Skip to main content
Top
Published in: Clinical Pharmacokinetics 7/2014

01-07-2014 | Original Research Article

A Re-evaluation and Validation of Ontogeny Functions for Cytochrome P450 1A2 and 3A4 Based on In Vivo Data

Authors: Farzaneh Salem, Trevor N. Johnson, Khaled Abduljalil, Geoffrey T. Tucker, Amin Rostami-Hodjegan

Published in: Clinical Pharmacokinetics | Issue 7/2014

Login to get access

Abstract

Background and Objectives

Current cytochrome P450 (CYP) 1A2 and 3A4 ontogeny profiles, which are derived mainly from in vitro studies and incorporated in paediatric physiologically based pharmacokinetic models, have been reported to under-predict the in vivo clearances of some model substrates in neonates and infants.

Method

We report ontogeny functions for these enzymes as paediatric to adult relative intrinsic clearance per mg of hepatic microsomal protein, based on the deconvolution of in vivo pharmacokinetic data and by accounting for the impact of known clinical condition on hepatic unbound intrinsic clearance for caffeine and theophylline as markers of CYP1A2 activity and for midazolam as a marker of CYP3A4 activity.

Results

The function for CYP1A2 describes an increase in relative intrinsic metabolic clearance from birth to 3 years followed by a decrease to adult values. The function for CYP3A4 describes a continuous rise in relative intrinsic metabolic clearance, reaching the adult value at about 1.3 years of age. The new models were validated by showing improved predictions of the systemic clearances of ropivacaine (major CYP1A2 substrate; minor CYP3A4 substrate) and alfentanil (major CYP3A4 substrate) compared with those using a previous ontogeny function based on in vitro data (alfentanil: mean squared prediction error 3.0 vs. 6.8; ropivacaine: mean squared prediction error 2.3 vs.14.2).

Conclusions

When implementing enzyme ontogeny functions, it is important to consider potential confounding factors (e.g. disease) that may affect the physiological conditions of the patient and, hence, the prediction of net in vivo clearance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barrett JS, Della Casa Alberighi O, Laer S, Meibohm B. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9.CrossRefPubMed Barrett JS, Della Casa Alberighi O, Laer S, Meibohm B. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9.CrossRefPubMed
2.
go back to reference Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.CrossRefPubMed Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23.CrossRefPubMed
3.
go back to reference Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91(5):926–31.CrossRefPubMed Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91(5):926–31.CrossRefPubMed
4.
go back to reference Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.CrossRefPubMed Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.CrossRefPubMed
5.
go back to reference Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704.CrossRefPubMedCentralPubMed Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704.CrossRefPubMedCentralPubMed
6.
go back to reference Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704.CrossRefPubMed Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704.CrossRefPubMed
7.
go back to reference Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom-up” and “top-down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. Epub 2013 Sep 3. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom-up” and “top-down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. Epub 2013 Sep 3.
8.
go back to reference Anderson B, Holford N. Evaluation of a morphine maturation model for the prediction of morphine clearance in children [letter]. Br J Clin Pharmacol. 2011;72(3):518–20 (author reply 21–3). Anderson B, Holford N. Evaluation of a morphine maturation model for the prediction of morphine clearance in children [letter]. Br J Clin Pharmacol. 2011;72(3):518–20 (author reply 21–3).
9.
go back to reference Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.CrossRefPubMed Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.CrossRefPubMed
10.
go back to reference Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21(3):302–8.CrossRefPubMed Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21(3):302–8.CrossRefPubMed
11.
go back to reference Ince I, de Wildt SN, Wang C, Peeters MY, Burggraaf J, Jacqz-Aigrain E, et al. A novel maturation function for clearance of the cytochrome P450 3A substrate midazolam from preterm neonates to adults. Clin Pharmacokinet. 2013;52(7):555–65. Ince I, de Wildt SN, Wang C, Peeters MY, Burggraaf J, Jacqz-Aigrain E, et al. A novel maturation function for clearance of the cytochrome P450 3A substrate midazolam from preterm neonates to adults. Clin Pharmacokinet. 2013;52(7):555–65.
12.
go back to reference Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50(2):125–34.CrossRefPubMedCentralPubMed Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50(2):125–34.CrossRefPubMedCentralPubMed
13.
go back to reference Ha HR, Chen J, Freiburghaus AU, Follath F. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol. 1995;39(3):321–6.CrossRefPubMedCentralPubMed Ha HR, Chen J, Freiburghaus AU, Follath F. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol. 1995;39(3):321–6.CrossRefPubMedCentralPubMed
14.
go back to reference Ha HR, Chen J, Krahenbuhl S, Follath F. Biotransformation of caffeine by cDNA-expressed human cytochromes P-450. Eur J Clin Pharmacol. 1996;49(4):309–15.CrossRefPubMed Ha HR, Chen J, Krahenbuhl S, Follath F. Biotransformation of caffeine by cDNA-expressed human cytochromes P-450. Eur J Clin Pharmacol. 1996;49(4):309–15.CrossRefPubMed
15.
go back to reference Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.PubMed Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.PubMed
16.
go back to reference Sonnier M, Cresteil T. Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem. 1998;251(3):893–8.CrossRefPubMed Sonnier M, Cresteil T. Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem. 1998;251(3):893–8.CrossRefPubMed
17.
go back to reference Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, et al. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci. 1997;61(26):2567–74.CrossRefPubMed Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, et al. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci. 1997;61(26):2567–74.CrossRefPubMed
18.
go back to reference Treluyer JM, Bowers G, Cazali N, Sonnier M, Rey E, Pons G, et al. Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos. 2003;31(3):275–81.CrossRefPubMed Treluyer JM, Bowers G, Cazali N, Sonnier M, Rey E, Pons G, et al. Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos. 2003;31(3):275–81.CrossRefPubMed
19.
20.
go back to reference Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver-evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.CrossRefPubMed Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver-evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.CrossRefPubMed
21.
go back to reference Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82.CrossRefPubMed Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82.CrossRefPubMed
22.
go back to reference Morse M, Cassels D, Schlutz F. Blood volumes of normal children. Am J Physiol. 1947;151:448–58.PubMed Morse M, Cassels D, Schlutz F. Blood volumes of normal children. Am J Physiol. 1947;151:448–58.PubMed
23.
go back to reference Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.CrossRefPubMed Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.CrossRefPubMed
24.
go back to reference Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part II. Clin Pharmacokinet. 2002;41(13):1077–94.CrossRefPubMed Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part II. Clin Pharmacokinet. 2002;41(13):1077–94.CrossRefPubMed
26.
go back to reference Reading RF, Ellis R, Fleetwood A. Plasma albumin and total protein in preterm babies from birth to eight weeks. Early Hum Dev. 1990;22(2):81–7.CrossRefPubMed Reading RF, Ellis R, Fleetwood A. Plasma albumin and total protein in preterm babies from birth to eight weeks. Early Hum Dev. 1990;22(2):81–7.CrossRefPubMed
27.
go back to reference Laudy JA, Janssen MM, Struyk PC, Stijnen T, Wallenburg HC, Wladimiroff JW. Fetal liver volume measurement by three-dimensional ultrasonography: a preliminary study. Ultrasound Obstet Gynecol. 1998;12(2):93–6.CrossRefPubMed Laudy JA, Janssen MM, Struyk PC, Stijnen T, Wallenburg HC, Wladimiroff JW. Fetal liver volume measurement by three-dimensional ultrasonography: a preliminary study. Ultrasound Obstet Gynecol. 1998;12(2):93–6.CrossRefPubMed
28.
go back to reference Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36(12):2405–9.CrossRefPubMed Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36(12):2405–9.CrossRefPubMed
29.
go back to reference Arlander E, Ekstrom G, Alm C, Carrillo JA, Bielenstein M, Bottiger Y, et al. Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther. 1998;64(5):484–91.CrossRefPubMed Arlander E, Ekstrom G, Alm C, Carrillo JA, Bielenstein M, Bottiger Y, et al. Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther. 1998;64(5):484–91.CrossRefPubMed
30.
go back to reference Kharasch ED, Russell M, Mautz D, Thummel KE, Kunze KL, Bowdle A, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology. 1997;87(1):36–50.CrossRefPubMed Kharasch ED, Russell M, Mautz D, Thummel KE, Kunze KL, Bowdle A, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology. 1997;87(1):36–50.CrossRefPubMed
31.
go back to reference Durward A, Mayer A, Skellett S, Taylor D, Hanna S, Tibby SM, et al. Hypoalbuminaemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child. 2003;88(5):419–22.CrossRefPubMedCentralPubMed Durward A, Mayer A, Skellett S, Taylor D, Hanna S, Tibby SM, et al. Hypoalbuminaemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child. 2003;88(5):419–22.CrossRefPubMedCentralPubMed
32.
go back to reference Horowitz IN, Tai K. Hypoalbuminemia in critically ill children. Arch Pediatr Adolesc Med. 2007;161(11):1048–52.CrossRefPubMed Horowitz IN, Tai K. Hypoalbuminemia in critically ill children. Arch Pediatr Adolesc Med. 2007;161(11):1048–52.CrossRefPubMed
33.
go back to reference Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50(2):99–110.CrossRefPubMed Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50(2):99–110.CrossRefPubMed
34.
go back to reference Salive ME, Cornoni-Huntley J, Phillips CL, Guralnik JM, Cohen HJ, Ostfeld AM, et al. Serum albumin in older persons: relationship with age and health status. J Clin Epidemiol. 1992;45(3):213–21.CrossRefPubMed Salive ME, Cornoni-Huntley J, Phillips CL, Guralnik JM, Cohen HJ, Ostfeld AM, et al. Serum albumin in older persons: relationship with age and health status. J Clin Epidemiol. 1992;45(3):213–21.CrossRefPubMed
35.
go back to reference Vincent JL, Dubois MJ, Navickis RJ, Wilkes MM. Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg. 2003;237(3):319–34.PubMedCentralPubMed Vincent JL, Dubois MJ, Navickis RJ, Wilkes MM. Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg. 2003;237(3):319–34.PubMedCentralPubMed
36.
go back to reference Bonnet F, Richard C, Glaser P, Lafay M, Guesde R. Changes in hepatic flow induced by continuous positive pressure ventilation in critically ill patients. Crit Care Med. 1982;10(11):703–5.CrossRefPubMed Bonnet F, Richard C, Glaser P, Lafay M, Guesde R. Changes in hepatic flow induced by continuous positive pressure ventilation in critically ill patients. Crit Care Med. 1982;10(11):703–5.CrossRefPubMed
37.
go back to reference Bamat N, Millar D, Suh S, Kirpalani H. Positive end expiratory pressure for preterm infants requiring conventional mechanical ventilation for respiratory distress syndrome or bronchopulmonary dysplasia. Cochrane Database Syst Rev. 2012;1:CD004500. Bamat N, Millar D, Suh S, Kirpalani H. Positive end expiratory pressure for preterm infants requiring conventional mechanical ventilation for respiratory distress syndrome or bronchopulmonary dysplasia. Cochrane Database Syst Rev. 2012;1:CD004500.
38.
go back to reference Gabrielsson J, Weiner D. Pharmacokinetic & pharmacodynamic data analysis: concepts and applications. 4th ed. Sweden: Swedish Pharmaceutical Press; 2007. Gabrielsson J, Weiner D. Pharmacokinetic & pharmacodynamic data analysis: concepts and applications. 4th ed. Sweden: Swedish Pharmaceutical Press; 2007.
39.
go back to reference Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.CrossRefPubMed Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.CrossRefPubMed
40.
go back to reference Ekstrom G, Gunnarsson UB. Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes. Drug Metab Dispos. 1996;24(9):955–61.PubMed Ekstrom G, Gunnarsson UB. Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes. Drug Metab Dispos. 1996;24(9):955–61.PubMed
42.
go back to reference Machavaram KK, Almond LM, Rostami-Hodjegan A, Gardner I, Jamei M, Tay S, et al. A physiologically-based pharmacokinetic modelling approach to predict disease-drug interactions: suppression of CYP3A by IL-6. Clin Pharmacol Ther. 2013;94(2):260–8.CrossRefPubMed Machavaram KK, Almond LM, Rostami-Hodjegan A, Gardner I, Jamei M, Tay S, et al. A physiologically-based pharmacokinetic modelling approach to predict disease-drug interactions: suppression of CYP3A by IL-6. Clin Pharmacol Ther. 2013;94(2):260–8.CrossRefPubMed
43.
go back to reference Azam YJ, Machavaram KK, Rostami-Hodjegan A. The modulating effect of endogenous substances on drug metabolising enzymes and implications for inter-individual variability and in vitro-in vivo extrapolation to predict disease-drug interactions. Curr Drug Metab. In Press. Azam YJ, Machavaram KK, Rostami-Hodjegan A. The modulating effect of endogenous substances on drug metabolising enzymes and implications for inter-individual variability and in vitro-in vivo extrapolation to predict disease-drug interactions. Curr Drug Metab. In Press.
44.
go back to reference Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.CrossRefPubMed Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.CrossRefPubMed
45.
go back to reference Le Guennec JC, Billon B. Delay in caffeine elimination in breast-fed infants. Pediatrics. 1987;79(2):264–8.PubMed Le Guennec JC, Billon B. Delay in caffeine elimination in breast-fed infants. Pediatrics. 1987;79(2):264–8.PubMed
46.
go back to reference Lambert GH, Schoeller DA, Kotake AN, Flores C, Hay D. The effect of age, gender, and sexual maturation on the caffeine breath test. Dev Pharmacol Ther. 1986;9(6):375–88.PubMed Lambert GH, Schoeller DA, Kotake AN, Flores C, Hay D. The effect of age, gender, and sexual maturation on the caffeine breath test. Dev Pharmacol Ther. 1986;9(6):375–88.PubMed
47.
go back to reference Levitsky LL, Schoeller DA, Lambert GH, Edidin DV. Effect of growth hormone therapy in growth hormone-deficient children on cytochrome P-450-dependent 3-N-demethylation of caffeine as measured by the caffeine 13CO2 breath test. Dev Pharmacol Ther. 1989;12(2):90–5.PubMed Levitsky LL, Schoeller DA, Lambert GH, Edidin DV. Effect of growth hormone therapy in growth hormone-deficient children on cytochrome P-450-dependent 3-N-demethylation of caffeine as measured by the caffeine 13CO2 breath test. Dev Pharmacol Ther. 1989;12(2):90–5.PubMed
48.
go back to reference Peeters MY, Prins SA, Knibbe CA, Dejongh J, Mathot RA, Warris C, et al. Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants after craniofacial surgery. Anesthesiology. 2006;105(6):1135–46.CrossRefPubMed Peeters MY, Prins SA, Knibbe CA, Dejongh J, Mathot RA, Warris C, et al. Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants after craniofacial surgery. Anesthesiology. 2006;105(6):1135–46.CrossRefPubMed
Metadata
Title
A Re-evaluation and Validation of Ontogeny Functions for Cytochrome P450 1A2 and 3A4 Based on In Vivo Data
Authors
Farzaneh Salem
Trevor N. Johnson
Khaled Abduljalil
Geoffrey T. Tucker
Amin Rostami-Hodjegan
Publication date
01-07-2014
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 7/2014
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-014-0140-7

Other articles of this Issue 7/2014

Clinical Pharmacokinetics 7/2014 Go to the issue