Skip to main content
Top
Published in: Clinical Pharmacokinetics 2/2015

01-02-2015 | Original Research Article

Prediction of Drug Disposition in Diabetic Patients by Means of a Physiologically Based Pharmacokinetic Model

Authors: Jia Li, Hai-fang Guo, Can Liu, Zeyu Zhong, Li Liu, Xiao-dong Liu

Published in: Clinical Pharmacokinetics | Issue 2/2015

Login to get access

Abstract

Background and Objective

Accumulating evidence has shown that diabetes mellitus may affect the pharmacokinetics of some drugs, leading to alteration of pharmacodynamics and/or toxic effects. The aim of this study was to develop a novel physiologically based pharmacokinetic (PBPK) model for predicting drug pharmacokinetics in patients with type 2 diabetes mellitus quantitatively.

Methods

Contributions of diabetes-induced alteration of physiological parameters including gastric emptying rates, intestinal transit time, drug metabolism in liver and kidney functions were incorporated into the model. Plasma concentration–time profiles and pharmacokinetic parameters of seven drugs (antipyrine, nisoldipine, repaglinide, glibenclamide, glimepiride, chlorzoxazone, and metformin) in non-diabetic and diabetic patients were predicted using the developed model. The PBPK model coupled with a Monte-Carlo simulation was also used to predict the means and variability of pharmacokinetic parameters.

Results

The predicted area under the plasma concentration–time curve (AUC) and maximum (peak) concentration (C max) were reasonably consistent (<2-fold errors) with the reported values. Sensitivity analysis showed that gut transit time, hepatic enzyme activity, and renal function affected the pharmacokinetic characteristics of these drugs. Shortened gut transit time only decreased the AUC of controlled-released drugs and drugs with low absorption rates. Impairment of renal function markedly altered pharmacokinetics of drugs mainly eliminated via the kidneys.

Conclusion

All of these results indicate that the developed PBPK model can quantitatively predict pharmacokinetic alterations induced by diabetes.
Literature
2.
go back to reference Gilbert RE, Cooper ME, Krum H. Drug administration in patients with diabetes mellitus: safety considerations. Drug Saf. 1998;18(6):441–55.PubMedCrossRef Gilbert RE, Cooper ME, Krum H. Drug administration in patients with diabetes mellitus: safety considerations. Drug Saf. 1998;18(6):441–55.PubMedCrossRef
5.
go back to reference De Jonge ME, Mathot RA, Van Dam SM, Beijnen JH, Rodenhuis S. Extremely high exposures in an obese patient receiving high-dose cyclophosphamide, thiotepa and carboplatin. Cancer Chemother Pharmacol. 2002;50(3):251–5. doi:10.1007/s00280-002-0494-7.PubMedCrossRef De Jonge ME, Mathot RA, Van Dam SM, Beijnen JH, Rodenhuis S. Extremely high exposures in an obese patient receiving high-dose cyclophosphamide, thiotepa and carboplatin. Cancer Chemother Pharmacol. 2002;50(3):251–5. doi:10.​1007/​s00280-002-0494-7.PubMedCrossRef
6.
go back to reference Ziegler D, Schadewaldt P, Pour Mirza A, Piolot R, Schommartz B, Reinhardt M, et al. [13C] octanoic acid breath test for non-invasive assessment of gastric emptying in diabetic patients: validation and relationship to gastric symptoms and cardiovascular autonomic function. Diabetologia. 1996;39(7):823–30.PubMedCrossRef Ziegler D, Schadewaldt P, Pour Mirza A, Piolot R, Schommartz B, Reinhardt M, et al. [13C] octanoic acid breath test for non-invasive assessment of gastric emptying in diabetic patients: validation and relationship to gastric symptoms and cardiovascular autonomic function. Diabetologia. 1996;39(7):823–30.PubMedCrossRef
7.
go back to reference Kong MF, King P, Macdonald IA, Blackshaw PE, Horowitz M, Perkins AC, et al. Euglycaemic hyperinsulinaemia does not affect gastric emptying in type I and type II diabetes mellitus. Diabetologia. 1999;42(3):365–72. doi:10.1007/s001250051164.PubMedCrossRef Kong MF, King P, Macdonald IA, Blackshaw PE, Horowitz M, Perkins AC, et al. Euglycaemic hyperinsulinaemia does not affect gastric emptying in type I and type II diabetes mellitus. Diabetologia. 1999;42(3):365–72. doi:10.​1007/​s001250051164.PubMedCrossRef
8.
go back to reference Schwartz JG, Green GM, Guan D, McMahan CA, Phillips WT. Rapid gastric emptying of a solid pancake meal in type II diabetic patients. Diabetes Care. 1996;19(5):468–71.PubMedCrossRef Schwartz JG, Green GM, Guan D, McMahan CA, Phillips WT. Rapid gastric emptying of a solid pancake meal in type II diabetic patients. Diabetes Care. 1996;19(5):468–71.PubMedCrossRef
9.
go back to reference Frank JW, Saslow SB, Camilleri M, Thomforde GM, Dinneen S, Rizza RA. Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus. Gastroenterology. 1995;109(3):755–65.PubMedCrossRef Frank JW, Saslow SB, Camilleri M, Thomforde GM, Dinneen S, Rizza RA. Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus. Gastroenterology. 1995;109(3):755–65.PubMedCrossRef
10.
go back to reference Horowitz M, Wishart JM, Jones KL, Hebbard GS. Gastric emptying in diabetes: an overview. Diabet Med. 1996;13(9 Suppl 5):S16–22.PubMed Horowitz M, Wishart JM, Jones KL, Hebbard GS. Gastric emptying in diabetes: an overview. Diabet Med. 1996;13(9 Suppl 5):S16–22.PubMed
11.
go back to reference Matsumoto M, Yoshimura R, Akiho H, Higuchi N, Kobayashi K, Matsui N, et al. Gastric emptying in diabetic patients by the (13) C-octanoic acid breath test: role of insulin in gastric motility. J Gastroenterol. 2007;42(6):469–74. doi:10.1007/s00535-007-2031-2.PubMedCrossRef Matsumoto M, Yoshimura R, Akiho H, Higuchi N, Kobayashi K, Matsui N, et al. Gastric emptying in diabetic patients by the (13) C-octanoic acid breath test: role of insulin in gastric motility. J Gastroenterol. 2007;42(6):469–74. doi:10.​1007/​s00535-007-2031-2.PubMedCrossRef
12.
go back to reference Iida M, Ikeda M, Kishimoto M, Tsujino T, Kaneto H, Matsuhisa M, et al. Evaluation of gut motility in type II diabetes by the radiopaque marker method. J Gastroenterol Hepatol. 2000;15(4):381–5.PubMedCrossRef Iida M, Ikeda M, Kishimoto M, Tsujino T, Kaneto H, Matsuhisa M, et al. Evaluation of gut motility in type II diabetes by the radiopaque marker method. J Gastroenterol Hepatol. 2000;15(4):381–5.PubMedCrossRef
15.
go back to reference Dostalek M, Sam WJ, Paryani KR, Macwan JS, Gohh RY, Akhlaghi F. Diabetes mellitus reduces the clearance of atorvastatin lactone: results of a population pharmacokinetic analysis in renal transplant recipients and in vitro studies using human liver microsomes. Clin Pharmacokinet. 2012;51(9):591–606. doi:10.2165/11632690-000000000-00000.PubMedCrossRef Dostalek M, Sam WJ, Paryani KR, Macwan JS, Gohh RY, Akhlaghi F. Diabetes mellitus reduces the clearance of atorvastatin lactone: results of a population pharmacokinetic analysis in renal transplant recipients and in vitro studies using human liver microsomes. Clin Pharmacokinet. 2012;51(9):591–606. doi:10.​2165/​11632690-000000000-00000.PubMedCrossRef
16.
go back to reference Sasso FC, De Nicola L, Carbonara O, Nasti R, Minutolo R, Salvatore T, et al. Cardiovascular risk factors and disease management in type 2 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29(3):498–503.PubMedCrossRef Sasso FC, De Nicola L, Carbonara O, Nasti R, Minutolo R, Salvatore T, et al. Cardiovascular risk factors and disease management in type 2 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29(3):498–503.PubMedCrossRef
17.
18.
go back to reference Sambol NC, Chiang J, Lin ET, Goodman AM, Liu CY, Benet LZ, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol. 1995;35(11):1094–102.PubMedCrossRef Sambol NC, Chiang J, Lin ET, Goodman AM, Liu CY, Benet LZ, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol. 1995;35(11):1094–102.PubMedCrossRef
19.
go back to reference Jones KL, Tonkin A, Horowitz M, Wishart JM, Carney BI, Guha S, et al. Rate of gastric emptying is a determinant of postprandial hypotension in non-insulin-dependent diabetes mellitus. Clin Sci (Lond). 1998;94(1):65–70.PubMed Jones KL, Tonkin A, Horowitz M, Wishart JM, Carney BI, Guha S, et al. Rate of gastric emptying is a determinant of postprandial hypotension in non-insulin-dependent diabetes mellitus. Clin Sci (Lond). 1998;94(1):65–70.PubMed
20.
go back to reference Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW, et al. The evolving diabetes burden in the United States. Ann Intern Med. 2004;140(11):945–50.PubMedCrossRef Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW, et al. The evolving diabetes burden in the United States. Ann Intern Med. 2004;140(11):945–50.PubMedCrossRef
22.
go back to reference Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89(2):259–67. doi:10.1038/clpt.2010.298.PubMedCrossRef Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89(2):259–67. doi:10.​1038/​clpt.​2010.​298.PubMedCrossRef
26.
go back to reference Björkman S, Wada DR, Berling BM, Benoni G. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J Pharm Sci. 2001;90(9):1226–41. doi:10.1002/jps.1076.PubMedCrossRef Björkman S, Wada DR, Berling BM, Benoni G. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J Pharm Sci. 2001;90(9):1226–41. doi:10.​1002/​jps.​1076.PubMedCrossRef
27.
go back to reference Ghobadi C, Johnson TN, Aarabi M, Almond LM, Allabi AC, Rowland-Yeo K, et al. Application of a systems approach to the bottom-up assessment of pharmacokinetics in obese patients: expected variations in clearance. Clin Pharmacokinet. 2011;50(12):809–22. doi:10.2165/11594420-000000000-00000.PubMedCrossRef Ghobadi C, Johnson TN, Aarabi M, Almond LM, Allabi AC, Rowland-Yeo K, et al. Application of a systems approach to the bottom-up assessment of pharmacokinetics in obese patients: expected variations in clearance. Clin Pharmacokinet. 2011;50(12):809–22. doi:10.​2165/​11594420-000000000-00000.PubMedCrossRef
28.
go back to reference Perdaems N, Blasco H, Vinson C, Chenel M, Whalley S, Cazade F, et al. Predictions of metabolic drug-drug interactions using physiologically based modelling: two cytochrome P450 3A4 substrates coadministered with ketoconazole or verapamil. Clin Pharmacokinet. 2010;49(4):239–58. doi:10.2165/11318130-000000000-00000.PubMedCrossRef Perdaems N, Blasco H, Vinson C, Chenel M, Whalley S, Cazade F, et al. Predictions of metabolic drug-drug interactions using physiologically based modelling: two cytochrome P450 3A4 substrates coadministered with ketoconazole or verapamil. Clin Pharmacokinet. 2010;49(4):239–58. doi:10.​2165/​11318130-000000000-00000.PubMedCrossRef
29.
go back to reference Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(Suppl 1):S41–67 (S0169409X0100179X). PubMedCrossRef Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(Suppl 1):S41–67 (S0169409X0100179X). PubMedCrossRef
31.
go back to reference Cheng CL, Yu LX, Lee HL, Yang CY, Lue CS, Chou CH. Biowaiver extension potential to BCS Class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22(4):297–304. doi:10.1016/j.ejps.2004.03.016.PubMedCrossRef Cheng CL, Yu LX, Lee HL, Yang CY, Lue CS, Chou CH. Biowaiver extension potential to BCS Class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci. 2004;22(4):297–304. doi:10.​1016/​j.​ejps.​2004.​03.​016.PubMedCrossRef
32.
go back to reference Heinig R, Ahr G, Hayauchi Y, Kuhlmann J. Pharmacokinetics of the controlled-release nisoldipine coat-core tablet formulation. Int J Clin Pharmacol Ther. 1997;35(8):341–51.PubMed Heinig R, Ahr G, Hayauchi Y, Kuhlmann J. Pharmacokinetics of the controlled-release nisoldipine coat-core tablet formulation. Int J Clin Pharmacol Ther. 1997;35(8):341–51.PubMed
33.
go back to reference Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Drug Metab Dispos. 2011;39(9):1633–42. doi:10.1124/dmd.111.039248.PubMedCrossRef Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Drug Metab Dispos. 2011;39(9):1633–42. doi:10.​1124/​dmd.​111.​039248.PubMedCrossRef
34.
go back to reference Triantafyllou K, Kalantzis C, Papadopoulos AA, Apostolopoulos P, Rokkas T, Kalantzis N, et al. Video-capsule endoscopy gastric and small bowel transit time and completeness of the examination in patients with diabetes mellitus. Dig Liver Dis. 2007;39(6):575–80. doi:10.1016/j.dld.2007.01.024.PubMedCrossRef Triantafyllou K, Kalantzis C, Papadopoulos AA, Apostolopoulos P, Rokkas T, Kalantzis N, et al. Video-capsule endoscopy gastric and small bowel transit time and completeness of the examination in patients with diabetes mellitus. Dig Liver Dis. 2007;39(6):575–80. doi:10.​1016/​j.​dld.​2007.​01.​024.PubMedCrossRef
35.
go back to reference Jung HK, Kim DY, Moon IH, Hong YS. Colonic transit time in diabetic patients–comparison with healthy subjects and the effect of autonomic neuropathy. Yonsei Med J. 2003;44(2):265–72.PubMedCrossRef Jung HK, Kim DY, Moon IH, Hong YS. Colonic transit time in diabetic patients–comparison with healthy subjects and the effect of autonomic neuropathy. Yonsei Med J. 2003;44(2):265–72.PubMedCrossRef
36.
go back to reference Guo H, Liu C, Li J, Zhang M, Hu M, Xu P, et al. A mechanistic physiologically based pharmacokinetic-enzyme turnover model involving both intestine and liver to predict CYP3A induction-mediated drug-drug interactions. J Pharm Sci. 2013;102(8):2819–36. doi:10.1002/jps.23613.PubMedCrossRef Guo H, Liu C, Li J, Zhang M, Hu M, Xu P, et al. A mechanistic physiologically based pharmacokinetic-enzyme turnover model involving both intestine and liver to predict CYP3A induction-mediated drug-drug interactions. J Pharm Sci. 2013;102(8):2819–36. doi:10.​1002/​jps.​23613.PubMedCrossRef
37.
go back to reference Li GF, Wang K, Chen R, Zhao HR, Yang J, Zheng QS. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol Sin. 2012;33(11):1359–71. doi:10.1038/aps.2012.103.PubMedCentralPubMedCrossRef Li GF, Wang K, Chen R, Zhao HR, Yang J, Zheng QS. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol Sin. 2012;33(11):1359–71. doi:10.​1038/​aps.​2012.​103.PubMedCentralPubMedCrossRef
38.
go back to reference Poulin P, Jones RD, Jones HM, Gibson CR, Rowland M, Chien JY, et al. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: Prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach. J Pharm Sci. Epub 2011 May 3. doi:10.1002/jps.22550 Poulin P, Jones RD, Jones HM, Gibson CR, Rowland M, Chien JY, et al. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: Prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach. J Pharm Sci. Epub 2011 May 3. doi:10.​1002/​jps.​22550
39.
go back to reference Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42.PubMedCrossRef Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42.PubMedCrossRef
40.
go back to reference Lin JH. Species similarities and differences in pharmacokinetics. Drug Metab Dispos. 1995;23(10):1008–21.PubMed Lin JH. Species similarities and differences in pharmacokinetics. Drug Metab Dispos. 1995;23(10):1008–21.PubMed
41.
go back to reference Jones RD, Jones HM, Rowland M, Gibson CR, Yates JW, Chien JY, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 2: Comparative assessment of prediction methods of human volume of distribution. J Pharm Sci. Epub 2011 Mar 30. doi:10.1002/jps.22553 Jones RD, Jones HM, Rowland M, Gibson CR, Yates JW, Chien JY, et al. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 2: Comparative assessment of prediction methods of human volume of distribution. J Pharm Sci. Epub 2011 Mar 30. doi:10.​1002/​jps.​22553
42.
go back to reference Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76. doi:10.1002/jps.20322.PubMedCrossRef Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76. doi:10.​1002/​jps.​20322.PubMedCrossRef
43.
go back to reference Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom-up” and “top-down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. Epub 2013 Sep 3. doi:10.1111/bcp.12234. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom-up” and “top-down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. Epub 2013 Sep 3. doi:10.​1111/​bcp.​12234.
44.
go back to reference Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75 (JST.JSTAGE/dmpk/24.53).PubMedCrossRef Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75 (JST.JSTAGE/dmpk/24.53).PubMedCrossRef
45.
go back to reference Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, Langguth P. In silico modeling of non-linear drug absorption for the P-gp substrate talinolol and of consequences for the resulting pharmacodynamic effect. Pharm Res. 2006;23(8):1712–20. doi:10.1007/s11095-006-9020-7.PubMedCrossRef Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, Langguth P. In silico modeling of non-linear drug absorption for the P-gp substrate talinolol and of consequences for the resulting pharmacodynamic effect. Pharm Res. 2006;23(8):1712–20. doi:10.​1007/​s11095-006-9020-7.PubMedCrossRef
46.
go back to reference Abuasal BS, Bolger MB, Walker DK, Kaddoumi A. In silico modeling for the nonlinear absorption kinetics of UK-343,664: a P-gp and CYP3A4 substrate. Mol Pharm. 2012;9(3):492–504. doi:10.1021/mp200275j.PubMedCrossRef Abuasal BS, Bolger MB, Walker DK, Kaddoumi A. In silico modeling for the nonlinear absorption kinetics of UK-343,664: a P-gp and CYP3A4 substrate. Mol Pharm. 2012;9(3):492–504. doi:10.​1021/​mp200275j.PubMedCrossRef
47.
go back to reference Shobha JC, Raghuram TC, Kumar AD, Krishnaswamy K. Antipyrine kinetics in undernourished diabetics. Eur J Clin Pharmacol. 1991;41(4):359–61.PubMedCrossRef Shobha JC, Raghuram TC, Kumar AD, Krishnaswamy K. Antipyrine kinetics in undernourished diabetics. Eur J Clin Pharmacol. 1991;41(4):359–61.PubMedCrossRef
49.
go back to reference Heinig R, Muschalek V, Ahr G. Determination of the enantiomers of nisoldipine in human plasma using high-performance liquid chromatography on a chiral stationary phase and gas chromatography with mass-selective detection. J Chromatogr B Biomed Appl. 1994;655(2):286–92.PubMedCrossRef Heinig R, Muschalek V, Ahr G. Determination of the enantiomers of nisoldipine in human plasma using high-performance liquid chromatography on a chiral stationary phase and gas chromatography with mass-selective detection. J Chromatogr B Biomed Appl. 1994;655(2):286–92.PubMedCrossRef
50.
go back to reference Marques MP, Coelho EB, Dos Santos NA, Geleilete TJ, Lanchote VL. Dynamic and kinetic disposition of nisoldipine enantiomers in hypertensive patients presenting with type-2 diabetes mellitus. Eur J Clin Pharmacol. 2002;58(9):607–14. doi:10.1007/s00228-002-0528-4.PubMedCrossRef Marques MP, Coelho EB, Dos Santos NA, Geleilete TJ, Lanchote VL. Dynamic and kinetic disposition of nisoldipine enantiomers in hypertensive patients presenting with type-2 diabetes mellitus. Eur J Clin Pharmacol. 2002;58(9):607–14. doi:10.​1007/​s00228-002-0528-4.PubMedCrossRef
52.
go back to reference Schumacher S, Abbasi I, Weise D, Hatorp V, Sattler K, Sieber J, et al. Single- and multiple-dose pharmacokinetics of repaglinide in patients with type 2 diabetes and renal impairment. Eur J Clin Pharmacol. 2001;57(2):147–52.PubMedCrossRef Schumacher S, Abbasi I, Weise D, Hatorp V, Sattler K, Sieber J, et al. Single- and multiple-dose pharmacokinetics of repaglinide in patients with type 2 diabetes and renal impairment. Eur J Clin Pharmacol. 2001;57(2):147–52.PubMedCrossRef
54.
go back to reference Malerczyk V, Badian M, Korn A, Lehr KH, Waldhausl W. Dose linearity assessment of glimepiride (Amaryl) tablets in healthy volunteers. Drug Metabol Drug Interact. 1994;11(4):341–57.PubMedCrossRef Malerczyk V, Badian M, Korn A, Lehr KH, Waldhausl W. Dose linearity assessment of glimepiride (Amaryl) tablets in healthy volunteers. Drug Metabol Drug Interact. 1994;11(4):341–57.PubMedCrossRef
55.
go back to reference Graefe-Mody U, Rose P, Ring A, Zander K, Iovino M, Woerle HJ. Assessment of the pharmacokinetic interaction between the novel DPP-4 inhibitor linagliptin and a sulfonylurea, glyburide, in healthy subjects. Drug Metab Pharmacokinet. 2011;26(2):123–9. doi:10.2133/dmpk.DMPK-10-RG-091.PubMedCrossRef Graefe-Mody U, Rose P, Ring A, Zander K, Iovino M, Woerle HJ. Assessment of the pharmacokinetic interaction between the novel DPP-4 inhibitor linagliptin and a sulfonylurea, glyburide, in healthy subjects. Drug Metab Pharmacokinet. 2011;26(2):123–9. doi:10.​2133/​dmpk.​DMPK-10-RG-091.PubMedCrossRef
56.
57.
go back to reference Badian M, Korn A, Lehr KH, Malerczyk V, Waldhausl W. Absolute bioavailability of glimepiride (Amaryl) after oral administration. Drug Metabol Drug Interact. 1994;11(4):331–9.PubMedCrossRef Badian M, Korn A, Lehr KH, Malerczyk V, Waldhausl W. Absolute bioavailability of glimepiride (Amaryl) after oral administration. Drug Metabol Drug Interact. 1994;11(4):331–9.PubMedCrossRef
58.
go back to reference Jonsson A, Chan JC, Rydberg T, Vaaler S, Hallengren B, Cockram CS, et al. Effects and pharmacokinetics of oral glibenclamide and glipizide in Caucasian and Chinese patients with type-2 diabetes. Eur J Clin Pharmacol. 2000;56(9–10):711–4.PubMedCrossRef Jonsson A, Chan JC, Rydberg T, Vaaler S, Hallengren B, Cockram CS, et al. Effects and pharmacokinetics of oral glibenclamide and glipizide in Caucasian and Chinese patients with type-2 diabetes. Eur J Clin Pharmacol. 2000;56(9–10):711–4.PubMedCrossRef
59.
go back to reference Serra D, He YL, Bullock J, Riviere GJ, Balez S, Schwartz S, et al. Evaluation of pharmacokinetic and pharmacodynamic interaction between the dipeptidyl peptidase IV inhibitor vildagliptin, glyburide and pioglitazone in patients with Type 2 diabetes. Int J Clin Pharmacol Ther. 2008;46(7):349–64.PubMedCrossRef Serra D, He YL, Bullock J, Riviere GJ, Balez S, Schwartz S, et al. Evaluation of pharmacokinetic and pharmacodynamic interaction between the dipeptidyl peptidase IV inhibitor vildagliptin, glyburide and pioglitazone in patients with Type 2 diabetes. Int J Clin Pharmacol Ther. 2008;46(7):349–64.PubMedCrossRef
60.
go back to reference Ono S, Hatanaka T, Hotta H, Tsutsui M, Satoh T, Gonzalez FJ. Chlorzoxazone is metabolized by human CYP1A2 as well as by human CYP2E1. Pharmacogenetics. 1995;5(3):143–50.PubMedCrossRef Ono S, Hatanaka T, Hotta H, Tsutsui M, Satoh T, Gonzalez FJ. Chlorzoxazone is metabolized by human CYP1A2 as well as by human CYP2E1. Pharmacogenetics. 1995;5(3):143–50.PubMedCrossRef
61.
go back to reference Wang Z, Hall SD, Maya JF, Li L, Asghar A, Gorski JC. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol. 2003;55(1):77–85.PubMedCentralPubMedCrossRef Wang Z, Hall SD, Maya JF, Li L, Asghar A, Gorski JC. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol. 2003;55(1):77–85.PubMedCentralPubMedCrossRef
62.
go back to reference Sambol NC, Chiang J, O’Conner M, Liu CY, Lin ET, Goodman AM, et al. Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-dependent diabetes mellitus. J Clin Pharmacol. 1996;36(11):1012–21.PubMedCrossRef Sambol NC, Chiang J, O’Conner M, Liu CY, Lin ET, Goodman AM, et al. Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-dependent diabetes mellitus. J Clin Pharmacol. 1996;36(11):1012–21.PubMedCrossRef
64.
go back to reference Liu H, Liu L, Li J, Mei D, Duan R, Hu N, et al. Combined contributions of impaired hepatic CYP2C11 and intestinal breast cancer resistance protein activities and expression to increased oral glibenclamide exposure in rats with streptozotocin-induced diabetes mellitus. Drug Metab Dispos. 2012;40(6):1104–12. doi:10.1124/dmd.111.043513.PubMedCrossRef Liu H, Liu L, Li J, Mei D, Duan R, Hu N, et al. Combined contributions of impaired hepatic CYP2C11 and intestinal breast cancer resistance protein activities and expression to increased oral glibenclamide exposure in rats with streptozotocin-induced diabetes mellitus. Drug Metab Dispos. 2012;40(6):1104–12. doi:10.​1124/​dmd.​111.​043513.PubMedCrossRef
65.
67.
go back to reference Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.PubMedCrossRef Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.PubMedCrossRef
68.
go back to reference Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.PubMedCrossRef Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.PubMedCrossRef
69.
70.
71.
go back to reference Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–46.PubMedCentralPubMed Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–46.PubMedCentralPubMed
72.
go back to reference Sayama H, Komura H, Kogayu M. Application of hybrid approach based on empirical and physiological concept for predicting pharmacokinetics in humans–usefulness of exponent on prospective evaluation of predictability. Drug Metab Dispos. 2013;41(2):498–507. doi:10.1124/dmd.112.048819.PubMedCrossRef Sayama H, Komura H, Kogayu M. Application of hybrid approach based on empirical and physiological concept for predicting pharmacokinetics in humans–usefulness of exponent on prospective evaluation of predictability. Drug Metab Dispos. 2013;41(2):498–507. doi:10.​1124/​dmd.​112.​048819.PubMedCrossRef
73.
74.
go back to reference Frick A, Moller H, Wirbitzki E. Biopharmaceutical characterization of oral immediate release drug products. In vitro/in vivo comparison of phenoxymethylpenicillin potassium, glimepiride and levofloxacin. Eur J Pharm Biopharm. 1998;46(3):305–11. doi:10.1016/S0939-6411(98)00041-1.PubMedCrossRef Frick A, Moller H, Wirbitzki E. Biopharmaceutical characterization of oral immediate release drug products. In vitro/in vivo comparison of phenoxymethylpenicillin potassium, glimepiride and levofloxacin. Eur J Pharm Biopharm. 1998;46(3):305–11. doi:10.​1016/​S0939-6411(98)00041-1.PubMedCrossRef
75.
go back to reference Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13(9):1336–42.PubMedCrossRef Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13(9):1336–42.PubMedCrossRef
76.
go back to reference Rydberg T, Jonsson A, Karlsson MO, Melander A. Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol. 1997;43(4):373–81.PubMedCentralPubMedCrossRef Rydberg T, Jonsson A, Karlsson MO, Melander A. Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol. 1997;43(4):373–81.PubMedCentralPubMedCrossRef
77.
go back to reference Zhao P, Vieira Mde L, Grillo JA, Song P, Wu TC, Zheng JH, et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52(1 Suppl):91S–108S. doi:10.1177/0091270011415528.PubMedCrossRef Zhao P, Vieira Mde L, Grillo JA, Song P, Wu TC, Zheng JH, et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52(1 Suppl):91S–108S. doi:10.​1177/​0091270011415528​.PubMedCrossRef
78.
go back to reference Balant L. Clinical pharmacokinetics of sulphonylurea hypoglycaemic drugs. Clin Pharmacokinet. 1981;6(3):215–41.PubMedCrossRef Balant L. Clinical pharmacokinetics of sulphonylurea hypoglycaemic drugs. Clin Pharmacokinet. 1981;6(3):215–41.PubMedCrossRef
79.
go back to reference Court MH, Von Moltke LL, Shader RI, Greenblatt DJ. Biotransformation of chlorzoxazone by hepatic microsomes from humans and ten other mammalian species. Biopharm Drug Dispos. 1997;18(3):213–26.PubMedCrossRef Court MH, Von Moltke LL, Shader RI, Greenblatt DJ. Biotransformation of chlorzoxazone by hepatic microsomes from humans and ten other mammalian species. Biopharm Drug Dispos. 1997;18(3):213–26.PubMedCrossRef
80.
go back to reference Lave T, Dupin S, Schmitt C, Chou RC, Jaeck D, Coassolo P. Integration of in vitro data into allometric scaling to predict hepatic metabolic clearance in man: application to 10 extensively metabolized drugs. J Pharm Sci. 1997;86(5):584–90. doi:10.1021/js960440h.PubMedCrossRef Lave T, Dupin S, Schmitt C, Chou RC, Jaeck D, Coassolo P. Integration of in vitro data into allometric scaling to predict hepatic metabolic clearance in man: application to 10 extensively metabolized drugs. J Pharm Sci. 1997;86(5):584–90. doi:10.​1021/​js960440h.PubMedCrossRef
81.
go back to reference Rydberg T, Jonsson A, Melander A. Comparison of the kinetics of glyburide and its active metabolites in humans. J Clin Pharm Ther. 1995;20(5):283–95.PubMedCrossRef Rydberg T, Jonsson A, Melander A. Comparison of the kinetics of glyburide and its active metabolites in humans. J Clin Pharm Ther. 1995;20(5):283–95.PubMedCrossRef
83.
go back to reference Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58. doi:10.1124/dmd.110.032649.PubMedCrossRef Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58. doi:10.​1124/​dmd.​110.​032649.PubMedCrossRef
84.
go back to reference Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996;59(6):613–23. doi:10.1016/S0009-9236(96)90001-6.PubMedCrossRef Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996;59(6):613–23. doi:10.​1016/​S0009-9236(96)90001-6.PubMedCrossRef
85.
go back to reference Naritomi Y, Terashita S, Kagayama A, Sugiyama Y. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos. 2003;31(5):580–8.PubMedCrossRef Naritomi Y, Terashita S, Kagayama A, Sugiyama Y. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos. 2003;31(5):580–8.PubMedCrossRef
86.
go back to reference Iwatsubo T, Suzuki H, Sugiyama Y. Prediction of species differences (rats, dogs, humans) in the in vivo metabolic clearance of YM796 by the liver from in vitro data. J Pharmacol Exp Ther. 1997;283(2):462–9.PubMed Iwatsubo T, Suzuki H, Sugiyama Y. Prediction of species differences (rats, dogs, humans) in the in vivo metabolic clearance of YM796 by the liver from in vitro data. J Pharmacol Exp Ther. 1997;283(2):462–9.PubMed
Metadata
Title
Prediction of Drug Disposition in Diabetic Patients by Means of a Physiologically Based Pharmacokinetic Model
Authors
Jia Li
Hai-fang Guo
Can Liu
Zeyu Zhong
Li Liu
Xiao-dong Liu
Publication date
01-02-2015
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 2/2015
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-014-0192-8

Other articles of this Issue 2/2015

Clinical Pharmacokinetics 2/2015 Go to the issue