Skip to main content
Top
Published in: American Journal of Clinical Dermatology 6/2021

01-11-2021 | Erythema | Review Article

Sunscreens and Photoaging: A Review of Current Literature

Authors: Linna L. Guan, Henry W. Lim, Tasneem F. Mohammad

Published in: American Journal of Clinical Dermatology | Issue 6/2021

Login to get access

Abstract

Sunscreens have been on the market for many decades as a means of protection against ultraviolet-induced erythema. Over the years, evidence has also shown their efficacy in the prevention of photoaging, dyspigmentation, DNA damage, and photocarcinogenesis. In the USA, most broad-spectrum sunscreens provide protection against ultraviolet B (UVB) radiation and short-wavelength ultraviolet A (UVA) radiation. Evidence suggests that visible light and infrared light may play a role in photoaging and should be considered when choosing a sunscreen. Currently, there is a paucity of US FDA-approved filters that provide protection against long UVA (> 370 nm) and none against visible light. Additionally, various sunscreen additives such as antioxidants and photolyases have also been reported to protect against and possibly reverse signs of photoaging. This literature review evaluates the utility of sunscreen in protecting against photoaging and further explores the requirements for an ideal sunscreen.
Literature
1.
go back to reference Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br J Dermatol. 2007;157:874–87.PubMedCrossRef Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br J Dermatol. 2007;157:874–87.PubMedCrossRef
2.
go back to reference Sachs DL, Varani J, Chubb H, Fligiel SEG, Cui Y, Calderone K, et al. Atrophic and hypertrophic photoaging: clinical, histologic, and molecular features of 2 distinct phenotypes of photoaged skin. J Am Acad Dermatol. 2019;81:480–8.PubMedCrossRef Sachs DL, Varani J, Chubb H, Fligiel SEG, Cui Y, Calderone K, et al. Atrophic and hypertrophic photoaging: clinical, histologic, and molecular features of 2 distinct phenotypes of photoaged skin. J Am Acad Dermatol. 2019;81:480–8.PubMedCrossRef
4.
go back to reference Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31:65–74.PubMedCrossRef Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31:65–74.PubMedCrossRef
5.
go back to reference Flament F, Bazin R, Laquieze S, Rubert V, Simonpietri E, Piot B. Effect of the sun on visible clinical signs of aging in Caucasian skin. Clin Cosmet Investig Dermatol. 2013;6:221–32.PubMedPubMedCentralCrossRef Flament F, Bazin R, Laquieze S, Rubert V, Simonpietri E, Piot B. Effect of the sun on visible clinical signs of aging in Caucasian skin. Clin Cosmet Investig Dermatol. 2013;6:221–32.PubMedPubMedCentralCrossRef
6.
go back to reference Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J Am Acad Dermatol. 2017;76:S100–9.PubMedCrossRef Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J Am Acad Dermatol. 2017;76:S100–9.PubMedCrossRef
7.
go back to reference Miyamura Y, Coelho SG, Schlenz K, Batzer J, Smuda C, Choi W, et al. The deceptive nature of UVA-tanning versus the modest protective effects of UVB-tanning on human skin. Pigment Cell Melanoma Res. 2011;24:136–47.PubMedCrossRef Miyamura Y, Coelho SG, Schlenz K, Batzer J, Smuda C, Choi W, et al. The deceptive nature of UVA-tanning versus the modest protective effects of UVB-tanning on human skin. Pigment Cell Melanoma Res. 2011;24:136–47.PubMedCrossRef
8.
go back to reference Marrot L, Meunier J-R. Skin DNA photodamage and its biological consequences. J Am Acad Dermatol (Elsevier). 2008;58:S139–48.CrossRef Marrot L, Meunier J-R. Skin DNA photodamage and its biological consequences. J Am Acad Dermatol (Elsevier). 2008;58:S139–48.CrossRef
9.
go back to reference de Gruijl FR, Sterenborg HJ, Forbes PD, Davies RE, Cole C, Kelfkens G, et al. Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res. 1993;53:53–60.PubMed de Gruijl FR, Sterenborg HJ, Forbes PD, Davies RE, Cole C, Kelfkens G, et al. Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res. 1993;53:53–60.PubMed
10.
go back to reference Seité S, Fourtanier A, Moyal D, Young AR. Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review. Br J Dermatol. 2010;163:903–14.PubMedCrossRef Seité S, Fourtanier A, Moyal D, Young AR. Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review. Br J Dermatol. 2010;163:903–14.PubMedCrossRef
11.
go back to reference Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—a review. Int J Cosmet Sci. 2005;27:17–34.PubMedCrossRef Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—a review. Int J Cosmet Sci. 2005;27:17–34.PubMedCrossRef
12.
go back to reference Battie C, Jitsukawa S, Bernerd F, Bino SD, Marionnet C, Verschoore M. New insights in photoaging, UVA induced damage and skin types. Exp Dermatol. 2014;23:7–12.PubMedCrossRef Battie C, Jitsukawa S, Bernerd F, Bino SD, Marionnet C, Verschoore M. New insights in photoaging, UVA induced damage and skin types. Exp Dermatol. 2014;23:7–12.PubMedCrossRef
13.
go back to reference Wang F, Smith NR, Tran BAP, Kang S, Voorhees JJ, Fisher GJ. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin. JAMA Dermatol. 2014;150:401.PubMedPubMedCentralCrossRef Wang F, Smith NR, Tran BAP, Kang S, Voorhees JJ, Fisher GJ. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin. JAMA Dermatol. 2014;150:401.PubMedPubMedCentralCrossRef
14.
go back to reference Cole C, VanFossen R. Measurement of sunscreen UVA protection: an unsensitized human model. J Am Acad Dermatol. 1992;26:178–84.PubMedCrossRef Cole C, VanFossen R. Measurement of sunscreen UVA protection: an unsensitized human model. J Am Acad Dermatol. 1992;26:178–84.PubMedCrossRef
15.
go back to reference Lee YK, Cha HJ, Hong M, Yoon Y, Lee H, An S. Role of NF-κB-p53 crosstalk in ultraviolet A-induced cell death and G1 arrest in human dermal fibroblasts. Arch Dermatol Res. 2012;304:73–9.PubMedCrossRef Lee YK, Cha HJ, Hong M, Yoon Y, Lee H, An S. Role of NF-κB-p53 crosstalk in ultraviolet A-induced cell death and G1 arrest in human dermal fibroblasts. Arch Dermatol Res. 2012;304:73–9.PubMedCrossRef
16.
go back to reference Séite S, Moyal D, Richard S, de Rigal J, Lévêque JL, Hourseau C, et al. Mexoryl SX: a broad absorption UVA filter protects human skin from the effects of repeated suberythemal doses of UVA. J Photochem Photobiol B. 1998;44:69–76.PubMedCrossRef Séite S, Moyal D, Richard S, de Rigal J, Lévêque JL, Hourseau C, et al. Mexoryl SX: a broad absorption UVA filter protects human skin from the effects of repeated suberythemal doses of UVA. J Photochem Photobiol B. 1998;44:69–76.PubMedCrossRef
17.
go back to reference Mac-Mary S, Sainthillier J-M, Jeudy A, Sladen C, Williams C, Bell M, et al. Assessment of cumulative exposure to UVA through the study of asymmetrical facial skin aging. Clin Interv Aging. 2010;5:277–84.PubMedPubMedCentral Mac-Mary S, Sainthillier J-M, Jeudy A, Sladen C, Williams C, Bell M, et al. Assessment of cumulative exposure to UVA through the study of asymmetrical facial skin aging. Clin Interv Aging. 2010;5:277–84.PubMedPubMedCentral
18.
go back to reference McMillan TJ, Leatherman E, Ridley A, Shorrocks J, Tobi SE, Whiteside JR. Cellular effects of long wavelength UV light (UVA) in mammalian cells. J Pharm Pharmacol. 2008;60:969–76.PubMedCrossRef McMillan TJ, Leatherman E, Ridley A, Shorrocks J, Tobi SE, Whiteside JR. Cellular effects of long wavelength UV light (UVA) in mammalian cells. J Pharm Pharmacol. 2008;60:969–76.PubMedCrossRef
19.
go back to reference Cavinato M, Jansen-Dürr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp Gerontol. 2017;94:78–82.PubMedCrossRef Cavinato M, Jansen-Dürr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp Gerontol. 2017;94:78–82.PubMedCrossRef
20.
go back to reference Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol. 2012;132:1901–7.PubMedCrossRef Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol. 2012;132:1901–7.PubMedCrossRef
21.
go back to reference Kohli I, Chaowattanapanit S, Mohammad TF, Nicholson CL, Fatima S, Jacobsen G, et al. Synergistic effects of long-wavelength ultraviolet al and visible light on pigmentation and erythema. Br J Dermatol. 2018;178:1173–80.PubMedCrossRef Kohli I, Chaowattanapanit S, Mohammad TF, Nicholson CL, Fatima S, Jacobsen G, et al. Synergistic effects of long-wavelength ultraviolet al and visible light on pigmentation and erythema. Br J Dermatol. 2018;178:1173–80.PubMedCrossRef
22.
go back to reference Kohli I, Nahhas AF, Braunberger TL, Chaowattanapanit S, Mohammad TF, Nicholson CL, et al. Spectral characteristics of visible light-induced pigmentation and visible light protection factor. Photodermatol Photoimmunol Photomed. 2019;35:393–9.PubMedCrossRef Kohli I, Nahhas AF, Braunberger TL, Chaowattanapanit S, Mohammad TF, Nicholson CL, et al. Spectral characteristics of visible light-induced pigmentation and visible light protection factor. Photodermatol Photoimmunol Photomed. 2019;35:393–9.PubMedCrossRef
23.
go back to reference Mahmoud BH, Hexsel CL, Hamzavi IH, Lim HW. Effects of visible light on the skin. Photochem Photobiol. 2008;84:450–62.PubMedCrossRef Mahmoud BH, Hexsel CL, Hamzavi IH, Lim HW. Effects of visible light on the skin. Photochem Photobiol. 2008;84:450–62.PubMedCrossRef
24.
go back to reference Lawrence KP, Douki T, Sarkany RPE, Acker S, Herzog B, Young AR. The UV/Visible Radiation Boundary Region (385–405 nm) damages skin cells and induces “dark” cyclobutane pyrimidine dimers in human skin in vivo. Sci Rep. 2018;8:12722.PubMedPubMedCentralCrossRef Lawrence KP, Douki T, Sarkany RPE, Acker S, Herzog B, Young AR. The UV/Visible Radiation Boundary Region (385–405 nm) damages skin cells and induces “dark” cyclobutane pyrimidine dimers in human skin in vivo. Sci Rep. 2018;8:12722.PubMedPubMedCentralCrossRef
25.
go back to reference Cho S, Lee MJ, Kim MS, Lee S, Kim YK, Lee DH, et al. Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo. J Dermatol Sci. 2008;50:123–33.PubMedCrossRef Cho S, Lee MJ, Kim MS, Lee S, Kim YK, Lee DH, et al. Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo. J Dermatol Sci. 2008;50:123–33.PubMedCrossRef
26.
go back to reference Ruvolo E, Fair M, Hutson A, Liebel F. Photoprotection against visible light-induced pigmentation. Int J Cosmet Sci. 2018;40:589–95.PubMedCrossRef Ruvolo E, Fair M, Hutson A, Liebel F. Photoprotection against visible light-induced pigmentation. Int J Cosmet Sci. 2018;40:589–95.PubMedCrossRef
27.
28.
29.
30.
go back to reference Yeager DG, Lim HW. What’s new in photoprotection: a review of new concepts and controversies. Dermatol Clin. 2019;37:149–57.PubMedCrossRef Yeager DG, Lim HW. What’s new in photoprotection: a review of new concepts and controversies. Dermatol Clin. 2019;37:149–57.PubMedCrossRef
31.
go back to reference Wang SQ, Xu H, Stanfield JW, Osterwalder U, Herzog B. Comparison of ultraviolet A light protection standards in the United States and European Union through in vitro measurements of commercially available sunscreens. J Am Acad Dermatol (Elsevier). 2017;77:42–7.CrossRef Wang SQ, Xu H, Stanfield JW, Osterwalder U, Herzog B. Comparison of ultraviolet A light protection standards in the United States and European Union through in vitro measurements of commercially available sunscreens. J Am Acad Dermatol (Elsevier). 2017;77:42–7.CrossRef
33.
go back to reference Wang SQ, Lim HW. Highlights and implications of the 2019 proposed rule on sunscreens by the US Food and Drug Administration. J Am Acad Dermatol. 2019;81:650–1.PubMedCrossRef Wang SQ, Lim HW. Highlights and implications of the 2019 proposed rule on sunscreens by the US Food and Drug Administration. J Am Acad Dermatol. 2019;81:650–1.PubMedCrossRef
34.
go back to reference Lyons AB, Trullas C, Kohli I, Hamzavi IH, Lim HW. Photoprotection beyond ultraviolet radiation: a review of tinted sunscreens. J Am Acad Dermatol. 2021;84:1393–7.PubMedCrossRef Lyons AB, Trullas C, Kohli I, Hamzavi IH, Lim HW. Photoprotection beyond ultraviolet radiation: a review of tinted sunscreens. J Am Acad Dermatol. 2021;84:1393–7.PubMedCrossRef
35.
go back to reference Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW. Visible light Part II. Photoprotection against visible and ultraviolet light. J Am Acad Dermatol. 2021;84:1233–44.PubMedCrossRefPubMedCentral Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW. Visible light Part II. Photoprotection against visible and ultraviolet light. J Am Acad Dermatol. 2021;84:1233–44.PubMedCrossRefPubMedCentral
36.
go back to reference Lim HW, Kohli I, Granger C, Trullàs C, Piquero-Casals J, Narda M, et al. Photoprotection of the skin from visible light‒induced pigmentation: current testing methods and proposed harmonization. J Invest Dermatol. 2021;S0022-202X(21)01123–4. Lim HW, Kohli I, Granger C, Trullàs C, Piquero-Casals J, Narda M, et al. Photoprotection of the skin from visible light‒induced pigmentation: current testing methods and proposed harmonization. J Invest Dermatol. 2021;S0022-202X(21)01123–4.
37.
go back to reference Hughes MCB, Williams GM, Baker P, Green AC. Sunscreen and prevention of skin aging: a randomized trial. Ann Intern Med. 2013;158:781–90.PubMedCrossRef Hughes MCB, Williams GM, Baker P, Green AC. Sunscreen and prevention of skin aging: a randomized trial. Ann Intern Med. 2013;158:781–90.PubMedCrossRef
38.
go back to reference Boyd AS, Naylor M, Cameron GS, Pearse AD, Gaskell SA, Neldner KH. The effects of chronic sunscreen use on the histologic changes of dermatoheliosis. J Am Acad Dermatol. 1995;33:941–6.PubMedCrossRef Boyd AS, Naylor M, Cameron GS, Pearse AD, Gaskell SA, Neldner KH. The effects of chronic sunscreen use on the histologic changes of dermatoheliosis. J Am Acad Dermatol. 1995;33:941–6.PubMedCrossRef
39.
go back to reference Seité S, Fourtanier AMA. The benefit of daily photoprotection. J Am Acad Dermatol. 2008;58:S160-166.PubMedCrossRef Seité S, Fourtanier AMA. The benefit of daily photoprotection. J Am Acad Dermatol. 2008;58:S160-166.PubMedCrossRef
40.
go back to reference Randhawa M, Wang S, Leyden JJ, Cula GO, Pagnoni A, Southall MD. Daily use of a facial broad spectrum sunscreen over one-year significantly improves clinical evaluation of photoaging. Dermatol Surg Off Publ Am Soc Dermatol Surg Al. 2016;42:1354–61. Randhawa M, Wang S, Leyden JJ, Cula GO, Pagnoni A, Southall MD. Daily use of a facial broad spectrum sunscreen over one-year significantly improves clinical evaluation of photoaging. Dermatol Surg Off Publ Am Soc Dermatol Surg Al. 2016;42:1354–61.
41.
go back to reference Sabzevari N, Qiblawi S, Norton SA, Fivenson D. Sunscreens: UV filters to protect us: Part 1: changing regulations and choices for optimal sun protection. Int J Womens Dermatol. 2021;7:28–44.PubMedPubMedCentralCrossRef Sabzevari N, Qiblawi S, Norton SA, Fivenson D. Sunscreens: UV filters to protect us: Part 1: changing regulations and choices for optimal sun protection. Int J Womens Dermatol. 2021;7:28–44.PubMedPubMedCentralCrossRef
43.
go back to reference Forestier S. Rationale for sunscreen development. J Am Acad Dermatol (Elsevier). 2008;58:S133–8.CrossRef Forestier S. Rationale for sunscreen development. J Am Acad Dermatol (Elsevier). 2008;58:S133–8.CrossRef
44.
go back to reference Mancuso JB, Maruthi R, Wang SQ, Lim HW. Sunscreens: an update. Am J Clin Dermatol. 2017;18:643–50.PubMedCrossRef Mancuso JB, Maruthi R, Wang SQ, Lim HW. Sunscreens: an update. Am J Clin Dermatol. 2017;18:643–50.PubMedCrossRef
47.
go back to reference Kim EJ, Kim MJ, Im NR, Park SN. Photolysis of the organic UV filter, avobenzone, combined with octyl methoxycinnamate by nano-TiO2 composites. J Photochem Photobiol B. 2015;149:196–203.PubMedCrossRef Kim EJ, Kim MJ, Im NR, Park SN. Photolysis of the organic UV filter, avobenzone, combined with octyl methoxycinnamate by nano-TiO2 composites. J Photochem Photobiol B. 2015;149:196–203.PubMedCrossRef
48.
go back to reference Nedorost S. Ensulizole (phenylbenzimidazole-5-sulfonic acid) as a cause of facial dermatitis: two cases. Dermatitis. 2005;16:148.PubMedCrossRef Nedorost S. Ensulizole (phenylbenzimidazole-5-sulfonic acid) as a cause of facial dermatitis: two cases. Dermatitis. 2005;16:148.PubMedCrossRef
49.
go back to reference Seité S, Colige A, Piquemal-Vivenot P, Montastier C, Fourtanier A, Lapière C, et al. A full-UV spectrum absorbing daily use cream protects human skin against biological changes occurring in photoaging. Photodermatol Photoimmunol Photomed. 2000;16:147–55.PubMedCrossRef Seité S, Colige A, Piquemal-Vivenot P, Montastier C, Fourtanier A, Lapière C, et al. A full-UV spectrum absorbing daily use cream protects human skin against biological changes occurring in photoaging. Photodermatol Photoimmunol Photomed. 2000;16:147–55.PubMedCrossRef
50.
go back to reference Mohammad TF, Lim HW. The important role of dermatologists in public education on sunscreens. JAMA Dermatol. 2021;157:509.PubMedCrossRef Mohammad TF, Lim HW. The important role of dermatologists in public education on sunscreens. JAMA Dermatol. 2021;157:509.PubMedCrossRef
51.
go back to reference Matta MK, Florian J, Zusterzeel R, Pilli NR, Patel V, Volpe DA, et al. Effect of sunscreen application on plasma concentration of sunscreen active ingredients: a randomized clinical trial. JAMA. 2020;323:256.PubMedPubMedCentralCrossRef Matta MK, Florian J, Zusterzeel R, Pilli NR, Patel V, Volpe DA, et al. Effect of sunscreen application on plasma concentration of sunscreen active ingredients: a randomized clinical trial. JAMA. 2020;323:256.PubMedPubMedCentralCrossRef
52.
go back to reference Matta MK, Zusterzeel R, Pilli NR, Patel V, Volpe DA, Florian J, et al. Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial. JAMA. 2019;321:2082.PubMedPubMedCentralCrossRef Matta MK, Zusterzeel R, Pilli NR, Patel V, Volpe DA, Florian J, et al. Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial. JAMA. 2019;321:2082.PubMedPubMedCentralCrossRef
53.
go back to reference Suh S, Pham C, Smith J, Mesinkovska NA. The banned sunscreen ingredients and their impact on human health: a systematic review. Int J Dermatol. 2020;59:1033–42.PubMedPubMedCentralCrossRef Suh S, Pham C, Smith J, Mesinkovska NA. The banned sunscreen ingredients and their impact on human health: a systematic review. Int J Dermatol. 2020;59:1033–42.PubMedPubMedCentralCrossRef
54.
go back to reference Abbasi J. FDA trials find sunscreen ingredients in blood, but risk is uncertain. JAMA. 2020;323:1431–2.PubMedCrossRef Abbasi J. FDA trials find sunscreen ingredients in blood, but risk is uncertain. JAMA. 2020;323:1431–2.PubMedCrossRef
55.
go back to reference Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2—increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol. 2021;7:45–69.PubMedCrossRef Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2—increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol. 2021;7:45–69.PubMedCrossRef
59.
go back to reference Tsatalis J, Burroway B, Bray F. Evaluation of “reef safe” sunscreens: labeling and cost implications for consumers. J Am Acad Dermatol (Elsevier). 2020;82:1015–7.CrossRef Tsatalis J, Burroway B, Bray F. Evaluation of “reef safe” sunscreens: labeling and cost implications for consumers. J Am Acad Dermatol (Elsevier). 2020;82:1015–7.CrossRef
60.
go back to reference Mitchelmore CL, Burns EE, Conway A, Heyes A, Davies IA. A critical review of organic ultraviolet filter exposure, hazard, and risk to corals. Environ Toxicol Chem. 2021;40:967–88.PubMedPubMedCentralCrossRef Mitchelmore CL, Burns EE, Conway A, Heyes A, Davies IA. A critical review of organic ultraviolet filter exposure, hazard, and risk to corals. Environ Toxicol Chem. 2021;40:967–88.PubMedPubMedCentralCrossRef
61.
go back to reference Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol. 2012;67:1013–24.PubMedCrossRef Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol. 2012;67:1013–24.PubMedCrossRef
62.
go back to reference Wang SQ, Osterwalder U, Jung K. Ex vivo evaluation of radical sun protection factor in popular sunscreens with antioxidants. J Am Acad Dermatol. 2011;65:525–30.PubMedCrossRef Wang SQ, Osterwalder U, Jung K. Ex vivo evaluation of radical sun protection factor in popular sunscreens with antioxidants. J Am Acad Dermatol. 2011;65:525–30.PubMedCrossRef
63.
go back to reference Matsui MS, Hsia A, Miller JD, Hanneman K, Scull H, Cooper KD, et al. Non-sunscreen photoprotection: antioxidants add value to a sunscreen. J Investig Dermatol Symp Proc. 2009;14:56–9.PubMedCrossRef Matsui MS, Hsia A, Miller JD, Hanneman K, Scull H, Cooper KD, et al. Non-sunscreen photoprotection: antioxidants add value to a sunscreen. J Investig Dermatol Symp Proc. 2009;14:56–9.PubMedCrossRef
64.
go back to reference Lin F-H, Lin J-Y, Gupta RD, Tournas JA, Burch JA, Selim MA, et al. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol (Elsevier). 2005;125:826–32.CrossRef Lin F-H, Lin J-Y, Gupta RD, Tournas JA, Burch JA, Selim MA, et al. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol (Elsevier). 2005;125:826–32.CrossRef
65.
go back to reference Murray JC, Burch JA, Streilein RD, Iannacchione MA, Hall RP, Pinnell SR. A topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet irradiation. J Am Acad Dermatol. 2008;59:418–25.PubMedCrossRef Murray JC, Burch JA, Streilein RD, Iannacchione MA, Hall RP, Pinnell SR. A topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet irradiation. J Am Acad Dermatol. 2008;59:418–25.PubMedCrossRef
66.
go back to reference Kligman AM, Grove GL, Hirose R, Leyden JJ. Topical tretinoin for photoaged skin. J Am Acad Dermatol (Elsevier). 1986;15:836–59.CrossRef Kligman AM, Grove GL, Hirose R, Leyden JJ. Topical tretinoin for photoaged skin. J Am Acad Dermatol (Elsevier). 1986;15:836–59.CrossRef
67.
go back to reference Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1:327–48.PubMedPubMedCentralCrossRef Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1:327–48.PubMedPubMedCentralCrossRef
68.
go back to reference Rosenthal A, Stoddard M, Chipps L, Herrmann J. Skin cancer prevention: a review of current topical options complementary to sunscreens. J Eur Acad Dermatol Venereol. 2019;33:1261–7.PubMedCrossRef Rosenthal A, Stoddard M, Chipps L, Herrmann J. Skin cancer prevention: a review of current topical options complementary to sunscreens. J Eur Acad Dermatol Venereol. 2019;33:1261–7.PubMedCrossRef
69.
go back to reference Kryczyk-Poprawa A, Kwiecień A, Opoka W. Photostability of topical agents applied to the skin: a review. Pharmaceutics. 2019;12:10.PubMedCentralCrossRef Kryczyk-Poprawa A, Kwiecień A, Opoka W. Photostability of topical agents applied to the skin: a review. Pharmaceutics. 2019;12:10.PubMedCentralCrossRef
70.
go back to reference Benevenuto CG, Matteo MASD, Campos PMBGM, Gaspar LR. Influence of the photostabilizer in the photoprotective effects of a formulation containing UV-filters and vitamin A. Photochem Photobiol. 2010;86:1390–6.PubMedCrossRef Benevenuto CG, Matteo MASD, Campos PMBGM, Gaspar LR. Influence of the photostabilizer in the photoprotective effects of a formulation containing UV-filters and vitamin A. Photochem Photobiol. 2010;86:1390–6.PubMedCrossRef
71.
go back to reference Farooq U, Mahmood T, Shahzad Y, Yousaf AM, Akhtar N. Comparative efficacy of two anti-aging products containing retinyl palmitate in healthy human volunteers. J Cosmet Dermatol. 2018;17:454–60.PubMedCrossRef Farooq U, Mahmood T, Shahzad Y, Yousaf AM, Akhtar N. Comparative efficacy of two anti-aging products containing retinyl palmitate in healthy human volunteers. J Cosmet Dermatol. 2018;17:454–60.PubMedCrossRef
72.
go back to reference Oliveira MB, do Prado AH, Bernegossi J, Sato CS, Lourenço Brunetti I, Scarpa MV, et al. Topical application of retinyl palmitate-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. BioMed Res Int. 2014;2014:632570.PubMedPubMedCentral Oliveira MB, do Prado AH, Bernegossi J, Sato CS, Lourenço Brunetti I, Scarpa MV, et al. Topical application of retinyl palmitate-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. BioMed Res Int. 2014;2014:632570.PubMedPubMedCentral
73.
go back to reference Boudreau MD, Beland FA, Felton RP, Fu PP, Howard PC, Mellick PW, et al. Photo-co-carcinogenesis of topically applied retinyl palmitate in SKH-1 hairless mice. Photochem Photobiol. 2017;93:1096–114.PubMedCrossRef Boudreau MD, Beland FA, Felton RP, Fu PP, Howard PC, Mellick PW, et al. Photo-co-carcinogenesis of topically applied retinyl palmitate in SKH-1 hairless mice. Photochem Photobiol. 2017;93:1096–114.PubMedCrossRef
74.
go back to reference Wallo W, Nebus J, Leyden JJ. Efficacy of a soy moisturizer in photoaging: a double-blind, vehicle-controlled, 12-week study. J Drugs Dermatol JDD. 2007;6:917–22.PubMed Wallo W, Nebus J, Leyden JJ. Efficacy of a soy moisturizer in photoaging: a double-blind, vehicle-controlled, 12-week study. J Drugs Dermatol JDD. 2007;6:917–22.PubMed
75.
go back to reference Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL. Natural antioxidants: multiple mechanisms to protect skin from solar radiation. Front Pharmacol. 2018;9:392.PubMedPubMedCentralCrossRef Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL. Natural antioxidants: multiple mechanisms to protect skin from solar radiation. Front Pharmacol. 2018;9:392.PubMedPubMedCentralCrossRef
76.
go back to reference Bhattacharya S, Sherje AP. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J Drug Deliv Sci Technol. 2020;60:102000.CrossRef Bhattacharya S, Sherje AP. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J Drug Deliv Sci Technol. 2020;60:102000.CrossRef
77.
go back to reference Rezzani R, Rodella LF, Favero G, Damiani G, Paganelli C, Reiter RJ. Attenuation of ultraviolet A-induced alterations in NIH3T3 dermal fibroblasts by melatonin. Br J Dermatol. 2014;170:382–91.PubMedCrossRef Rezzani R, Rodella LF, Favero G, Damiani G, Paganelli C, Reiter RJ. Attenuation of ultraviolet A-induced alterations in NIH3T3 dermal fibroblasts by melatonin. Br J Dermatol. 2014;170:382–91.PubMedCrossRef
78.
go back to reference Janjetovic Z, Jarrett SG, Lee EF, Duprey C, Reiter RJ, Slominski AT. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci Rep. 2017;7:1274.PubMedPubMedCentralCrossRef Janjetovic Z, Jarrett SG, Lee EF, Duprey C, Reiter RJ, Slominski AT. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci Rep. 2017;7:1274.PubMedPubMedCentralCrossRef
79.
go back to reference Janjetovic Z, Nahmias ZP, Hanna S, Jarrett SG, Kim T-K, Reiter RJ, et al. Melatonin and its metabolites ameliorate ultraviolet B-induced damage in human epidermal keratinocytes. J Pineal Res. 2014;57:90–102.PubMedPubMedCentralCrossRef Janjetovic Z, Nahmias ZP, Hanna S, Jarrett SG, Kim T-K, Reiter RJ, et al. Melatonin and its metabolites ameliorate ultraviolet B-induced damage in human epidermal keratinocytes. J Pineal Res. 2014;57:90–102.PubMedPubMedCentralCrossRef
80.
go back to reference Yang G, Cozad MA, Holland DA, Zhang Y, Luesch H, Ding Y. Photosynthetic production of sunscreen shinorine using an engineered cyanobacterium. ACS Synth Biol. 2018;7:664–71.PubMedCrossRef Yang G, Cozad MA, Holland DA, Zhang Y, Luesch H, Ding Y. Photosynthetic production of sunscreen shinorine using an engineered cyanobacterium. ACS Synth Biol. 2018;7:664–71.PubMedCrossRef
82.
go back to reference Ryu B, Qian Z-J, Kim M-M, Nam KW, Kim S-K. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat Phys Chem. 2009;78:98–105.CrossRef Ryu B, Qian Z-J, Kim M-M, Nam KW, Kim S-K. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat Phys Chem. 2009;78:98–105.CrossRef
84.
go back to reference Kohli I, Shafi R, Isedeh P, Griffith JL, Al-Jamal MS, Silpa-archa N, et al. The impact of oral Polypodium leucotomos extract on ultraviolet B response: a human clinical study. J Am Acad Dermatol. 2017;77:33-41.e1.PubMedPubMedCentralCrossRef Kohli I, Shafi R, Isedeh P, Griffith JL, Al-Jamal MS, Silpa-archa N, et al. The impact of oral Polypodium leucotomos extract on ultraviolet B response: a human clinical study. J Am Acad Dermatol. 2017;77:33-41.e1.PubMedPubMedCentralCrossRef
85.
go back to reference Delgado-Wicke P, Rodríguez-Luna A, Ikeyama Y, Honma Y, Kume T, Gutierrez M, et al. Fernblock® upregulates NRF2 antioxidant pathway and protects keratinocytes from PM2.5-Induced xenotoxic stress. Oxid Med Cell Longev. 2020;2020:2908108.PubMedPubMedCentralCrossRef Delgado-Wicke P, Rodríguez-Luna A, Ikeyama Y, Honma Y, Kume T, Gutierrez M, et al. Fernblock® upregulates NRF2 antioxidant pathway and protects keratinocytes from PM2.5-Induced xenotoxic stress. Oxid Med Cell Longev. 2020;2020:2908108.PubMedPubMedCentralCrossRef
86.
go back to reference Mohammad TF, Kohli I, Nicholson CL, Treyger G, Chaowattanapanit S, Nahhas AF, et al. Oral polypodium leucotomos extract and its impact on visible light-induced pigmentation in human subjects. J Drugs Dermatol JDD. 2019;18:1198–203.PubMed Mohammad TF, Kohli I, Nicholson CL, Treyger G, Chaowattanapanit S, Nahhas AF, et al. Oral polypodium leucotomos extract and its impact on visible light-induced pigmentation in human subjects. J Drugs Dermatol JDD. 2019;18:1198–203.PubMed
87.
go back to reference Torricelli P, Fini M, Fanti PA, Dika E, Milani M. Protective effects of Polypodium leucotomos extract against UVB-induced damage in a model of reconstructed human epidermis. Photodermatol Photoimmunol Photomed. 2017;33:156–63.PubMedCrossRef Torricelli P, Fini M, Fanti PA, Dika E, Milani M. Protective effects of Polypodium leucotomos extract against UVB-induced damage in a model of reconstructed human epidermis. Photodermatol Photoimmunol Photomed. 2017;33:156–63.PubMedCrossRef
88.
go back to reference Emanuele E, Spencer JM, Braun M. An experimental double-blind irradiation study of a novel topical product (TPF 50) compared to other topical products with DNA repair enzymes, antioxidants, and growth factors with sunscreens: implications for preventing skin aging and cancer. J Drugs Dermatol. 2014;13:309–14.PubMed Emanuele E, Spencer JM, Braun M. An experimental double-blind irradiation study of a novel topical product (TPF 50) compared to other topical products with DNA repair enzymes, antioxidants, and growth factors with sunscreens: implications for preventing skin aging and cancer. J Drugs Dermatol. 2014;13:309–14.PubMed
Metadata
Title
Sunscreens and Photoaging: A Review of Current Literature
Authors
Linna L. Guan
Henry W. Lim
Tasneem F. Mohammad
Publication date
01-11-2021
Publisher
Springer International Publishing
Keyword
Erythema
Published in
American Journal of Clinical Dermatology / Issue 6/2021
Print ISSN: 1175-0561
Electronic ISSN: 1179-1888
DOI
https://doi.org/10.1007/s40257-021-00632-5

Other articles of this Issue 6/2021

American Journal of Clinical Dermatology 6/2021 Go to the issue

Acknowledgement to Referees

Acknowledgement to Referees