. J Clin Pharmacol. 2007;47(3):286–94.PubMedCrossRef Farkas D, Oleson LE, Zhao Y, Harmatz JS, Zinny MA, Court MH, et al. Pomegranate juice does not impair clearance of oral or intravenous midazolam, a probe for cytochrome P450-3A activity: comparison with grapefruit juice. J Clin Pharmacol. 2007;47(3):286–94.PubMedCrossRef
54.
go back to reference Kharasch ED, Walker A, Hoffer C, Sheffels P. Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3A activity: Noninvasive assessment by use of pupillary miosis. Clin Pharmacol Ther. 2004;76(5):452–66.PubMedCrossRef Kharasch ED, Walker A, Hoffer C, Sheffels P. Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3A activity: Noninvasive assessment by use of pupillary miosis. Clin Pharmacol Ther. 2004;76(5):452–66.PubMedCrossRef
55.
go back to reference Kupferschmidt HH, Ha HR, Ziegler WH, Meier PJ, Krähenbühl S. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther. 1995;58(1):20–8.PubMedCrossRef Kupferschmidt HH, Ha HR, Ziegler WH, Meier PJ, Krähenbühl S. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther. 1995;58(1):20–8.PubMedCrossRef
56.
go back to reference Lundahl J, Regårdh C, Edgar B, Johnsson G. Effects of grapefruit juice ingestion—pharmacokinetics and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur J Clin Pharmacol. 1997;52(2):139–45.PubMedCrossRef Lundahl J, Regårdh C, Edgar B, Johnsson G. Effects of grapefruit juice ingestion—pharmacokinetics and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur J Clin Pharmacol. 1997;52(2):139–45.PubMedCrossRef
57.
go back to reference Paine MF, Criss AB, Watkins PB. Two major grapefruit juice components differ in intestinal CYP3A4 inhibition kinetic and binding properties. Drug Metab Dispos. 2004;32(10):1146–53.PubMedCrossRef Paine MF, Criss AB, Watkins PB. Two major grapefruit juice components differ in intestinal CYP3A4 inhibition kinetic and binding properties. Drug Metab Dispos. 2004;32(10):1146–53.PubMedCrossRef
58.
go back to reference Lown KS, Bailey DG, Fontana RJ, Janardan SK, Adair CH, Fortlage LA, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest. 1997;99(10):2545.PubMedPubMedCentralCrossRef Lown KS, Bailey DG, Fontana RJ, Janardan SK, Adair CH, Fortlage LA, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest. 1997;99(10):2545.PubMedPubMedCentralCrossRef
59.
go back to reference Rashid T, Martin U, Clarke H, Waller D, Renwick A, George C. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol. 1995;40(1):51–8.PubMedPubMedCentralCrossRef Rashid T, Martin U, Clarke H, Waller D, Renwick A, George C. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol. 1995;40(1):51–8.PubMedPubMedCentralCrossRef
60.
go back to reference Floren LC, Bekersky I, Benet LZ, Mekki Q, Dressler D, Lee JW, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther. 1997;62(1):41–9.PubMedCrossRef Floren LC, Bekersky I, Benet LZ, Mekki Q, Dressler D, Lee JW, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther. 1997;62(1):41–9.PubMedCrossRef
61.
go back to reference Guo L-Q, Fukuda K, Ohta T, Yamazoe Y. Role of furanocoumarin derivatives on grapefruit juice-mediated inhibition of human CYP3A activity. Drug Metab Dispos. 2000;28(7):766–71.PubMed Guo L-Q, Fukuda K, Ohta T, Yamazoe Y. Role of furanocoumarin derivatives on grapefruit juice-mediated inhibition of human CYP3A activity. Drug Metab Dispos. 2000;28(7):766–71.PubMed
62.
go back to reference Ameer B, Weintraub RA. Drug interactions with grapefruit juice. Clin Pharmacokinet. 1997;33(2):103–21.PubMedCrossRef Ameer B, Weintraub RA. Drug interactions with grapefruit juice. Clin Pharmacokinet. 1997;33(2):103–21.PubMedCrossRef
63.
go back to reference Paine MF, Widmer WW, Hart HL, Pusek SN, Beavers KL, Criss AB, et al. A furanocoumarin-free grapefruit juice establishes furanocoumarins as the mediators of the grapefruit juice: felodipine interaction. Am J Clinl Nutr. 2006;83(5):1097–105. Paine MF, Widmer WW, Hart HL, Pusek SN, Beavers KL, Criss AB, et al. A furanocoumarin-free grapefruit juice establishes furanocoumarins as the mediators of the grapefruit juice: felodipine interaction. Am J Clinl Nutr. 2006;83(5):1097–105.
64.
go back to reference Paine MF, Oberlies NH. Clinical relevance of the small intestine as an organ of drug elimination: drug-fruit juice interactions. Expert Opin Drug Metab Toxicol. 2007;3(1):67–80.PubMedCrossRef Paine MF, Oberlies NH. Clinical relevance of the small intestine as an organ of drug elimination: drug-fruit juice interactions. Expert Opin Drug Metab Toxicol. 2007;3(1):67–80.PubMedCrossRef
65.
go back to reference Paine MF, Criss AB, Watkins PB. Two major grapefruit juice components differ in time to onset of intestinal CYP3A4 inhibition. J Pharmacol Exper Ther. 2005;312(3):1151–60.CrossRef Paine MF, Criss AB, Watkins PB. Two major grapefruit juice components differ in time to onset of intestinal CYP3A4 inhibition. J Pharmacol Exper Ther. 2005;312(3):1151–60.CrossRef
66.
go back to reference Neuhoff S, Ungell A-L, Zamora I, Artursson P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug–drug interactions. Pharm Res. 2003;20(8):1141–8.PubMedCrossRef Neuhoff S, Ungell A-L, Zamora I, Artursson P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug–drug interactions. Pharm Res. 2003;20(8):1141–8.PubMedCrossRef
67.
go back to reference Ungell A-L. In vitro absorption studies and their relevance to absorption from the GI tract. Drug Dev Ind Pharm. 1997;23(9):879–92.CrossRef Ungell A-L. In vitro absorption studies and their relevance to absorption from the GI tract. Drug Dev Ind Pharm. 1997;23(9):879–92.CrossRef
68.
go back to reference Neuhoff S, Ungell A-L, Zamora I, Artursson P. pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers. Eur J Pharm Sci. 2005;25(2):211–20.PubMedCrossRef Neuhoff S, Ungell A-L, Zamora I, Artursson P. pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers. Eur J Pharm Sci. 2005;25(2):211–20.PubMedCrossRef
69.
go back to reference Sjöberg Å, Lutz M, Tannergren C, Wingolf C, Borde A, Ungell A-L. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci. 2013;48(1):166–80.PubMedCrossRef Sjöberg Å, Lutz M, Tannergren C, Wingolf C, Borde A, Ungell A-L. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci. 2013;48(1):166–80.PubMedCrossRef
70.
go back to reference Ungell AL, Nylander S, Bergstrand S, Sjöberg Å, Lennernäs H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87(3):360–6.PubMedCrossRef Ungell AL, Nylander S, Bergstrand S, Sjöberg Å, Lennernäs H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87(3):360–6.PubMedCrossRef
71.
go back to reference Li LY, Amidon GL, Kim JS, Heimbach T, Kesisoglou F, Topliss JT, et al. Intestinal metabolism promotes regional differences in apical uptake of indinavir: coupled effect of P-glycoprotein and cytochrome P450 3A on indinavir membrane permeability in rat. J Pharmacol Exp Ther. 2002;301(2):586–93.PubMedCrossRef Li LY, Amidon GL, Kim JS, Heimbach T, Kesisoglou F, Topliss JT, et al. Intestinal metabolism promotes regional differences in apical uptake of indinavir: coupled effect of P-glycoprotein and cytochrome P450 3A on indinavir membrane permeability in rat. J Pharmacol Exp Ther. 2002;301(2):586–93.PubMedCrossRef
72.
go back to reference Estudante M, Morais JG, Soveral G, Benet LZ. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65(10):1340–56.PubMedCrossRef Estudante M, Morais JG, Soveral G, Benet LZ. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65(10):1340–56.PubMedCrossRef
73.
go back to reference Murakami T, Takano M. Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol. 2008;4(7):923–39.PubMedCrossRef Murakami T, Takano M. Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol. 2008;4(7):923–39.PubMedCrossRef
74.
go back to reference Zimmermann C, Gutmann H, Hruz P, Gutzwiller J-P, Beglinger C, Drewe J. Mapping of multidrug resistance gene 1 and multidrug resistance-associated protein isoform 1 to 5 mRNA expression along the human intestinal tract. Drug Metab Dispos. 2005;33(2):219–24.PubMedCrossRef Zimmermann C, Gutmann H, Hruz P, Gutzwiller J-P, Beglinger C, Drewe J. Mapping of multidrug resistance gene 1 and multidrug resistance-associated protein isoform 1 to 5 mRNA expression along the human intestinal tract. Drug Metab Dispos. 2005;33(2):219–24.PubMedCrossRef
75.
go back to reference Makhey VD, Guo A, Norris DA, Hu P, Yan J, Sinko PJ. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm Res. 1998;15(8):1160–7.PubMedCrossRef Makhey VD, Guo A, Norris DA, Hu P, Yan J, Sinko PJ. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm Res. 1998;15(8):1160–7.PubMedCrossRef
76.
go back to reference Stephens R, O’Neill C, Warhurst A, Carlson G, Rowland M, Warhurst G. Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J Pharmacol Exp Ther. 2001;296(2):584–91.PubMed Stephens R, O’Neill C, Warhurst A, Carlson G, Rowland M, Warhurst G. Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J Pharmacol Exp Ther. 2001;296(2):584–91.PubMed
77.
go back to reference Englund G, Rorsman F, Rönnblom A, Karlbom U, Lazorova L, Gråsjö J, et al. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur J Pharm Sci. 2006;29(3):269–77.PubMedCrossRef Englund G, Rorsman F, Rönnblom A, Karlbom U, Lazorova L, Gråsjö J, et al. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur J Pharm Sci. 2006;29(3):269–77.PubMedCrossRef
78.
go back to reference Seithel A, Karlsson J, Hilgendorf C, Björquist A, Ungell A-L. Variability in mRNA expression of ABC-and SLC-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur J Pharm Sci. 2006;28(4):291–9.PubMedCrossRef Seithel A, Karlsson J, Hilgendorf C, Björquist A, Ungell A-L. Variability in mRNA expression of ABC-and SLC-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur J Pharm Sci. 2006;28(4):291–9.PubMedCrossRef
79.
go back to reference Miao Q, Liu Q, Wang C, Meng Q, Guo X, Peng J, et al. Inhibitory effect of zinc on the absorption of JBP485 via the gastrointestinal oligopeptide transporter (PEPT1) in rats. Drug Metab Pharmacokinet. 2011;26(5):494–502.PubMedCrossRef Miao Q, Liu Q, Wang C, Meng Q, Guo X, Peng J, et al. Inhibitory effect of zinc on the absorption of JBP485 via the gastrointestinal oligopeptide transporter (PEPT1) in rats. Drug Metab Pharmacokinet. 2011;26(5):494–502.PubMedCrossRef
80.
go back to reference Yamamoto-Furusho JK, Mendivil-Rangel EJ, Villeda-Ramirez MA, Fonseca-Camarillo G, Barreto-Zuniga R. Gene expression of carnitine organic cation transporters 1 and 2 (OCTN) is downregulated in patients with ulcerative colitis. Inflamm Bowel Dis. 2011;17(10):2205–6.PubMedCrossRef Yamamoto-Furusho JK, Mendivil-Rangel EJ, Villeda-Ramirez MA, Fonseca-Camarillo G, Barreto-Zuniga R. Gene expression of carnitine organic cation transporters 1 and 2 (OCTN) is downregulated in patients with ulcerative colitis. Inflamm Bowel Dis. 2011;17(10):2205–6.PubMedCrossRef
81.
go back to reference Tapaninen T, Neuvonen PJ, Niemi M. Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren. Clin Pharmacol Ther. 2010;88(3):339–42.PubMedCrossRef Tapaninen T, Neuvonen PJ, Niemi M. Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren. Clin Pharmacol Ther. 2010;88(3):339–42.PubMedCrossRef
82.
go back to reference Herrera-Ruiz D, Wang Q, Gudmundsson OS, Cook TJ, Smith RL, Faria TN, et al. Spatial expression patterns of peptide transporters in the human and rat gastrointestinal tracts, Caco-2 in vitro cell culture model, and multiple human tissues. AAPS PharmSci. 2001;3(1):E9.PubMedCrossRef Herrera-Ruiz D, Wang Q, Gudmundsson OS, Cook TJ, Smith RL, Faria TN, et al. Spatial expression patterns of peptide transporters in the human and rat gastrointestinal tracts, Caco-2 in vitro cell culture model, and multiple human tissues. AAPS PharmSci. 2001;3(1):E9.PubMedCrossRef
83.
go back to reference Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell A-L, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35(8):1333–40.PubMedCrossRef Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell A-L, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35(8):1333–40.PubMedCrossRef
84.
go back to reference De Waziers I, Cugnenc P, Yang C, Leroux J, Beaune P. Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther. 1990;253(1):387–94.PubMed De Waziers I, Cugnenc P, Yang C, Leroux J, Beaune P. Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther. 1990;253(1):387–94.PubMed
85.
go back to reference Paine MF, Khalighi M, Fisher JM, Shen DD, Kunze KL, Marsh CL, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther. 1997;283(3):1552–62.PubMed Paine MF, Khalighi M, Fisher JM, Shen DD, Kunze KL, Marsh CL, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther. 1997;283(3):1552–62.PubMed
86.
go back to reference Zhang Q-Y, Dunbar D, Ostrowska A, Zeisloft S, Yang J, Kaminsky LS. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos. 1999;27(7):804–9.PubMed Zhang Q-Y, Dunbar D, Ostrowska A, Zeisloft S, Yang J, Kaminsky LS. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos. 1999;27(7):804–9.PubMed
87.
go back to reference Thummel KE, Kunze KL, Shen DD. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev. 1997;27(2):99–127.PubMedCrossRef Thummel KE, Kunze KL, Shen DD. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Deliv Rev. 1997;27(2):99–127.PubMedCrossRef
88.
go back to reference Gervot L, Carrière V, Costet P, Cugnenc P-H, Berger A, Beaune PH, et al. CYP3A5 is the major cytochrome P450 3A expressed in human colon and colonic cell lines. Environ Toxicol Pharmacol. 1996;2(4):381–8.PubMedCrossRef Gervot L, Carrière V, Costet P, Cugnenc P-H, Berger A, Beaune PH, et al. CYP3A5 is the major cytochrome P450 3A expressed in human colon and colonic cell lines. Environ Toxicol Pharmacol. 1996;2(4):381–8.PubMedCrossRef
89.
go back to reference Kivistö KT, Griese E-U, Fritz P, Linder A, Hakkola J, Raunio H, et al. Expression of cytochrome P 450 3A enzymes in human lung: a combined RT-PCR and immunohistochemical analysis of normal tissue and lung tumours. Naunyn Schmiedebergs Arch Pharmacol. 1996;353(2):207–12.PubMedCrossRef Kivistö KT, Griese E-U, Fritz P, Linder A, Hakkola J, Raunio H, et al. Expression of cytochrome P 450 3A enzymes in human lung: a combined RT-PCR and immunohistochemical analysis of normal tissue and lung tumours. Naunyn Schmiedebergs Arch Pharmacol. 1996;353(2):207–12.PubMedCrossRef
90.
go back to reference van de Kerkhof EG, Ungell AL, Sjoberg AK, de Jager MH, Hilgendorf C, de Graaf IA, et al. Innovative methods to study human intestinal drug metabolism in vitro: precision-cut slices compared with ussing chamber preparations. Drug Metab Dispos. 2006;34(11):1893–902.PubMedCrossRef van de Kerkhof EG, Ungell AL, Sjoberg AK, de Jager MH, Hilgendorf C, de Graaf IA, et al. Innovative methods to study human intestinal drug metabolism in vitro: precision-cut slices compared with ussing chamber preparations. Drug Metab Dispos. 2006;34(11):1893–902.PubMedCrossRef
91.
go back to reference Bergheim I, Bode C, Parlesak A. Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa. BMC Pharmacol Toxicol. 2005;5(1):4.CrossRef Bergheim I, Bode C, Parlesak A. Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa. BMC Pharmacol Toxicol. 2005;5(1):4.CrossRef
92.
go back to reference Darwich AS, Neuhoff S, Jamei M, Rostami-Hodjegan A. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the “Advanced Dissolution, Absorption, Metabolism (ADAM)” model. Curr Drug Metab. 2010;11(9):716–29.PubMedCrossRef Darwich AS, Neuhoff S, Jamei M, Rostami-Hodjegan A. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the “Advanced Dissolution, Absorption, Metabolism (ADAM)” model. Curr Drug Metab. 2010;11(9):716–29.PubMedCrossRef
93.
go back to reference Berggren S, Lennernäs P, Ekelund M, Weström B, Hoogstraate J, Lennernäs H. Regional transport and metabolism of ropivacaine and its CYP3A4 metabolite PPX in human intestine. J Pharm Pharmacol. 2003;55(7):963–72.PubMedCrossRef Berggren S, Lennernäs P, Ekelund M, Weström B, Hoogstraate J, Lennernäs H. Regional transport and metabolism of ropivacaine and its CYP3A4 metabolite PPX in human intestine. J Pharm Pharmacol. 2003;55(7):963–72.PubMedCrossRef
94.
go back to reference Le Ferrec E, Chesne C, Artusson P, Brayden D, Fabre G, Gires P, et al. In vitro models of the intestinal barrier. Altern Lab Anim. 2001;29:649–68.PubMed Le Ferrec E, Chesne C, Artusson P, Brayden D, Fabre G, Gires P, et al. In vitro models of the intestinal barrier. Altern Lab Anim. 2001;29:649–68.PubMed
95.
go back to reference Pang KS. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab Dispos. 2003;31(12):1507–19.PubMedCrossRef Pang KS. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab Dispos. 2003;31(12):1507–19.PubMedCrossRef
96.
go back to reference Koster AS, Hofman GA, Frankhuijzen-Sierevogel A, Noordhoek J. Presystemic and systemic intestinal metabolism of fenoterol in the conscious rat. Drug Metab Dispos. 1985;13(4):464–70.PubMed Koster AS, Hofman GA, Frankhuijzen-Sierevogel A, Noordhoek J. Presystemic and systemic intestinal metabolism of fenoterol in the conscious rat. Drug Metab Dispos. 1985;13(4):464–70.PubMed
97.
go back to reference Saitoh H, Saikachi Y, Kobayashi M, Yamaguchi M, Oda M, Yuhki Y, et al. Limited interaction between tacrolimus and P-glycoprotein in the rat small intestine. Eur J Pharm Sci. 2006;28(1):34–42.PubMedCrossRef Saitoh H, Saikachi Y, Kobayashi M, Yamaguchi M, Oda M, Yuhki Y, et al. Limited interaction between tacrolimus and P-glycoprotein in the rat small intestine. Eur J Pharm Sci. 2006;28(1):34–42.PubMedCrossRef
98.
go back to reference Doherty MM, Pang KS. Route-dependent metabolism of morphine in the vascularly perfused rat small intestine preparation. Pharm Res. 2000;17(3):291–8.PubMedCrossRef Doherty MM, Pang KS. Route-dependent metabolism of morphine in the vascularly perfused rat small intestine preparation. Pharm Res. 2000;17(3):291–8.PubMedCrossRef
99.
go back to reference Ilett KF, Tee LB, Reeves PT, Minchin RF. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol Ther. 1990;46(1):67–93.PubMedCrossRef Ilett KF, Tee LB, Reeves PT, Minchin RF. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol Ther. 1990;46(1):67–93.PubMedCrossRef
100.
go back to reference Hirayama H, Morgado J, Gasinska I, Pang K. Estimations of intestinal and liver extraction in the in vivo rat: studies on gentisamide conjugation. Drug Metab Dispos. 1990;18:580–7.PubMed Hirayama H, Morgado J, Gasinska I, Pang K. Estimations of intestinal and liver extraction in the in vivo rat: studies on gentisamide conjugation. Drug Metab Dispos. 1990;18:580–7.PubMed
101.
go back to reference Hirayama H, Pang K. First-pass metabolism of gentisamide: influence of intestinal metabolism on hepatic formation of conjugates. Studies in the once-through vascularly perfused rat intestine-liver preparation. Drug Metab Dispos. 1990;18(5):580–7.PubMed Hirayama H, Pang K. First-pass metabolism of gentisamide: influence of intestinal metabolism on hepatic formation of conjugates. Studies in the once-through vascularly perfused rat intestine-liver preparation. Drug Metab Dispos. 1990;18(5):580–7.PubMed
102.
go back to reference Xu X, Hirayama H, Pang KS. First-pass metabolism of salicylamide. Studies in the once-through vascularly perfused rat intestine-liver preparation. Drug Metab Dispos. 1989;17(5):556–63.PubMed Xu X, Hirayama H, Pang KS. First-pass metabolism of salicylamide. Studies in the once-through vascularly perfused rat intestine-liver preparation. Drug Metab Dispos. 1989;17(5):556–63.PubMed
103.
go back to reference Mistry M, Houston JB. Quantitation of extrahepatic metabolism. Pulmonary and intestinal conjugation of naphthol. Drug Metab Dispos. 1985;13(6):740–5.PubMed Mistry M, Houston JB. Quantitation of extrahepatic metabolism. Pulmonary and intestinal conjugation of naphthol. Drug Metab Dispos. 1985;13(6):740–5.PubMed
104.
go back to reference Mistry M, Houston JB. Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos. 1987;15(5):710–7.PubMed Mistry M, Houston JB. Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos. 1987;15(5):710–7.PubMed
105.
go back to reference Raoof AA, Augustijns PR, Verbeeck RK. In vivo assessment of intestinal, hepatic, and pulmonary first pass metabolism of propofol in the rat. Pharm Res. 1996;13(6):891–5.PubMedCrossRef Raoof AA, Augustijns PR, Verbeeck RK. In vivo assessment of intestinal, hepatic, and pulmonary first pass metabolism of propofol in the rat. Pharm Res. 1996;13(6):891–5.PubMedCrossRef
106.
go back to reference Bohets H, Annaert P, Mannens G, Anciaux K, Verboven P, Meuldermans W, et al. Strategies for absorption screening in drug discovery and development. Curr Top Med Chem. 2001;1(5):367–83.PubMedCrossRef Bohets H, Annaert P, Mannens G, Anciaux K, Verboven P, Meuldermans W, et al. Strategies for absorption screening in drug discovery and development. Curr Top Med Chem. 2001;1(5):367–83.PubMedCrossRef
107.
go back to reference Lennernäs H, Renberg L, Hoffmann K-J, Regårdh C. Presystemic elimination of the beta-blocker pafenolol in the rat after oral and intraperitoneal administration and identification of a main metabolite in both rats and humans. Drug Metab Dispos. 1993;21(3):435–40.PubMed Lennernäs H, Renberg L, Hoffmann K-J, Regårdh C. Presystemic elimination of the beta-blocker pafenolol in the rat after oral and intraperitoneal administration and identification of a main metabolite in both rats and humans. Drug Metab Dispos. 1993;21(3):435–40.PubMed
108.
go back to reference Aoki M, Okudaira K, Haga M, Nishigaki R, Hayashi M. Contribution of rat pulmonary metabolism to the elimination of lidocaine, midazolam, and nifedipine. Drug Metab Dispos. 2010;38(7):1183–8.PubMedCrossRef Aoki M, Okudaira K, Haga M, Nishigaki R, Hayashi M. Contribution of rat pulmonary metabolism to the elimination of lidocaine, midazolam, and nifedipine. Drug Metab Dispos. 2010;38(7):1183–8.PubMedCrossRef
109.
go back to reference Cui Z, He P, Luo M, Xia S, Wu M. Phenacetin-O-deethylation in extrahepatic tissues of rats. Eur J Drug Metab Pharmacokinet. 2002;27(2):107–11.PubMedCrossRef Cui Z, He P, Luo M, Xia S, Wu M. Phenacetin-O-deethylation in extrahepatic tissues of rats. Eur J Drug Metab Pharmacokinet. 2002;27(2):107–11.PubMedCrossRef
110.
go back to reference Li X, Xia S, Lv Y, He P, Han J, Wu M. Conjugation metabolism of acetaminophen and bilirubin in extrahepatic tissues of rats. Life Sci. 2004;74(10):1307–15.PubMedCrossRef Li X, Xia S, Lv Y, He P, Han J, Wu M. Conjugation metabolism of acetaminophen and bilirubin in extrahepatic tissues of rats. Life Sci. 2004;74(10):1307–15.PubMedCrossRef
111.
go back to reference Karlsson FH, Bouchene S, Hilgendorf C, Dolgos H, Peters SA. Utility of in vitro systems and preclinical data for the prediction of human intestinal first-pass metabolism during drug discovery and preclinical development. Drug Metab Dispos. 2013;41(12):2033–46.PubMedCrossRef Karlsson FH, Bouchene S, Hilgendorf C, Dolgos H, Peters SA. Utility of in vitro systems and preclinical data for the prediction of human intestinal first-pass metabolism during drug discovery and preclinical development. Drug Metab Dispos. 2013;41(12):2033–46.PubMedCrossRef
112.
go back to reference Musther H, Olivares-Morales A, Hatley OJ, Liu B, Hodjegan AR. Animal versus human oral drug bioavailability: do they correlate? Eur J Pharm Sci. 2014;57:280–91.PubMedPubMedCentralCrossRef Musther H, Olivares-Morales A, Hatley OJ, Liu B, Hodjegan AR. Animal versus human oral drug bioavailability: do they correlate? Eur J Pharm Sci. 2014;57:280–91.PubMedPubMedCentralCrossRef
113.
go back to reference Nishimuta H, Sato K, Mizuki Y, Yabuki M, Komuro S. Species differences in intestinal metabolic activities of cytochrome P450 isoforms between cynomolgus monkeys and humans. Drug Metab Pharmacokinet. 2011;26(3):300–6.PubMedCrossRef Nishimuta H, Sato K, Mizuki Y, Yabuki M, Komuro S. Species differences in intestinal metabolic activities of cytochrome P450 isoforms between cynomolgus monkeys and humans. Drug Metab Pharmacokinet. 2011;26(3):300–6.PubMedCrossRef
114.
go back to reference Mudra DR, Desino KE, Desai PV. In silico, in vitro and in situ models to assess interplay between CYP3A and P-gp. Curr Drug Metab. 2011;12(8):750–73.PubMedCrossRef Mudra DR, Desino KE, Desai PV. In silico, in vitro and in situ models to assess interplay between CYP3A and P-gp. Curr Drug Metab. 2011;12(8):750–73.PubMedCrossRef
115.
go back to reference Barr WH, Riegelman S. Intestinal drug absorption and metabolism I: comparison of methods and models to study physiological factors of in vitro and in vivo intestinal absorption. J Pharm Sci. 1970;59(2):154–63.PubMedCrossRef Barr WH, Riegelman S. Intestinal drug absorption and metabolism I: comparison of methods and models to study physiological factors of in vitro and in vivo intestinal absorption. J Pharm Sci. 1970;59(2):154–63.PubMedCrossRef
116.
go back to reference Gugler R, Lain P, Azarnoff DL. Effect of portacaval shunt on the disposition of drugs with and without first-pass effect. J Pharmacol Exp Ther. 1975;195(3):416–23.PubMed Gugler R, Lain P, Azarnoff DL. Effect of portacaval shunt on the disposition of drugs with and without first-pass effect. J Pharmacol Exp Ther. 1975;195(3):416–23.PubMed
117.
go back to reference Lo M-W, Pond SM, Effeney DJ, Silber BM, Riegelman S, Tozer TN. Nonlinear formation of propranolol metabolites in dogs after portacaval transpositions. J Pharmacokinet Biopharm. 1984;12(4):401–12.PubMedCrossRef Lo M-W, Pond SM, Effeney DJ, Silber BM, Riegelman S, Tozer TN. Nonlinear formation of propranolol metabolites in dogs after portacaval transpositions. J Pharmacokinet Biopharm. 1984;12(4):401–12.PubMedCrossRef
118.
go back to reference Doherty MM, Pang KS. First-pass effect: significance of the intestine for absorption and metabolism. Drug Chem Toxicol. 1997;20(4):329–44.PubMedCrossRef Doherty MM, Pang KS. First-pass effect: significance of the intestine for absorption and metabolism. Drug Chem Toxicol. 1997;20(4):329–44.PubMedCrossRef
119.
go back to reference Castle S, Tucker G, Woods H, Underwood J, Nicholson C, Havler M, et al. Assessment of an in situ rat intestine preparation with perfused vascular bed for studying the absorption and first-pass metabolism of drugs. J Pharmacol Methods. 1985;14(4):255–74.PubMedCrossRef Castle S, Tucker G, Woods H, Underwood J, Nicholson C, Havler M, et al. Assessment of an in situ rat intestine preparation with perfused vascular bed for studying the absorption and first-pass metabolism of drugs. J Pharmacol Methods. 1985;14(4):255–74.PubMedCrossRef
120.
go back to reference Matsuda Y, Konno Y, Satsukawa M, Kobayashi T, Takimoto Y, Morisaki K, et al. Assessment of intestinal availability of various drugs in the oral absorption process using portal vein-cannulated rats. Drug Metab Dispos. 2012;40(12):2231–8.PubMedCrossRef Matsuda Y, Konno Y, Satsukawa M, Kobayashi T, Takimoto Y, Morisaki K, et al. Assessment of intestinal availability of various drugs in the oral absorption process using portal vein-cannulated rats. Drug Metab Dispos. 2012;40(12):2231–8.PubMedCrossRef
121.
go back to reference Kadono K, Koakutsu A, Naritomi Y, Terashita S, Tabata K, Teramura T. Comparison of intestinal metabolism of CYP3A substrates between rats and humans: application of portal-systemic concentration difference method. Xenobiotica. 2013;44(6):511–21.PubMedCrossRef Kadono K, Koakutsu A, Naritomi Y, Terashita S, Tabata K, Teramura T. Comparison of intestinal metabolism of CYP3A substrates between rats and humans: application of portal-systemic concentration difference method. Xenobiotica. 2013;44(6):511–21.PubMedCrossRef
122.
go back to reference Pang K, Yuen V, Fayz S, Te Koppele J, Mulder G. Absorption and metabolism of acetaminophen by the in situ perfused rat small intestine preparation. Drug Metab Dispos. 1986;14(1):102–11.PubMed Pang K, Yuen V, Fayz S, Te Koppele J, Mulder G. Absorption and metabolism of acetaminophen by the in situ perfused rat small intestine preparation. Drug Metab Dispos. 1986;14(1):102–11.PubMed
123.
go back to reference Pang KS, Cherry W, Ulm E. Disposition of enalapril in the perfused rat intestine-liver preparation: absorption, metabolism and first-pass effect. J Pharmacol Exp Ther. 1985;233(3):788–95.PubMed Pang KS, Cherry W, Ulm E. Disposition of enalapril in the perfused rat intestine-liver preparation: absorption, metabolism and first-pass effect. J Pharmacol Exp Ther. 1985;233(3):788–95.PubMed
124.
go back to reference Uhing MR, Kimura RE. The effect of surgical bowel manipulation and anesthesia on intestinal glucose absorption in rats. J Clin Invest. 1995;95(6):2790.PubMedPubMedCentralCrossRef Uhing MR, Kimura RE. The effect of surgical bowel manipulation and anesthesia on intestinal glucose absorption in rats. J Clin Invest. 1995;95(6):2790.PubMedPubMedCentralCrossRef
125.
go back to reference Yuasa H, Matsuda K, Watanabe J. Influence of anesthetic regimens on intestinal absorption in rats. Pharm Res. 1993;10(6):884–8.PubMedCrossRef Yuasa H, Matsuda K, Watanabe J. Influence of anesthetic regimens on intestinal absorption in rats. Pharm Res. 1993;10(6):884–8.PubMedCrossRef
126.
go back to reference Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol. 1999;13(2):154–68.PubMedCrossRef Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol. 1999;13(2):154–68.PubMedCrossRef
127.
go back to reference Stappaerts J, Brouwers J, Annaert P, Augustijns P. In situ perfusion in rodents to explore intestinal drug absorption: challenges and opportunities. Int J Pharm. 2015;478(2):665–81.PubMedCrossRef Stappaerts J, Brouwers J, Annaert P, Augustijns P. In situ perfusion in rodents to explore intestinal drug absorption: challenges and opportunities. Int J Pharm. 2015;478(2):665–81.PubMedCrossRef
128.
go back to reference Griffiths R, Lewis A, Jeffrey P. Models of drug absorption in situ and in conscious animals. In: Borchardt RT, Smith PL, Wilson, editors. Models for assessing drug absorption and metabolism. Springer: Berlin; 1996. p. 67–84. Griffiths R, Lewis A, Jeffrey P. Models of drug absorption in situ and in conscious animals. In: Borchardt RT, Smith PL, Wilson, editors. Models for assessing drug absorption and metabolism. Springer: Berlin; 1996. p. 67–84.
129.
go back to reference Jeong EJ, Liu Y, Lin H, Hu M. In situ single-pass perfused rat intestinal model for absorption and metabolism. In: Caldwell GW, Zhengyin Y, editors. Optimization in drug discovery. Springer: Berlin; 2004. p. 65–76. Jeong EJ, Liu Y, Lin H, Hu M. In situ single-pass perfused rat intestinal model for absorption and metabolism. In: Caldwell GW, Zhengyin Y, editors. Optimization in drug discovery. Springer: Berlin; 2004. p. 65–76.
130.
go back to reference Schurgers N, Bijdendijk J, Tukker JJ, Crommelin DJ. Comparison of four experimental techniques for studying drug absorption kinetics in the anesthetized rat in situ. J Pharm Sci. 1986;75(2):117–9.PubMedCrossRef Schurgers N, Bijdendijk J, Tukker JJ, Crommelin DJ. Comparison of four experimental techniques for studying drug absorption kinetics in the anesthetized rat in situ. J Pharm Sci. 1986;75(2):117–9.PubMedCrossRef
131.
go back to reference Cummins CL, Salphati L, Reid MJ, Benet LZ. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Exp Ther. 2003;305(1):306–14.PubMedCrossRef Cummins CL, Salphati L, Reid MJ, Benet LZ. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Exp Ther. 2003;305(1):306–14.PubMedCrossRef
132.
go back to reference Abuasal BS, Bolger MB, Walker DK, Kaddoumi A. In silico modeling for the nonlinear absorption kinetics of UK-343,664: a P-gp and CYP3A4 substrate. Mol Pharm. 2012;9(3):492–504.PubMedCrossRef Abuasal BS, Bolger MB, Walker DK, Kaddoumi A. In silico modeling for the nonlinear absorption kinetics of UK-343,664: a P-gp and CYP3A4 substrate. Mol Pharm. 2012;9(3):492–504.PubMedCrossRef
133.
go back to reference Hu M, Sinko P, Johnson D, Amidon G. Membrane permeability parameters for some amino acids and β-lactam antibiotics: application of the boundary layer approach. J Theor Biol. 1988;131(1):107–14.PubMedCrossRef Hu M, Sinko P, Johnson D, Amidon G. Membrane permeability parameters for some amino acids and β-lactam antibiotics: application of the boundary layer approach. J Theor Biol. 1988;131(1):107–14.PubMedCrossRef
134.
go back to reference Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000;44(1):301–12.PubMedCrossRef Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000;44(1):301–12.PubMedCrossRef
135.
go back to reference Chiou WL, Barve A. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm Res. 1998;15(11):1792–5.PubMedCrossRef Chiou WL, Barve A. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm Res. 1998;15(11):1792–5.PubMedCrossRef
136.
go back to reference Chiou WL, Buehler PW. Comparison of oral absorption and bioavailability of drugs between monkey and human. Pharm Res. 2002;19(6):868–74.PubMedCrossRef Chiou WL, Buehler PW. Comparison of oral absorption and bioavailability of drugs between monkey and human. Pharm Res. 2002;19(6):868–74.PubMedCrossRef
137.
go back to reference Chiou WL, Jeong HY, Chung SM, Wu TC. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res. 2000;17(2):135–40.PubMedCrossRef Chiou WL, Jeong HY, Chung SM, Wu TC. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res. 2000;17(2):135–40.PubMedCrossRef
138.
go back to reference Ward K, Nagilla R, Jolivette L. Comparative evaluation of oral systemic exposure of 56 xenobiotics in rat, dog, monkey and human. Xenobiotica. 2005;35(2):191–210.PubMedCrossRef Ward K, Nagilla R, Jolivette L. Comparative evaluation of oral systemic exposure of 56 xenobiotics in rat, dog, monkey and human. Xenobiotica. 2005;35(2):191–210.PubMedCrossRef
139.
go back to reference Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, et al. Evaluation of rat intestinal absorption data and correlation with human intestinal absorption. Eur J Med Chem. 2003;38(3):233–43.PubMedCrossRef Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, et al. Evaluation of rat intestinal absorption data and correlation with human intestinal absorption. Eur J Med Chem. 2003;38(3):233–43.PubMedCrossRef
140.
go back to reference Riches Z, Stanley EL, Bloomer JC, Coughtrie MW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos. 2009;37(11):2255–61.PubMedPubMedCentralCrossRef Riches Z, Stanley EL, Bloomer JC, Coughtrie MW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos. 2009;37(11):2255–61.PubMedPubMedCentralCrossRef
141.
go back to reference Nishimuta H, Nakagawa T, Nomura N, Yabuki M. Species differences in hepatic and intestinal metabolic activities for 43 human cytochrome P450 substrates between humans and rats or dogs. Xenobiotica. 2013;43(11):948–55.PubMedCrossRef Nishimuta H, Nakagawa T, Nomura N, Yabuki M. Species differences in hepatic and intestinal metabolic activities for 43 human cytochrome P450 substrates between humans and rats or dogs. Xenobiotica. 2013;43(11):948–55.PubMedCrossRef
142.
go back to reference Furukawa T, Naritomi Y, Tetsuka K, Nakamori F, Moriguchi H, Yamano K, et al. Species differences in intestinal glucuronidation activities between humans, rats, dogs and monkeys. Xenobiotica. 2013;44(3):205–16.PubMedCrossRef Furukawa T, Naritomi Y, Tetsuka K, Nakamori F, Moriguchi H, Yamano K, et al. Species differences in intestinal glucuronidation activities between humans, rats, dogs and monkeys. Xenobiotica. 2013;44(3):205–16.PubMedCrossRef
143.
go back to reference Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. A comparison of pharmacokinetics between humans and monkeys. Drug Metab Dispos. 2010;38(2):308–16.PubMedCrossRef Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. A comparison of pharmacokinetics between humans and monkeys. Drug Metab Dispos. 2010;38(2):308–16.PubMedCrossRef
144.
go back to reference Takahashi M, Washio T, Suzuki N, Igeta K, Yamashita S. Investigation of the intestinal permeability and first-pass metabolism of drugs in cynomolgus monkeys using single-pass intestinal perfusion. Biol Pharm Bull. 2009;33(1):111–6.CrossRef Takahashi M, Washio T, Suzuki N, Igeta K, Yamashita S. Investigation of the intestinal permeability and first-pass metabolism of drugs in cynomolgus monkeys using single-pass intestinal perfusion. Biol Pharm Bull. 2009;33(1):111–6.CrossRef
145.
go back to reference Bueters T, Juric S, Sohlenius-Sternbeck A-K, Hu Y, Bylund J. Rat poorly predicts the combined non-absorbed and presystemically metabolized fractions in the human. Xenobiotica. 2012;43(7):607–16.CrossRef Bueters T, Juric S, Sohlenius-Sternbeck A-K, Hu Y, Bylund J. Rat poorly predicts the combined non-absorbed and presystemically metabolized fractions in the human. Xenobiotica. 2012;43(7):607–16.CrossRef
146.
go back to reference Komura H, Iwaki M. Species differences in in vitro and in vivo small intestinal metabolism of CYP3A substrates. J Pharm Sci. 2008;97(5):1775–800.PubMedCrossRef Komura H, Iwaki M. Species differences in in vitro and in vivo small intestinal metabolism of CYP3A substrates. J Pharm Sci. 2008;97(5):1775–800.PubMedCrossRef
147.
go back to reference Jeong EJ, Liu Y, Lin H, Hu M. Species-and disposition model-dependent metabolism of raloxifene in gut and liver: role of UGT1A10. Drug Metab Dispos. 2005;33(6):785–94.PubMedCrossRef Jeong EJ, Liu Y, Lin H, Hu M. Species-and disposition model-dependent metabolism of raloxifene in gut and liver: role of UGT1A10. Drug Metab Dispos. 2005;33(6):785–94.PubMedCrossRef
148.
go back to reference Teubner W, Meinl W, Florian S, Kretzschmar M, Glatt H. Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem J. 2007;404:207–15.PubMedPubMedCentralCrossRef Teubner W, Meinl W, Florian S, Kretzschmar M, Glatt H. Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem J. 2007;404:207–15.PubMedPubMedCentralCrossRef
149.
go back to reference Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, et al. Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography–tandem mass spectrometry. Anal Chem. 2011;84(1):98–105.PubMedPubMedCentralCrossRef Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, et al. Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography–tandem mass spectrometry. Anal Chem. 2011;84(1):98–105.PubMedPubMedCentralCrossRef
150.
go back to reference Berry LM, Wollenberg L, Zhao Z. Esterase activities in the blood, liver and intestine of several preclinical species and humans. Drug Metab Lett. 2009;3(2):70–7.PubMedCrossRef Berry LM, Wollenberg L, Zhao Z. Esterase activities in the blood, liver and intestine of several preclinical species and humans. Drug Metab Lett. 2009;3(2):70–7.PubMedCrossRef
151.
go back to reference Williams ET, Bacon JA, Bender DM, Lowinger JJ, Guo W-K, Ehsani ME, et al. Characterization of the expression and activity of carboxylesterases 1 and 2 from the beagle dog, cynomolgus monkey, and human. Drug Metab Dispos. 2011;39(12):2305–13.PubMedCrossRef Williams ET, Bacon JA, Bender DM, Lowinger JJ, Guo W-K, Ehsani ME, et al. Characterization of the expression and activity of carboxylesterases 1 and 2 from the beagle dog, cynomolgus monkey, and human. Drug Metab Dispos. 2011;39(12):2305–13.PubMedCrossRef
152.
go back to reference Takara K, Ohnishi N, Horibe S, Yokoyama T. Expression profiles of drug-metabolizing enzyme CYP3A and drug efflux transporter multidrug resistance 1 subfamily mRNAs in rat small intestine. Drug Metab Dispos. 2003;31(10):1235–9.PubMedCrossRef Takara K, Ohnishi N, Horibe S, Yokoyama T. Expression profiles of drug-metabolizing enzyme CYP3A and drug efflux transporter multidrug resistance 1 subfamily mRNAs in rat small intestine. Drug Metab Dispos. 2003;31(10):1235–9.PubMedCrossRef
153.
go back to reference Fasco MJ, Silkworth J, Dunbar DA, Kaminsky LS. Rat small intestinal cytochromes P450 probed by warfarin metabolism. Mol Pharmacol. 1993;43(2):226–33.PubMed Fasco MJ, Silkworth J, Dunbar DA, Kaminsky LS. Rat small intestinal cytochromes P450 probed by warfarin metabolism. Mol Pharmacol. 1993;43(2):226–33.PubMed
154.
go back to reference Mitschke D, Reichel A, Fricker G, Moenning U. Characterization of cytochrome P450 protein expression along the entire length of the intestine of male and female rats. Drug Metab Dispos. 2008;36(6):1039–45.PubMedCrossRef Mitschke D, Reichel A, Fricker G, Moenning U. Characterization of cytochrome P450 protein expression along the entire length of the intestine of male and female rats. Drug Metab Dispos. 2008;36(6):1039–45.PubMedCrossRef
155.
go back to reference Windmill KF, McKinnon RA, Zhu X, Gaedigk A, Grant DM, McManus ME. The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies. Mut Res. 1997;376(1):153–60.CrossRef Windmill KF, McKinnon RA, Zhu X, Gaedigk A, Grant DM, McManus ME. The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies. Mut Res. 1997;376(1):153–60.CrossRef
156.
go back to reference Zhang Q-Y, Wikoff J, Dunbar D, Kaminsky L. Characterization of rat small intestinal cytochrome P450 composition and inducibility. Drug Metab Dispos. 1996;24(3):322–8.PubMed Zhang Q-Y, Wikoff J, Dunbar D, Kaminsky L. Characterization of rat small intestinal cytochrome P450 composition and inducibility. Drug Metab Dispos. 1996;24(3):322–8.PubMed
157.
go back to reference van de Kerkhof EG, de Graaf IA, de Jager MH, Meijer DK, Groothuis GM. Characterization of rat small intestinal and colon precision-cut slices as an in vitro system for drug metabolism and induction studies. Drug Metab Dispos. 2005;33(11):1613–20.PubMedCrossRef van de Kerkhof EG, de Graaf IA, de Jager MH, Meijer DK, Groothuis GM. Characterization of rat small intestinal and colon precision-cut slices as an in vitro system for drug metabolism and induction studies. Drug Metab Dispos. 2005;33(11):1613–20.PubMedCrossRef
158.
go back to reference Mouly S, Paine MF. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res. 2003;20(10):1595–9.PubMedCrossRef Mouly S, Paine MF. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res. 2003;20(10):1595–9.PubMedCrossRef
159.
go back to reference Haller S, Schuler F, Lazic SE, Bachir-Cherif D, Krämer SD, Parrott NJ, et al. Expression profiles of metabolic enzymes and drug transporters in the liver and along the intestine of beagle dogs. Drug Metab Dispos. 2012;40(8):1603–11.PubMedCrossRef Haller S, Schuler F, Lazic SE, Bachir-Cherif D, Krämer SD, Parrott NJ, et al. Expression profiles of metabolic enzymes and drug transporters in the liver and along the intestine of beagle dogs. Drug Metab Dispos. 2012;40(8):1603–11.PubMedCrossRef
160.
go back to reference Rost D, Mahner S, Sugiyama Y, Stremmel W. Expression and localization of the multidrug resistance-associated protein 3 in rat small and large intestine. Am J Physiol Gastrointest Liver Physiol. 2002;282(4):G720–6.PubMedCrossRef Rost D, Mahner S, Sugiyama Y, Stremmel W. Expression and localization of the multidrug resistance-associated protein 3 in rat small and large intestine. Am J Physiol Gastrointest Liver Physiol. 2002;282(4):G720–6.PubMedCrossRef
161.
go back to reference Mutch DM, Anderle P, Fiaux M, Mansourian R, Vidal K, Wahli W, et al. Regional variations in ABC transporter expression along the mouse intestinal tract. Physiol Genomics. 2004;17(1):11–20.PubMedCrossRef Mutch DM, Anderle P, Fiaux M, Mansourian R, Vidal K, Wahli W, et al. Regional variations in ABC transporter expression along the mouse intestinal tract. Physiol Genomics. 2004;17(1):11–20.PubMedCrossRef
162.
go back to reference Enokizono J, Kusuhara H, Sugiyama Y. Regional expression and activity of breast cancer resistance protein (Bcrp/Abcg2) in mouse intestine: overlapping distribution with sulfotransferases. Drug Metab Dispos. 2007;35(6):922–8.PubMedCrossRef Enokizono J, Kusuhara H, Sugiyama Y. Regional expression and activity of breast cancer resistance protein (Bcrp/Abcg2) in mouse intestine: overlapping distribution with sulfotransferases. Drug Metab Dispos. 2007;35(6):922–8.PubMedCrossRef
163.
go back to reference van Waterschoot RA, Schinkel AH. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacolog Rev. 2011;63(2):390–410.CrossRef van Waterschoot RA, Schinkel AH. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacolog Rev. 2011;63(2):390–410.CrossRef
164.
go back to reference Choo EF, Woolsey S, DeMent K, Ly J, Messick K, Qin A, et al. Use of transgenic mouse models to understand the oral disposition and drug–drug interaction potential of cobimetinib, a MEK inhibitor. Drug Metab Dispos. 2015;43(6):864–9.PubMedCrossRef Choo EF, Woolsey S, DeMent K, Ly J, Messick K, Qin A, et al. Use of transgenic mouse models to understand the oral disposition and drug–drug interaction potential of cobimetinib, a MEK inhibitor. Drug Metab Dispos. 2015;43(6):864–9.PubMedCrossRef
165.
go back to reference Shen H-W, Jiang X-L, Gonzalez FJ, Yu A-M. Humanized transgenic mouse models for drug metabolism and pharmacokinetic research. Curr Drug Metab. 2011;12(10):997–1006.PubMedCrossRef Shen H-W, Jiang X-L, Gonzalez FJ, Yu A-M. Humanized transgenic mouse models for drug metabolism and pharmacokinetic research. Curr Drug Metab. 2011;12(10):997–1006.PubMedCrossRef
166.
go back to reference Tang SC, Hendrikx JJ, Beijnen JH, Schinkel AH. Genetically modified mouse models for oral drug absorption and disposition. Curr Opin Pharmacol. 2013;13(6):853–8.PubMedCrossRef Tang SC, Hendrikx JJ, Beijnen JH, Schinkel AH. Genetically modified mouse models for oral drug absorption and disposition. Curr Opin Pharmacol. 2013;13(6):853–8.PubMedCrossRef
167.
go back to reference Cheung C, Gonzalez FJ. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J Pharmacol Exp Ther. 2008;327(2):288–99.PubMedPubMedCentralCrossRef Cheung C, Gonzalez FJ. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J Pharmacol Exp Ther. 2008;327(2):288–99.PubMedPubMedCentralCrossRef
168.
go back to reference Scheer N, Wolf CR. Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica. 2014;44(2):96–108.PubMedCrossRef Scheer N, Wolf CR. Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica. 2014;44(2):96–108.PubMedCrossRef
169.
go back to reference Salyers KL, Xu Y. Animal models for studying drug metabolizing enzymes and transporters. In: Zhang D, Surapaneni S, editors. ADME-enabling technologies in drug design and development. Wiley: London; 2012. p. 253. Salyers KL, Xu Y. Animal models for studying drug metabolizing enzymes and transporters. In: Zhang D, Surapaneni S, editors. ADME-enabling technologies in drug design and development. Wiley: London; 2012. p. 253.
170.
go back to reference Lin JH. Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab. 2008;9(5):419–38.PubMedCrossRef Lin JH. Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab. 2008;9(5):419–38.PubMedCrossRef
171.
go back to reference Mols R, Brouwers J, Schinkel AH, Annaert P, Augustijns P. Intestinal perfusion with mesenteric blood sampling in wild-type and knockout mice evaluation of a novel tool in biopharmaceutical drug profiling. Drug Metab Dispos. 2009;37(6):1334–7.PubMedCrossRef Mols R, Brouwers J, Schinkel AH, Annaert P, Augustijns P. Intestinal perfusion with mesenteric blood sampling in wild-type and knockout mice evaluation of a novel tool in biopharmaceutical drug profiling. Drug Metab Dispos. 2009;37(6):1334–7.PubMedCrossRef
172.
go back to reference Muruganandan S, Sinal C. Mice as clinically relevant models for the study of cytochrome P450-dependent metabolism. Clin PharmacolTher. 2008;83(6):818–28. Muruganandan S, Sinal C. Mice as clinically relevant models for the study of cytochrome P450-dependent metabolism. Clin PharmacolTher. 2008;83(6):818–28.
173.
go back to reference Gonzalez FJ, Fang Z-Z, Ma X. Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2015;11(6):869–81.PubMedPubMedCentralCrossRef Gonzalez FJ, Fang Z-Z, Ma X. Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2015;11(6):869–81.PubMedPubMedCentralCrossRef
174.
go back to reference van Herwaarden AE, Wagenaar E, van der Kruijssen CM, van Waterschoot RA, Smit JW, Song JY, et al. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest. 2007;117(11):3583–92.PubMedPubMedCentralCrossRef van Herwaarden AE, Wagenaar E, van der Kruijssen CM, van Waterschoot RA, Smit JW, Song JY, et al. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest. 2007;117(11):3583–92.PubMedPubMedCentralCrossRef
175.
go back to reference van Waterschoot RA, ter Heine R, Wagenaar E, van der Kruijssen CM, Rooswinkel RW, Huitema AD, et al. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir. Br J Pharmacol. 2010;160(5):1224–33.PubMedPubMedCentralCrossRef van Waterschoot RA, ter Heine R, Wagenaar E, van der Kruijssen CM, Rooswinkel RW, Huitema AD, et al. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir. Br J Pharmacol. 2010;160(5):1224–33.PubMedPubMedCentralCrossRef
176.
go back to reference van Waterschoot RA, Rooswinkel RW, Sparidans RW, van Herwaarden AE, Beijnen JH, Schinkel AH. Inhibition and stimulation of intestinal and hepatic CYP3A activity: studies in humanized CYP3A4 transgenic mice using triazolam. Drug Metab Dispos. 2009;37(12):2305–13.PubMedCrossRef van Waterschoot RA, Rooswinkel RW, Sparidans RW, van Herwaarden AE, Beijnen JH, Schinkel AH. Inhibition and stimulation of intestinal and hepatic CYP3A activity: studies in humanized CYP3A4 transgenic mice using triazolam. Drug Metab Dispos. 2009;37(12):2305–13.PubMedCrossRef
177.
go back to reference Scheer N, Kapelyukh Y, McEwan J, Beuger V, Stanley LA, Rode A, et al. Modeling human cytochrome P450 2D6 metabolism and drug–drug interaction by a novel panel of knockout and humanized mouse lines. Mol Pharmacol. 2012;81(1):63–72.PubMedCrossRef Scheer N, Kapelyukh Y, McEwan J, Beuger V, Stanley LA, Rode A, et al. Modeling human cytochrome P450 2D6 metabolism and drug–drug interaction by a novel panel of knockout and humanized mouse lines. Mol Pharmacol. 2012;81(1):63–72.PubMedCrossRef
178.
go back to reference Scheer N, Kapelyukh Y, Chatham L, Rode A, Buechel S, Wolf CR. Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines. Mol Pharmacol. 2012;82(6):1022–9.PubMedCrossRef Scheer N, Kapelyukh Y, Chatham L, Rode A, Buechel S, Wolf CR. Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines. Mol Pharmacol. 2012;82(6):1022–9.PubMedCrossRef
179.
go back to reference van Waterschoot RA, van Herwaarden AE, Lagas JS, Sparidans RW, Wagenaar E, van der Kruijssen CM, et al. Midazolam metabolism in cytochrome P450 3A knockout mice can be attributed to up-regulated CYP2C enzymes. Mol Pharmacol. 2008;73(3):1029–36.PubMedPubMedCentralCrossRef van Waterschoot RA, van Herwaarden AE, Lagas JS, Sparidans RW, Wagenaar E, van der Kruijssen CM, et al. Midazolam metabolism in cytochrome P450 3A knockout mice can be attributed to up-regulated CYP2C enzymes. Mol Pharmacol. 2008;73(3):1029–36.PubMedPubMedCentralCrossRef
180.
go back to reference Scheer N, McLaughlin LA, Rode A, MacLeod AK, Henderson CJ, Wolf CR. Deletion of 30 murine cytochrome p450 genes results in viable mice with compromised drug metabolism. Drug Metab Dispos. 2014;42(6):1022–30.PubMedCrossRef Scheer N, McLaughlin LA, Rode A, MacLeod AK, Henderson CJ, Wolf CR. Deletion of 30 murine cytochrome p450 genes results in viable mice with compromised drug metabolism. Drug Metab Dispos. 2014;42(6):1022–30.PubMedCrossRef
181.
go back to reference Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of’bottom-up’vs’ top-down’recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75.PubMedCrossRef Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of’bottom-up’vs’ top-down’recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75.PubMedCrossRef
182.
go back to reference Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’and ‘top down’approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.PubMedPubMedCentralCrossRef Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’and ‘top down’approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.PubMedPubMedCentralCrossRef
183.
go back to reference Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:342–66.PubMedCrossRef Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:342–66.PubMedCrossRef
184.
go back to reference Jones H, Chen Y, Gibson C, Heimbach T, Parrott N, Peters S, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.PubMedCrossRef Jones H, Chen Y, Gibson C, Heimbach T, Parrott N, Peters S, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.PubMedCrossRef
185.
go back to reference Heikkinen AT, Fowler S, Gray L, Li J, Peng Y, Yadava P, et al. In vitro to in vivo extrapolation and physiologically based modeling of cytochrome P450 mediated metabolism in beagle dog gut wall and liver. Mol Pharm. 2013;10(4):1388–99.PubMedCrossRef Heikkinen AT, Fowler S, Gray L, Li J, Peng Y, Yadava P, et al. In vitro to in vivo extrapolation and physiologically based modeling of cytochrome P450 mediated metabolism in beagle dog gut wall and liver. Mol Pharm. 2013;10(4):1388–99.PubMedCrossRef
186.
go back to reference Klees TM, Sheffels P, Dale O, Kharasch ED. Metabolism of alfentanil by cytochrome p4503a (cyp3a) enzymes. Drug Metab Dispos. 2005;33(3):303–11.PubMedCrossRef Klees TM, Sheffels P, Dale O, Kharasch ED. Metabolism of alfentanil by cytochrome p4503a (cyp3a) enzymes. Drug Metab Dispos. 2005;33(3):303–11.PubMedCrossRef
187.
go back to reference Lalovic B, Phillips B, Risler LL, Howald W, Shen DD. Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos. 2004;32(4):447–54.PubMedCrossRef Lalovic B, Phillips B, Risler LL, Howald W, Shen DD. Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos. 2004;32(4):447–54.PubMedCrossRef
188.
go back to reference Baranczewski P, Stanczak A, Sundberg K, Svensson R, Wallin A, Jansson J, et al. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol Rep. 2006;58(4):453–72.PubMed Baranczewski P, Stanczak A, Sundberg K, Svensson R, Wallin A, Jansson J, et al. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol Rep. 2006;58(4):453–72.PubMed
189.
go back to reference Crespi CL. Xenobiotic-metabolizing Human Cells as Tools for Pharmacological and Toxocological Research. Adv Drug Res. 1995;26:180–237. Crespi CL. Xenobiotic-metabolizing Human Cells as Tools for Pharmacological and Toxocological Research. Adv Drug Res. 1995;26:180–237.
190.
go back to reference Proctor N, Tucker G, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.PubMedCrossRef Proctor N, Tucker G, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 2004;34(2):151–78.PubMedCrossRef
191.
go back to reference Bonkovsky HL, Hauri H-P, Marti U, Gasser R, Meyer UA. Cytochrome P450 of small intestinal epithelial cells. Immunochemical characterization of the increase in cytochrome P450 caused by phenobarbital. Gastroenterology. 1985;88(2):458–67.PubMed Bonkovsky HL, Hauri H-P, Marti U, Gasser R, Meyer UA. Cytochrome P450 of small intestinal epithelial cells. Immunochemical characterization of the increase in cytochrome P450 caused by phenobarbital. Gastroenterology. 1985;88(2):458–67.PubMed
192.
go back to reference Bruyère A, Declevès X, Bouzom F, Proust L, Martinet M, Walther B, et al. Development of an optimized procedure for the preparation of rat intestinal microsomes: comparison of hepatic and intestinal microsomal cytochrome P450 enzyme activities in two rat strains. Xenobiotica. 2009;39(1):22–32.PubMedCrossRef Bruyère A, Declevès X, Bouzom F, Proust L, Martinet M, Walther B, et al. Development of an optimized procedure for the preparation of rat intestinal microsomes: comparison of hepatic and intestinal microsomal cytochrome P450 enzyme activities in two rat strains. Xenobiotica. 2009;39(1):22–32.PubMedCrossRef
193.
go back to reference Cotreau MM, von Moltke LL, Beinfeld MC, Greenblatt DJ. Methodologies to study the induction of rat hepatic and intestinal cytochrome P450 3A at the mRNA, protein, and catalytic activity level. J Pharmacol Toxicol Methods. 2000;43(1):41–54.PubMedCrossRef Cotreau MM, von Moltke LL, Beinfeld MC, Greenblatt DJ. Methodologies to study the induction of rat hepatic and intestinal cytochrome P450 3A at the mRNA, protein, and catalytic activity level. J Pharmacol Toxicol Methods. 2000;43(1):41–54.PubMedCrossRef
194.
go back to reference Dawson JR, Bridges JW. Intestinal microsomal drug metabolism: A comparison of rat and guinea-pig enzymes, and of rat crypt and villous tip cell enzymes. Biochem Pharmacol. 1981;30(17):2415–20.PubMedCrossRef Dawson JR, Bridges JW. Intestinal microsomal drug metabolism: A comparison of rat and guinea-pig enzymes, and of rat crypt and villous tip cell enzymes. Biochem Pharmacol. 1981;30(17):2415–20.PubMedCrossRef
195.
go back to reference Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther. 2006;318(3):1220–9.PubMedCrossRef Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther. 2006;318(3):1220–9.PubMedCrossRef
196.
go back to reference Klippert P, Borm P, Noordhoek J. Prediction of intestinal first-pass effect of phenacetin in the rat from enzyme kinetic data: correlation with in in vivo data using mucosal blood flow. Biochem Pharmacol. 1982;31(15):2545–8.PubMedCrossRef Klippert P, Borm P, Noordhoek J. Prediction of intestinal first-pass effect of phenacetin in the rat from enzyme kinetic data: correlation with in in vivo data using mucosal blood flow. Biochem Pharmacol. 1982;31(15):2545–8.PubMedCrossRef
197.
go back to reference Koster AS, Noordhoek J. Glucuronidation in the rat intestinal wall: Comparison of isolated mucosal cells, latent microsomes and activated microsomes. Biochem Pharm. 1983;32(5):895–900.PubMedCrossRef Koster AS, Noordhoek J. Glucuronidation in the rat intestinal wall: Comparison of isolated mucosal cells, latent microsomes and activated microsomes. Biochem Pharm. 1983;32(5):895–900.PubMedCrossRef
198.
go back to reference Richter O, Burk O, Fromm MF, Thon KP, Eichelbaum M, Kivistö KT. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2004;75(3):172–83.CrossRef Richter O, Burk O, Fromm MF, Thon KP, Eichelbaum M, Kivistö KT. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2004;75(3):172–83.CrossRef
199.
go back to reference Watkins PB, Wrighton S, Schuetz E, Molowa D, Guzelian P. Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J Clin Invest. 1987;80(4):1029.PubMedPubMedCentralCrossRef Watkins PB, Wrighton S, Schuetz E, Molowa D, Guzelian P. Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J Clin Invest. 1987;80(4):1029.PubMedPubMedCentralCrossRef
200.
go back to reference Weiser MM. Intestinal epithelial cell surface membrane glycoprotein synthesis I. An indicator of cellular differentiation. J Biol Chem. 1973;248(7):2536–41.PubMed Weiser MM. Intestinal epithelial cell surface membrane glycoprotein synthesis I. An indicator of cellular differentiation. J Biol Chem. 1973;248(7):2536–41.PubMed
201.
go back to reference Zhang Z, Li Y, Shou M, Zhang Y, Ngui J, Stearns R, et al. Influence of different recombinant systems on the cooperativity exhibited by cytochrome P4503A4. Xenobiotica. 2004;34(5):473–86.PubMedCrossRef Zhang Z, Li Y, Shou M, Zhang Y, Ngui J, Stearns R, et al. Influence of different recombinant systems on the cooperativity exhibited by cytochrome P4503A4. Xenobiotica. 2004;34(5):473–86.PubMedCrossRef
202.
go back to reference de Graaf IA, de Kanter R, de Jager MH, Camacho R, Langenkamp E, van de Kerkhof EG, et al. Empirical validation of a rat in vitro organ slice model as a tool for in vivo clearance prediction. Drug Metab Dispos. 2006;34(4):591–9.PubMedCrossRef de Graaf IA, de Kanter R, de Jager MH, Camacho R, Langenkamp E, van de Kerkhof EG, et al. Empirical validation of a rat in vitro organ slice model as a tool for in vivo clearance prediction. Drug Metab Dispos. 2006;34(4):591–9.PubMedCrossRef
203.
go back to reference de Graaf IA, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc. 2010;5(9):1540–51.PubMedCrossRef de Graaf IA, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc. 2010;5(9):1540–51.PubMedCrossRef
204.
go back to reference de Kanter R, Monshouwer M, Draaisma A, De Jager M, De Graaf I, Proost J, et al. Prediction of whole-body metabolic clearance of drugs through the combined use of slices from rat liver, lung, kidney, small intestine and colon. Xenobiotica. 2004;34(3):229–41.PubMedCrossRef de Kanter R, Monshouwer M, Draaisma A, De Jager M, De Graaf I, Proost J, et al. Prediction of whole-body metabolic clearance of drugs through the combined use of slices from rat liver, lung, kidney, small intestine and colon. Xenobiotica. 2004;34(3):229–41.PubMedCrossRef
205.
go back to reference de Kanter R, Tuin A, van de Kerkhof E, Martignoni M, Draaisma AL, de Jager MH, et al. A new technique for preparing precision-cut slices from small intestine and colon for drug biotransformation studies. J Pharmacol Toxicol Methods. 2005;51(1):65–72.PubMedCrossRef de Kanter R, Tuin A, van de Kerkhof E, Martignoni M, Draaisma AL, de Jager MH, et al. A new technique for preparing precision-cut slices from small intestine and colon for drug biotransformation studies. J Pharmacol Toxicol Methods. 2005;51(1):65–72.PubMedCrossRef
206.
go back to reference Groothuis GM, de Graaf IA. Precision-cut intestinal slices as in vitro tool for studies on drug metabolism. Curr Drug Metab. 2013;14(1):112–9.PubMedCrossRef Groothuis GM, de Graaf IA. Precision-cut intestinal slices as in vitro tool for studies on drug metabolism. Curr Drug Metab. 2013;14(1):112–9.PubMedCrossRef
207.
go back to reference Nejdfors P, Ekelund M, Jeppsson B, Weström B. Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: species-and region-related differences. Scand J Gastroenterol. 2000;35(5):501–7.PubMedCrossRef Nejdfors P, Ekelund M, Jeppsson B, Weström B. Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: species-and region-related differences. Scand J Gastroenterol. 2000;35(5):501–7.PubMedCrossRef
208.
go back to reference Mariappan T, Singh S. Evidence of efflux-mediated and saturable absorption of rifampicin in rat intestine using the ligated loop and everted gut sac techniques. Mol Pharm. 2004;1(5):363–7.PubMedCrossRef Mariappan T, Singh S. Evidence of efflux-mediated and saturable absorption of rifampicin in rat intestine using the ligated loop and everted gut sac techniques. Mol Pharm. 2004;1(5):363–7.PubMedCrossRef
209.
go back to reference Richter E, Strugala G. An all-glass perfusator for investigation of the intestinal transport and metabolism of foreign compounds in vitro. J Pharmacolog Methods. 1985;14(4):297–304.CrossRef Richter E, Strugala G. An all-glass perfusator for investigation of the intestinal transport and metabolism of foreign compounds in vitro. J Pharmacolog Methods. 1985;14(4):297–304.CrossRef
210.
go back to reference Emoto C, Yamazaki H, Yamasaki S, Shimada N, Nakajima M, Yokoi T. Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro. Xenobiotica. 2000;30(10):971–82.PubMedCrossRef Emoto C, Yamazaki H, Yamasaki S, Shimada N, Nakajima M, Yokoi T. Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro. Xenobiotica. 2000;30(10):971–82.PubMedCrossRef
211.
go back to reference Arellano C, Philibert C, Vachoux C, Woodley J, Houin G. The metabolism of midazolam and comparison with other CYP enzyme substrates during intestinal absorption: in vitro studies with rat everted gut sacs. J Pharm Pharmaceut Sci. 2007;10(1):26–36. Arellano C, Philibert C, Vachoux C, Woodley J, Houin G. The metabolism of midazolam and comparison with other CYP enzyme substrates during intestinal absorption: in vitro studies with rat everted gut sacs. J Pharm Pharmaceut Sci. 2007;10(1):26–36.
212.
go back to reference Takemoto K, Yamazaki H, Tanaka Y, Nakajima M, Yokoi T. Catalytic activities of cytochrome P450 enzymes and UDP-glucuronosyltransferases involved in drug metabolism in rat everted sacs and intestinal microsomes. Xenobiotica. 2003;33(1):43–55.PubMedCrossRef Takemoto K, Yamazaki H, Tanaka Y, Nakajima M, Yokoi T. Catalytic activities of cytochrome P450 enzymes and UDP-glucuronosyltransferases involved in drug metabolism in rat everted sacs and intestinal microsomes. Xenobiotica. 2003;33(1):43–55.PubMedCrossRef
213.
go back to reference Fisher R, Parsons D. A preparation of surviving rat small intestine for the study of absorption. The J Physiol. 1949;110(1–2):36–46.PubMedCrossRef Fisher R, Parsons D. A preparation of surviving rat small intestine for the study of absorption. The J Physiol. 1949;110(1–2):36–46.PubMedCrossRef
214.
go back to reference Andlauer W, Kolb J, Fürst P. Isoflavones from tofu are absorbed and metabolized in the isolated rat small intestine. J Nutr. 2000;130(12):3021–7.PubMed Andlauer W, Kolb J, Fürst P. Isoflavones from tofu are absorbed and metabolized in the isolated rat small intestine. J Nutr. 2000;130(12):3021–7.PubMed
215.
go back to reference Andlauer W, Kolb J, Stehle P, Fürst P. Absorption and metabolism of genistein in isolated rat small intestine. J Nutr. 2000;130(4):843–6.PubMed Andlauer W, Kolb J, Stehle P, Fürst P. Absorption and metabolism of genistein in isolated rat small intestine. J Nutr. 2000;130(4):843–6.PubMed
216.
go back to reference De Vries M, Hofman G, Koster A, Noordhoek J. Systemic intestinal metabolism of 1-naphthol. A study in the isolated vascularly perfused rat small intestine. Drug Metab Dispos. 1989;17(5):573–8.PubMed De Vries M, Hofman G, Koster A, Noordhoek J. Systemic intestinal metabolism of 1-naphthol. A study in the isolated vascularly perfused rat small intestine. Drug Metab Dispos. 1989;17(5):573–8.PubMed
217.
go back to reference Kavin H, Levin NW, Stanley MM. Isolated perfused rat small bowel: technic, studies of viability, glucose absorption. J Appl Physiol. 1967;22(3):604–11.PubMed Kavin H, Levin NW, Stanley MM. Isolated perfused rat small bowel: technic, studies of viability, glucose absorption. J Appl Physiol. 1967;22(3):604–11.PubMed
218.
go back to reference Larsson J, Pantzar N, Permert J, Olaison G. Integrity and metabolism of human ileal mucosa in vitro in the Ussing chamber. Acta Physiol Scand. 1998;162:47–56.PubMedCrossRef Larsson J, Pantzar N, Permert J, Olaison G. Integrity and metabolism of human ileal mucosa in vitro in the Ussing chamber. Acta Physiol Scand. 1998;162:47–56.PubMedCrossRef
219.
go back to reference Gotoh Y, Kamada N, Momose D. The advantages of the Ussing Chamber in drug absorption studies. J Biomol Screen. 2005;10(5):517–23.PubMedCrossRef Gotoh Y, Kamada N, Momose D. The advantages of the Ussing Chamber in drug absorption studies. J Biomol Screen. 2005;10(5):517–23.PubMedCrossRef
220.
go back to reference Polentarutti BI, Peterson AL, Sjöberg ÅK, Anderberg EKI, Utter LM, Ungell A-LB. Evaluation of viability of excised rat intestinal segments in the Ussing chamber: investigation of morphology, electrical parameters, and permeability characteristics. Pharm Res. 1999;16(3):446–54.PubMedCrossRef Polentarutti BI, Peterson AL, Sjöberg ÅK, Anderberg EKI, Utter LM, Ungell A-LB. Evaluation of viability of excised rat intestinal segments in the Ussing chamber: investigation of morphology, electrical parameters, and permeability characteristics. Pharm Res. 1999;16(3):446–54.PubMedCrossRef
221.
go back to reference Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos. 1995;23(12):1315–24.PubMed Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos. 1995;23(12):1315–24.PubMed
222.
go back to reference Rogers SM, Back D, Orme M. Intestinal metabolism of ethinyloestradiol and paracetamol in vitro: studies using Ussing chambers. Br J Clin Pharmacol. 1987;23(6):727–34.PubMedPubMedCentralCrossRef Rogers SM, Back D, Orme M. Intestinal metabolism of ethinyloestradiol and paracetamol in vitro: studies using Ussing chambers. Br J Clin Pharmacol. 1987;23(6):727–34.PubMedPubMedCentralCrossRef
223.
go back to reference Lennernäs H. Animal data: the contributions of the Ussing Chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev. 2007;59(11):1103–20.PubMedCrossRef Lennernäs H. Animal data: the contributions of the Ussing Chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev. 2007;59(11):1103–20.PubMedCrossRef
224.
go back to reference Martignoni M, de Kanter R, Grossi P, Mahnke A, Saturno G, Monshouwer M. An in vivo and in vitro comparison of CYP induction in rat liver and intestine using slices and quantitative RT-PCR. Chem Biol Interact. 2004;151(1):1–11.PubMedCrossRef Martignoni M, de Kanter R, Grossi P, Mahnke A, Saturno G, Monshouwer M. An in vivo and in vitro comparison of CYP induction in rat liver and intestine using slices and quantitative RT-PCR. Chem Biol Interact. 2004;151(1):1–11.PubMedCrossRef
225.
go back to reference Martignoni M, Groothuis G, de Kanter R. Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos. 2006;34(6):1047–54.PubMed Martignoni M, Groothuis G, de Kanter R. Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos. 2006;34(6):1047–54.PubMed
226.
go back to reference Worboys PD, Bradbury A, Houston JB. Kinetics of drug metabolism in rat liver slices III. Relationship between metabolic clearance and slice uptake rate. Drug Metab Dispos. 1997;25(4):460–7.PubMed Worboys PD, Bradbury A, Houston JB. Kinetics of drug metabolism in rat liver slices III. Relationship between metabolic clearance and slice uptake rate. Drug Metab Dispos. 1997;25(4):460–7.PubMed
227.
go back to reference Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8(7):676–84.PubMedCrossRef Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8(7):676–84.PubMedCrossRef
228.
go back to reference Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.PubMedCrossRef Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.PubMedCrossRef
229.
go back to reference Bruyere A, Decleves X, Bouzom F, Ball K, Marques C, Treton X, et al. Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass. Mol Pharm. 2010;7(5):1596–607.PubMedCrossRef Bruyere A, Decleves X, Bouzom F, Ball K, Marques C, Treton X, et al. Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass. Mol Pharm. 2010;7(5):1596–607.PubMedCrossRef
230.
go back to reference Nishimuta H, Nakagawa T, Nomura N, Yabuki M. Significance of reductive metabolism in human intestine and quantitative prediction of intestinal first-pass metabolism by cytosolic reductive enzymes. Drug Metab Dispos. 2013;41(5):1104–11.PubMedCrossRef Nishimuta H, Nakagawa T, Nomura N, Yabuki M. Significance of reductive metabolism in human intestine and quantitative prediction of intestinal first-pass metabolism by cytosolic reductive enzymes. Drug Metab Dispos. 2013;41(5):1104–11.PubMedCrossRef
231.
go back to reference Naritomi Y, Nakamori F, Furukawa T, Tabata K. Prediction of hepatic and intestinal glucuronidation using in vitro–in vivo extrapolation. Drug Metab Pharmacokinet. 2015;30(1):21–9.PubMedCrossRef Naritomi Y, Nakamori F, Furukawa T, Tabata K. Prediction of hepatic and intestinal glucuronidation using in vitro–in vivo extrapolation. Drug Metab Pharmacokinet. 2015;30(1):21–9.PubMedCrossRef
232.
go back to reference Wu B, Dong D, Hu M, Zhang S. Quantitative prediction of glucuronidation in humans using the in vitro-in vivo extrapolation approach. Curr Top Med Chem. 2013;13(11):1343–52.PubMedCrossRef Wu B, Dong D, Hu M, Zhang S. Quantitative prediction of glucuronidation in humans using the in vitro-in vivo extrapolation approach. Curr Top Med Chem. 2013;13(11):1343–52.PubMedCrossRef
233.
go back to reference Hatley O, Jones C, Galetin A, Rostami-Hodjegan A. The rat as a model for screening intestinal metabolism potential. Poster presentation at the 2012 AAPS annual meeting and exposition; october 14–17 2012; chicago. poster m1264; 2012. Hatley O, Jones C, Galetin A, Rostami-Hodjegan A. The rat as a model for screening intestinal metabolism potential. Poster presentation at the 2012 AAPS annual meeting and exposition; october 14–17 2012; chicago. poster m1264; 2012.
234.
go back to reference Hatley OJD. Mechanistic prediction of intestinal first-pass metabolism using in vitro data in preclinical species and in man [PhD thesis]. Manchester: The University of Manchester; 2014. Hatley OJD. Mechanistic prediction of intestinal first-pass metabolism using in vitro data in preclinical species and in man [PhD thesis]. Manchester: The University of Manchester; 2014.
235.
go back to reference Sohlenius-Sternbeck A-K, Orzechowski A. Characterization of the rates of testosterone metabolism to various products and of glutathione transferase and sulfotransferase activities in rat intestine and comparison to the corresponding hepatic and renal drug-metabolizing enzymes. Chem Biol Interact. 2004;148(1):49–56.PubMedCrossRef Sohlenius-Sternbeck A-K, Orzechowski A. Characterization of the rates of testosterone metabolism to various products and of glutathione transferase and sulfotransferase activities in rat intestine and comparison to the corresponding hepatic and renal drug-metabolizing enzymes. Chem Biol Interact. 2004;148(1):49–56.PubMedCrossRef
236.
go back to reference Peters SA. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin Pharmacokinet. 2008;47(4):245–59.PubMedCrossRef Peters SA. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin Pharmacokinet. 2008;47(4):245–59.PubMedCrossRef
237.
go back to reference Peters SA. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet. 2008;47(4):261–75.PubMedCrossRef Peters SA. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet. 2008;47(4):261–75.PubMedCrossRef
238.
go back to reference Chow EC, Pang SK. Why we need proper PBPK models to examine intestine and liver oral drug absorption. Curr Drug Metab. 2013;14(1):57–79.PubMedCrossRef Chow EC, Pang SK. Why we need proper PBPK models to examine intestine and liver oral drug absorption. Curr Drug Metab. 2013;14(1):57–79.PubMedCrossRef
239.
go back to reference Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50:S41–67.PubMedCrossRef Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50:S41–67.PubMedCrossRef
240.
go back to reference Dokoumetzidis A, Kalantzi L, Fotaki N. Predictive models for oral drug absorption: from in silico methods to integrated dynamical models. Expert Opin Drug Metab Toxicol. 2007;3(4):491–505.PubMedCrossRef Dokoumetzidis A, Kalantzi L, Fotaki N. Predictive models for oral drug absorption: from in silico methods to integrated dynamical models. Expert Opin Drug Metab Toxicol. 2007;3(4):491–505.PubMedCrossRef
241.
go back to reference Ando H, Hisaka A, Suzuki H. A new physiologically based pharmacokinetic model for the prediction of gastrointestinal drug absorption: translocation model. Drug Metab Dispos. 2015;43(4):590–602.PubMedCrossRef Ando H, Hisaka A, Suzuki H. A new physiologically based pharmacokinetic model for the prediction of gastrointestinal drug absorption: translocation model. Drug Metab Dispos. 2015;43(4):590–602.PubMedCrossRef
242.
go back to reference Furukawa T, Nakamori F, Tetsuka K, Naritomi Y, Moriguchi H, Yamano K, et al. Quantitative prediction of intestinal glucuronidation of drugs in rats using in vitro metabolic clearance data. Drug Metab Pharmacokinet. 2012;27(2):171–80.PubMedCrossRef Furukawa T, Nakamori F, Tetsuka K, Naritomi Y, Moriguchi H, Yamano K, et al. Quantitative prediction of intestinal glucuronidation of drugs in rats using in vitro metabolic clearance data. Drug Metab Pharmacokinet. 2012;27(2):171–80.PubMedCrossRef
243.
go back to reference Furukawa T, Yamano K, Naritomi Y, Tanaka K, Terashita S, Teramura T. Method for predicting human intestinal first-pass metabolism of UGT substrate compounds. Xenobiotica. 2012;42(10):980–8.PubMedCrossRef Furukawa T, Yamano K, Naritomi Y, Tanaka K, Terashita S, Teramura T. Method for predicting human intestinal first-pass metabolism of UGT substrate compounds. Xenobiotica. 2012;42(10):980–8.PubMedCrossRef
244.
go back to reference Nakamori F, Naritomi Y, K-i Hosoya, Moriguchi H, Tetsuka K, Furukawa T, et al. Quantitative prediction of human intestinal glucuronidation effects on intestinal availability of UDP-glucuronosyltransferase substrates using in vitro data. Drug Metab Dispos. 2012;40(9):1771–7.PubMedCrossRef Nakamori F, Naritomi Y, K-i Hosoya, Moriguchi H, Tetsuka K, Furukawa T, et al. Quantitative prediction of human intestinal glucuronidation effects on intestinal availability of UDP-glucuronosyltransferase substrates using in vitro data. Drug Metab Dispos. 2012;40(9):1771–7.PubMedCrossRef
245.
go back to reference Nishimuta H, Sato K, Yabuki M, Komuro S. Prediction of the intestinal first-pass metabolism of CYP3A and UGT substrates in humans from in vitro data. Drug Metab Pharmacokinet. 2011;26(6):592–601.PubMedCrossRef Nishimuta H, Sato K, Yabuki M, Komuro S. Prediction of the intestinal first-pass metabolism of CYP3A and UGT substrates in humans from in vitro data. Drug Metab Pharmacokinet. 2011;26(6):592–601.PubMedCrossRef
246.
go back to reference Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Drug Metab Dispos. 2011;39(9):1633–42.PubMedCrossRef Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Drug Metab Dispos. 2011;39(9):1633–42.PubMedCrossRef
247.
go back to reference Sohlenius-Sternbeck AK, Afzelius L, Prusis P, Neelissen J, Hoogstraate J, Johansson J, et al. Evaluation of the human prediction of clearance from hepatocyte and microsome intrinsic clearance for 52 drug compounds. Xenobiotica. 2010;40(9):637–49.PubMedCrossRef Sohlenius-Sternbeck AK, Afzelius L, Prusis P, Neelissen J, Hoogstraate J, Johansson J, et al. Evaluation of the human prediction of clearance from hepatocyte and microsome intrinsic clearance for 52 drug compounds. Xenobiotica. 2010;40(9):637–49.PubMedCrossRef
248.
go back to reference Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.PubMed Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.PubMed
249.
go back to reference Jones HM, Houston JB. Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos. 2004;32(9):973–82.PubMedCrossRef Jones HM, Houston JB. Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos. 2004;32(9):973–82.PubMedCrossRef
250.
go back to reference Tam D, Tirona RG, Pang SK. Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption. Drug Metab Dispos. 2003;31(4):373–83.PubMedCrossRef Tam D, Tirona RG, Pang SK. Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption. Drug Metab Dispos. 2003;31(4):373–83.PubMedCrossRef
251.
go back to reference Sun H, Pang SK. Physiological modeling to understand the impact of enzymes and transporters on drug and metabolite data and bioavailability estimates. Pharm Res. 2010;27(7):1237–54.PubMedCrossRef Sun H, Pang SK. Physiological modeling to understand the impact of enzymes and transporters on drug and metabolite data and bioavailability estimates. Pharm Res. 2010;27(7):1237–54.PubMedCrossRef
252.
go back to reference Pang KS, Chow EC. Commentary: theoretical predictions of flow effects on intestinal and systemic availability in physiologically based pharmacokinetic intestine models: the traditional model, segregated flow model, and QGut model. Drug Metab Dispos. 2012;40(10):1869–77.PubMedCrossRef Pang KS, Chow EC. Commentary: theoretical predictions of flow effects on intestinal and systemic availability in physiologically based pharmacokinetic intestine models: the traditional model, segregated flow model, and QGut model. Drug Metab Dispos. 2012;40(10):1869–77.PubMedCrossRef
253.
go back to reference Fan J, Chen S, Chow EC, Pang SK. PBPK modeling of intestinal and liver enzymes and transporters in drug absorption and sequential metabolism. Curr Drug Metab. 2010;11(9):743–61.PubMedCrossRef Fan J, Chen S, Chow EC, Pang SK. PBPK modeling of intestinal and liver enzymes and transporters in drug absorption and sequential metabolism. Curr Drug Metab. 2010;11(9):743–61.PubMedCrossRef
254.
go back to reference Heikkinen AT, Friedlein A, Lamerz J, Jakob P, Cutler P, Fowler S, et al. Mass spectrometry-based quantification of CYP enzymes to establish in vitro/in vivo scaling factors for intestinal and hepatic metabolism in beagle dog. Pharm Res. 2012;29(7):1832–42.PubMedCrossRef Heikkinen AT, Friedlein A, Lamerz J, Jakob P, Cutler P, Fowler S, et al. Mass spectrometry-based quantification of CYP enzymes to establish in vitro/in vivo scaling factors for intestinal and hepatic metabolism in beagle dog. Pharm Res. 2012;29(7):1832–42.PubMedCrossRef
255.
go back to reference Heikkinen AT, Friedlein A, Matondo M, Hatley OJ, Petsalo A, Juvonen R, et al. Quantitative ADME proteomics–CYP and UGT enzymes in the beagle dog liver and intestine. Pharm Res. 2015;32(1):74–90.PubMedCrossRef Heikkinen AT, Friedlein A, Matondo M, Hatley OJ, Petsalo A, Juvonen R, et al. Quantitative ADME proteomics–CYP and UGT enzymes in the beagle dog liver and intestine. Pharm Res. 2015;32(1):74–90.PubMedCrossRef
256.
go back to reference Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2011;339(2):579–88.PubMedCrossRef Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2011;339(2):579–88.PubMedCrossRef
257.
go back to reference Ballard P, Brassil P, Bui KH, Dolgos H, Petersson C, Tunek A, et al. The right compound in the right assay at the right time: an integrated discovery DMPK strategy. Drug Metab Rev. 2012;44(3):224–52.PubMedCrossRef Ballard P, Brassil P, Bui KH, Dolgos H, Petersson C, Tunek A, et al. The right compound in the right assay at the right time: an integrated discovery DMPK strategy. Drug Metab Rev. 2012;44(3):224–52.PubMedCrossRef
258.
go back to reference Emoto C, Fukuda T, Cox S, Christians U, Vinks A. Development of a physiologically-based pharmacokinetic model for sirolimus: predicting bioavailability based on intestinal CYP3A content. CPT Pharmacometrics Syst Pharmacol. 2013;2(7):1–9.CrossRef Emoto C, Fukuda T, Cox S, Christians U, Vinks A. Development of a physiologically-based pharmacokinetic model for sirolimus: predicting bioavailability based on intestinal CYP3A content. CPT Pharmacometrics Syst Pharmacol. 2013;2(7):1–9.CrossRef
259.
go back to reference Heikkinen AT, Baneyx G, Caruso A, Parrott N. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates: an evaluation and case study using GastroPlus™. Eur J Pharm Sci. 2012;47(2):375–86.PubMedCrossRef Heikkinen AT, Baneyx G, Caruso A, Parrott N. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates: an evaluation and case study using GastroPlus™. Eur J Pharm Sci. 2012;47(2):375–86.PubMedCrossRef
260.
go back to reference Pal D, Mitra AK. MDR-and CYP3A4-mediated drug–drug interactions. J Neuroimmune Pharmacol. 2006;1(3):323–39.PubMedCrossRef Pal D, Mitra AK. MDR-and CYP3A4-mediated drug–drug interactions. J Neuroimmune Pharmacol. 2006;1(3):323–39.PubMedCrossRef
261.
go back to reference Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5′-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42(4):500–10.PubMedCrossRef Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5′-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42(4):500–10.PubMedCrossRef
262.
go back to reference Sato Y, Nagata M, Tetsuka K, Tamura K, Miyashita A, Kawamura A, et al. Optimized methods for targeted peptide-based quantification of human uridine 5′-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos. 2014;42(5):885–9.PubMedCrossRef Sato Y, Nagata M, Tetsuka K, Tamura K, Miyashita A, Kawamura A, et al. Optimized methods for targeted peptide-based quantification of human uridine 5′-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos. 2014;42(5):885–9.PubMedCrossRef
263.
go back to reference Oswald S, Gröer C, Drozdzik M, Siegmund W. Mass spectrometry-based targeted proteomics as a tool to elucidate the expression and function of intestinal drug transporters. AAPS J. 2013;15(4):1128–40.PubMedPubMedCentralCrossRef Oswald S, Gröer C, Drozdzik M, Siegmund W. Mass spectrometry-based targeted proteomics as a tool to elucidate the expression and function of intestinal drug transporters. AAPS J. 2013;15(4):1128–40.PubMedPubMedCentralCrossRef
264.
go back to reference Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CE, et al. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos. 2015;43(3):367–74.PubMedCrossRef Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CE, et al. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos. 2015;43(3):367–74.PubMedCrossRef
265.
go back to reference Harwood M, Neuhoff S, Carlson G, Warhurst G, Rostami-Hodjegan A. Absolute abundance and function of intestinal drug transporters: a prerequisite for fully mechanistic in vitro–in vivo extrapolation of oral drug absorption. Biopharm Drug Dispos. 2013;34(1):2–28.PubMedCrossRef Harwood M, Neuhoff S, Carlson G, Warhurst G, Rostami-Hodjegan A. Absolute abundance and function of intestinal drug transporters: a prerequisite for fully mechanistic in vitro–in vivo extrapolation of oral drug absorption. Biopharm Drug Dispos. 2013;34(1):2–28.PubMedCrossRef
266.
go back to reference Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61(5):541–58.PubMedCrossRef Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61(5):541–58.PubMedCrossRef
267.
go back to reference Thörn M, Finnström N, Lundgren S, Rane A, Lööf L. Cytochromes P450 and MDR1 mRNA expression along the human gastrointestinal tract. Br J Clin Pharmacol. 2005;60(1):54–60.PubMedPubMedCentralCrossRef Thörn M, Finnström N, Lundgren S, Rane A, Lööf L. Cytochromes P450 and MDR1 mRNA expression along the human gastrointestinal tract. Br J Clin Pharmacol. 2005;60(1):54–60.PubMedPubMedCentralCrossRef
268.
go back to reference Uehara S, Murayama N, Nakanishi Y, Nakamura C, Hashizume T, Zeldin DC, et al. Immunochemical detection of cytochrome P450 enzymes in small intestine microsomes of male and female untreated juvenile cynomolgus monkeys. Xenobiotica. 2014;44(9):769–74.PubMedCrossRef Uehara S, Murayama N, Nakanishi Y, Nakamura C, Hashizume T, Zeldin DC, et al. Immunochemical detection of cytochrome P450 enzymes in small intestine microsomes of male and female untreated juvenile cynomolgus monkeys. Xenobiotica. 2014;44(9):769–74.PubMedCrossRef
269.
go back to reference Wang MZ, Wu JQ, Bridges AS, Zeldin DC, Kornbluth S, Tidwell RR, et al. Human enteric microsomal CYP4F enzymes O-demethylate the antiparasitic prodrug pafuramidine. Drug Metab Dispos. 2007;35(11):2067–75.PubMedPubMedCentralCrossRef Wang MZ, Wu JQ, Bridges AS, Zeldin DC, Kornbluth S, Tidwell RR, et al. Human enteric microsomal CYP4F enzymes O-demethylate the antiparasitic prodrug pafuramidine. Drug Metab Dispos. 2007;35(11):2067–75.PubMedPubMedCentralCrossRef
270.
go back to reference Borm PJ, Koster AS, Frankhuijzen-Sierevogel A, Noordhoek J. Comparison of two cell isolation procedures to study in vitro intestinal wall biotransformation in control and 3-methyl-cholanthrene pretreated rats. Cell Biochem Funct. 1983;1(3):161–7.PubMedCrossRef Borm PJ, Koster AS, Frankhuijzen-Sierevogel A, Noordhoek J. Comparison of two cell isolation procedures to study in vitro intestinal wall biotransformation in control and 3-methyl-cholanthrene pretreated rats. Cell Biochem Funct. 1983;1(3):161–7.PubMedCrossRef
271.
go back to reference Behera D, Damre A, Varghese A, Addepalli V. In vitro evaluation of hepatic and extra-hepatic metabolism of coumarins using rat subcellular fractions: correlation of in vitro clearance with in vivo data. Drug Metab Drug Interact. 2008;23(3–4):329–50. Behera D, Damre A, Varghese A, Addepalli V. In vitro evaluation of hepatic and extra-hepatic metabolism of coumarins using rat subcellular fractions: correlation of in vitro clearance with in vivo data. Drug Metab Drug Interact. 2008;23(3–4):329–50.
272.
go back to reference Pacifici G, Franchi M, Bencini C, Repetti F, Di Lascio N, Muraro G. Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica. 1988;18(7):849–56.PubMedCrossRef Pacifici G, Franchi M, Bencini C, Repetti F, Di Lascio N, Muraro G. Tissue distribution of drug-metabolizing enzymes in humans. Xenobiotica. 1988;18(7):849–56.PubMedCrossRef
273.
go back to reference Gibbs JP, Yang J-S, Slattery JT. Comparison of human liver and small intestinal glutathione S-transferase-catalyzed busulfan conjugation in vitro. Drug Metab Dispos. 1998;26(1):52–5.PubMed Gibbs JP, Yang J-S, Slattery JT. Comparison of human liver and small intestinal glutathione S-transferase-catalyzed busulfan conjugation in vitro. Drug Metab Dispos. 1998;26(1):52–5.PubMed
274.
go back to reference Shirkey R, Chakraborty J, Bridges J. An improved method for preparing rat small intestine microsomal fractions for studying drug metabolism. Anal Biochem. 1979;93:73–81.PubMedCrossRef Shirkey R, Chakraborty J, Bridges J. An improved method for preparing rat small intestine microsomal fractions for studying drug metabolism. Anal Biochem. 1979;93:73–81.PubMedCrossRef
275.
go back to reference Lawrence XY. An integrated model for determining causes of poor oral drug absorption. Pharm Res. 1999;16(12):1883–7.CrossRef Lawrence XY. An integrated model for determining causes of poor oral drug absorption. Pharm Res. 1999;16(12):1883–7.CrossRef
276.
go back to reference Sawamoto T, Haruta S, Kurosaki Y, Higaki K, Kimura T. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J Pharm Pharmacol. 1997;49(4):450–7.PubMedCrossRef Sawamoto T, Haruta S, Kurosaki Y, Higaki K, Kimura T. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J Pharm Pharmacol. 1997;49(4):450–7.PubMedCrossRef
277.
go back to reference Kimura T, Iwasaki N, Yokoe J-I, Haruta S, Yokoo Y, Ogawara K-I, et al. Analysis and prediction of absorption profile including hepatic first-pass metabolism of N-methyltyramine, a potent stimulant of gastrin release present in beer, after oral ingestion in rats by gastrointestinal-transit-absorption model. Drug Metab Dispos. 2000;28(5):577–81.PubMed Kimura T, Iwasaki N, Yokoe J-I, Haruta S, Yokoo Y, Ogawara K-I, et al. Analysis and prediction of absorption profile including hepatic first-pass metabolism of N-methyltyramine, a potent stimulant of gastrin release present in beer, after oral ingestion in rats by gastrointestinal-transit-absorption model. Drug Metab Dispos. 2000;28(5):577–81.PubMed
278.
go back to reference Remmel RP, Burchell B. Validation and use of cloned, expressed human drug-metabolizing enzymes in heterologous cells for analysis of drug metabolism and drug–drug interactions. Biochem Pharmacol. 1993;46(4):559–66.PubMedCrossRef Remmel RP, Burchell B. Validation and use of cloned, expressed human drug-metabolizing enzymes in heterologous cells for analysis of drug metabolism and drug–drug interactions. Biochem Pharmacol. 1993;46(4):559–66.PubMedCrossRef
279.
go back to reference Venkatakrishnan K, von Moltke LL, Harmatz JS, Crespi CL, Greenblatt DJ. Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos. 2000;28(12):1493–504.PubMed Venkatakrishnan K, von Moltke LL, Harmatz JS, Crespi CL, Greenblatt DJ. Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos. 2000;28(12):1493–504.PubMed
280.
go back to reference Sjögren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernäs H, et al. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci. 2013;49(4):679–98.PubMedCrossRef Sjögren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernäs H, et al. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci. 2013;49(4):679–98.PubMedCrossRef
281.
go back to reference Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.PubMedCrossRef Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.PubMedCrossRef
282.
go back to reference Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008;5(5):760–75.PubMedCrossRef Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008;5(5):760–75.PubMedCrossRef
Metadata
Title
Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models
Authors
Sheila Annie Peters
Christopher R. Jones
Anna-Lena Ungell
Oliver J. D. Hatley
Publication date
01-06-2016
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 6/2016
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-015-0351-6

Other articles of this Issue 6/2016

Clinical Pharmacokinetics 6/2016 Go to the issue