Skip to main content
Top
Published in: Clinical Drug Investigation 6/2015

01-06-2015 | Original Research Article

Safety, Tolerability and Pharmacokinetic and Pharmacodynamic Learnings from a Double-Blind, Randomized, Placebo-Controlled, Sequential Group First-in-Human Study of the TRPV1 Antagonist, JNJ-38893777, in Healthy Men

Authors: Prasarn Manitpisitkul, Arthur Mayorga, Kevin Shalayda, Marc De Meulder, Gary Romano, Chen Jun, John A. Moyer

Published in: Clinical Drug Investigation | Issue 6/2015

Login to get access

Abstract

Background and Objective

Nociceptive and neuropathic pain, one of common reasons of disability and loss of quality life, are often undertreated due to safety concerns with current therapies. This study assessed the safety, tolerability, pharmacokinetics and pharmacodynamics of JNJ-38893777, a potent and selective transient receptor potential vanilloid 1 (TRPV1) channel antagonist in healthy men.

Methods

In a single-center, double-blind, placebo-controlled, sequential group, single-ascending-dose phase 1 study, 80 healthy men (18–45 years old; body mass index 18.5 to <30 kg/m2), randomized to two groups, received either JNJ-38893777 (n = 6) or placebo (n = 2) in a dose-escalation manner. The study was designed in two parts: Part 1, an early tablet formulation was administered under fasting conditions at 5, 15, 45, 125, 250, or 500 mg; Part 2, a new tablet formulation was administered in a fasting state (250 mg) and a high-fat fed state (250 mg, 375 mg, or 500 mg). Serial plasma and urine samples (collected over 120 h post-dose) were analyzed using LC–MS/MS for pharmacokinetic evaluations.

Results

JNJ-38893777 concentrations peaked from 3.0 to 5.5 h (median) post-administration, and then declined multi-exponentially with a prolonged terminal phase. Renal clearance was negligible. Maximum concentration (C max) and area under the concentration–time curve from time zero to infinity (AUC) of the early formulation increased with increasing doses but less than dose-proportionally over 5–500 mg (fasted) doses. The new tablet formulation showed no improvements in the fasting state but showed an 11- to 22-fold increase in JNJ-38893777 exposure; interindividual variability reduced from 73–85 % to 23–24 %, and a significant increase (P < 0.05) in heat pain detection threshold (~3 °C) was observed in the fed state. Mild to moderate adverse events were observed, with no evidence of exposure dependence up to 500 mg (fed). Concentration-related increases in body temperature or changes in Fridericia-corrected QT interval (QTcF) were not observed.

Conclusion

JNJ-38893777 was tolerated at single doses up to 500 mg (fed) and is suitable for further clinical development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zebrowski M. The pain market outlook to 2011. Business Insights Ltd. 2006. Zebrowski M. The pain market outlook to 2011. Business Insights Ltd. 2006.
2.
go back to reference Phillips WJ, Currier BL. Analgesic pharmacology: II. Specific analgesics. J Am Acad Orthopaed Surg. 2004;12(4):221–33. Phillips WJ, Currier BL. Analgesic pharmacology: II. Specific analgesics. J Am Acad Orthopaed Surg. 2004;12(4):221–33.
3.
go back to reference Mukerji G, Yiangou Y, Agarwal SK, Anand P. Transient receptor potential vanilloid receptor subtype 1 in painful bladder syndrome and its correlation with pain. J Urol. 2006;176(2):797–801.CrossRefPubMed Mukerji G, Yiangou Y, Agarwal SK, Anand P. Transient receptor potential vanilloid receptor subtype 1 in painful bladder syndrome and its correlation with pain. J Urol. 2006;176(2):797–801.CrossRefPubMed
4.
go back to reference Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24.CrossRefPubMed Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24.CrossRefPubMed
5.
go back to reference Yiangou Y, Facer P, Dyer NH, Chan CL, Knowles C, Williams NS, et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet. 2001;357(9265):1338–9.CrossRefPubMed Yiangou Y, Facer P, Dyer NH, Chan CL, Knowles C, Williams NS, et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet. 2001;357(9265):1338–9.CrossRefPubMed
6.
go back to reference Matthews PJ, Aziz Q, Facer P, Davis JB, Thompson DG, Anand P. Increased capsaicin receptor TRPV1 nerve fibres in the inflamed human oesophagus. Eur J Gastroenterol Hepatol. 2004;16(9):897–902.CrossRefPubMed Matthews PJ, Aziz Q, Facer P, Davis JB, Thompson DG, Anand P. Increased capsaicin receptor TRPV1 nerve fibres in the inflamed human oesophagus. Eur J Gastroenterol Hepatol. 2004;16(9):897–902.CrossRefPubMed
7.
go back to reference Groneberg DA, Niimi A, Dinh QT, Cosio B, Hew M, Fischer A, et al. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Resp Crit Care Med. 2004;170(12):1276–80.CrossRefPubMed Groneberg DA, Niimi A, Dinh QT, Cosio B, Hew M, Fischer A, et al. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Resp Crit Care Med. 2004;170(12):1276–80.CrossRefPubMed
8.
go back to reference Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13.CrossRefPubMed Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13.CrossRefPubMed
9.
go back to reference Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405(6783):183–7.CrossRefPubMed Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405(6783):183–7.CrossRefPubMed
10.
go back to reference Bolcskei K, Helyes Z, Szabo A, Sandor K, Elekes K, Nemeth J, et al. Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain. 2005;117(3):368–76.CrossRefPubMed Bolcskei K, Helyes Z, Szabo A, Sandor K, Elekes K, Nemeth J, et al. Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain. 2005;117(3):368–76.CrossRefPubMed
11.
go back to reference Pogatzki-Zahn EM, Shimizu I, Caterina M, Raja SN. Heat hyperalgesia after incision requires TRPV1 and is distinct from pure inflammatory pain. Pain. 2005;115(3):296–307.CrossRefPubMed Pogatzki-Zahn EM, Shimizu I, Caterina M, Raja SN. Heat hyperalgesia after incision requires TRPV1 and is distinct from pure inflammatory pain. Pain. 2005;115(3):296–307.CrossRefPubMed
12.
go back to reference Honore P, Wismer CT, Mikusa J, Zhu CZ, Zhong C, Gauvin DM, et al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther. 2005;314(1):410–21.CrossRefPubMed Honore P, Wismer CT, Mikusa J, Zhu CZ, Zhong C, Gauvin DM, et al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther. 2005;314(1):410–21.CrossRefPubMed
13.
go back to reference Keeble J, Russell F, Curtis B, Starr A, Pinter E, Brain SD. Involvement of transient receptor potential vanilloid 1 in the vascular and hyperalgesic components of joint inflammation. Arthritis Rheum. 2005;52(10):3248–56.CrossRefPubMed Keeble J, Russell F, Curtis B, Starr A, Pinter E, Brain SD. Involvement of transient receptor potential vanilloid 1 in the vascular and hyperalgesic components of joint inflammation. Arthritis Rheum. 2005;52(10):3248–56.CrossRefPubMed
14.
go back to reference Benet LZ. Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System. Basic Clin Pharmacol Toxicol. 2010;106(3):162–7.CrossRefPubMedCentralPubMed Benet LZ. Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System. Basic Clin Pharmacol Toxicol. 2010;106(3):162–7.CrossRefPubMedCentralPubMed
15.
go back to reference Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982;10(2):201–27.CrossRefPubMed Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982;10(2):201–27.CrossRefPubMed
16.
go back to reference Chizh BA, O’Donnell MB, Napolitano A, Wang J, Brooke AC, Aylott MC, et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain. 2007;132(1–2):132–41.CrossRefPubMed Chizh BA, O’Donnell MB, Napolitano A, Wang J, Brooke AC, Aylott MC, et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain. 2007;132(1–2):132–41.CrossRefPubMed
17.
go back to reference Gavva NR, Bannon AW, Hovland DN Jr, Lehto SG, Klionsky L, Surapaneni S, et al. Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther. 2007;323(1):128–37.CrossRefPubMed Gavva NR, Bannon AW, Hovland DN Jr, Lehto SG, Klionsky L, Surapaneni S, et al. Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther. 2007;323(1):128–37.CrossRefPubMed
18.
go back to reference Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, et al. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci Off J Soc Neurosci. 2007;27(28):7459–68.CrossRef Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, et al. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci Off J Soc Neurosci. 2007;27(28):7459–68.CrossRef
Metadata
Title
Safety, Tolerability and Pharmacokinetic and Pharmacodynamic Learnings from a Double-Blind, Randomized, Placebo-Controlled, Sequential Group First-in-Human Study of the TRPV1 Antagonist, JNJ-38893777, in Healthy Men
Authors
Prasarn Manitpisitkul
Arthur Mayorga
Kevin Shalayda
Marc De Meulder
Gary Romano
Chen Jun
John A. Moyer
Publication date
01-06-2015
Publisher
Springer International Publishing
Published in
Clinical Drug Investigation / Issue 6/2015
Print ISSN: 1173-2563
Electronic ISSN: 1179-1918
DOI
https://doi.org/10.1007/s40261-015-0285-7

Other articles of this Issue 6/2015

Clinical Drug Investigation 6/2015 Go to the issue