Skip to main content
Top
Published in: Neurology and Therapy 1/2018

Open Access 01-06-2018 | Commentary

Parkinson’s Disease, the Dopaminergic Neuron and Gammahydroxybutyrate

Author: Mortimer Mamelak

Published in: Neurology and Therapy | Issue 1/2018

Login to get access

Abstract

The high energy demands of the substantia nigra pars compacta dopaminergic (DASNc) neurons render these neurons vulnerable to degeneration. These energy demands are a function of their long and extensively arborized axons and very large number of transmitter release sites, and are further augmented by their natural pacemaking activity. Pacemaking is driven by the rhythmic entry of Ca2+ into the cell and, while the entry of Ca2+ into the neuron stimulates energy (ATP) production, the extrusion of Ca2+ conversely saps the energy that is generated. DASNc neurons are said to be operating at a delicate equilibrium where any further stress or environmental demand may lead to their decompensation and degeneration. In experimental models of Parkinson’s disease, reducing the energy requirements of these neurons by trimming the size of the neuronal arbor or by impeding the entry of Ca2+ into the cell has been shown to be protective. Increasing the energy supply to these neurons with d-beta-hydroxybutyrate has also been shown to be protective. The use of gammahydroxybutyrate holds great promise as a neuroprotective in Parkinson’s disease because it can act as an energy source for the cell while simultaneously arresting its pacemaking activity and the entry of Ca2+ into the cell. Short clinical trials of gammahydroxybutyrate in Parkinson’s disease have already demonstrated its immediate capacity to significantly reduce daytime fatigue and sleepiness and to improve sleep at night.
Literature
3.
go back to reference Pissadaki EK, Bolam JP. The energy cost of action potential prpogation in dopamine neurons:clues to susceptibility in Parkinson’s disease. Front Comput Neurosci. 2013;7:13.CrossRefPubMedPubMedCentral Pissadaki EK, Bolam JP. The energy cost of action potential prpogation in dopamine neurons:clues to susceptibility in Parkinson’s disease. Front Comput Neurosci. 2013;7:13.CrossRefPubMedPubMedCentral
4.
go back to reference Hunn BH, Cragg SJ, Bolam JP, Spillantini MG, Wade-Martins R. Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci. 2015;38:178–88.CrossRefPubMedPubMedCentral Hunn BH, Cragg SJ, Bolam JP, Spillantini MG, Wade-Martins R. Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci. 2015;38:178–88.CrossRefPubMedPubMedCentral
5.
go back to reference Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ. Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447:1081–6.CrossRefPubMed Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ. Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447:1081–6.CrossRefPubMed
6.
go back to reference Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT. Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009290.CrossRefPubMedPubMedCentral Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT. Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009290.CrossRefPubMedPubMedCentral
7.
8.
go back to reference Wilson CJ, Callaway JC. Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol. 2000;83:3084–100.CrossRefPubMed Wilson CJ, Callaway JC. Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol. 2000;83:3084–100.CrossRefPubMed
9.
10.
go back to reference Duda J, Potschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of substantia nigra dopaminergic neurons in health and Parkinson’s disease. J Neurochem. 2016;139(Suppl 1):156–78.CrossRefPubMedPubMedCentral Duda J, Potschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of substantia nigra dopaminergic neurons in health and Parkinson’s disease. J Neurochem. 2016;139(Suppl 1):156–78.CrossRefPubMedPubMedCentral
11.
go back to reference Surmeier DJ, Schumacker PT. Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J Biol Chem. 2013;288:10736–41.CrossRefPubMed Surmeier DJ, Schumacker PT. Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J Biol Chem. 2013;288:10736–41.CrossRefPubMed
13.
go back to reference Surmeier DJ, Schumacker PT, Guzman JD, Ilijic E, Yang B, Zampese E. Calcium and Parkinson’s disease. Biochem Biophys Res Commun. 2017;483:1013–9.CrossRefPubMed Surmeier DJ, Schumacker PT, Guzman JD, Ilijic E, Yang B, Zampese E. Calcium and Parkinson’s disease. Biochem Biophys Res Commun. 2017;483:1013–9.CrossRefPubMed
14.
go back to reference Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem. 2005;42:415–31.CrossRefPubMed Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem. 2005;42:415–31.CrossRefPubMed
15.
go back to reference Denton RM, McCormack JG. The calcium sensitive dehydrogenases of vertebrate mitochondria. Cell Calcium. 1986;7:377–86.CrossRefPubMed Denton RM, McCormack JG. The calcium sensitive dehydrogenases of vertebrate mitochondria. Cell Calcium. 1986;7:377–86.CrossRefPubMed
16.
go back to reference Balaban RS. The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim Biophys Acta. 2009;1787:1334–41.CrossRefPubMedPubMedCentral Balaban RS. The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim Biophys Acta. 2009;1787:1334–41.CrossRefPubMedPubMedCentral
17.
go back to reference Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25:2349–60.CrossRefPubMed Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25:2349–60.CrossRefPubMed
18.
go back to reference Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis. 2011;43:364–71.CrossRefPubMedPubMedCentral Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis. 2011;43:364–71.CrossRefPubMedPubMedCentral
19.
go back to reference Kupsch A, Gerlach M, Pupeter SC, Sautter J, Dirr A, Arnold G, Opitz W, Przuntek H, Riederer P, Oertel WH. Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. NeuroReport. 1995;6:621–5.CrossRefPubMed Kupsch A, Gerlach M, Pupeter SC, Sautter J, Dirr A, Arnold G, Opitz W, Przuntek H, Riederer P, Oertel WH. Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. NeuroReport. 1995;6:621–5.CrossRefPubMed
20.
go back to reference Kupsch A, Sautter J, Schwarz J, Riederer P, Gerlach M, Oertel WH. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res. 1996;741:185–96.CrossRefPubMed Kupsch A, Sautter J, Schwarz J, Riederer P, Gerlach M, Oertel WH. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res. 1996;741:185–96.CrossRefPubMed
22.
go back to reference Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S. d-Beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest. 2003;112:892–901.CrossRefPubMedPubMedCentral Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S. d-Beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest. 2003;112:892–901.CrossRefPubMedPubMedCentral
23.
go back to reference Lang Y, Gong D, Fan Y. Calcium channel blocker use and risk of Parkinson’s disease: a meta-analysis. Pharmacoepidemiol Drug Saf. 2015;24:559–66.CrossRefPubMed Lang Y, Gong D, Fan Y. Calcium channel blocker use and risk of Parkinson’s disease: a meta-analysis. Pharmacoepidemiol Drug Saf. 2015;24:559–66.CrossRefPubMed
24.
go back to reference Marras C, Gruneir A, Rochon P, Wang X, Anderson G, Brotchie J, Bell CM, Fox S, Austin PC. Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann Neurol. 2012;71:362–9.CrossRefPubMed Marras C, Gruneir A, Rochon P, Wang X, Anderson G, Brotchie J, Bell CM, Fox S, Austin PC. Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann Neurol. 2012;71:362–9.CrossRefPubMed
25.
go back to reference Walters JR, Roth RH. Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J Pharmacol Exp Ther. 1974;191:82–91.PubMed Walters JR, Roth RH. Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J Pharmacol Exp Ther. 1974;191:82–91.PubMed
26.
go back to reference Morgenroth VH III, Walters JR, Roth RH. Dopaminergic neurons—alteration in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow. Biochem Pharmacol. 1976;25:655–61.CrossRefPubMed Morgenroth VH III, Walters JR, Roth RH. Dopaminergic neurons—alteration in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow. Biochem Pharmacol. 1976;25:655–61.CrossRefPubMed
27.
go back to reference Roth RH, Doherty JD, Walters JR. Gamma-hydroxybutyrate: a role in the regulation of central dopaminergic neurons? Brain Res. 1980;189:556–60.CrossRefPubMed Roth RH, Doherty JD, Walters JR. Gamma-hydroxybutyrate: a role in the regulation of central dopaminergic neurons? Brain Res. 1980;189:556–60.CrossRefPubMed
28.
go back to reference Madden TE, Johnson SW. Gamma-hydroxybutyrate is a GABAB receptor agonist that increases a potassium conductance in rat ventral tegmental dopamine neurons. J Pharmacol Exp Ther. 1998;287:261–5.PubMed Madden TE, Johnson SW. Gamma-hydroxybutyrate is a GABAB receptor agonist that increases a potassium conductance in rat ventral tegmental dopamine neurons. J Pharmacol Exp Ther. 1998;287:261–5.PubMed
29.
go back to reference Erhardt S, Andersson B, Nissbrandt H, Engberg G. Inhibition of firing rate and changes in the firing pattern of nigral dopamine neurons by gamma-hydroxybutyric acid (GHBA) are specifically induced by activation of GABA(B) receptors. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:611–9.CrossRefPubMed Erhardt S, Andersson B, Nissbrandt H, Engberg G. Inhibition of firing rate and changes in the firing pattern of nigral dopamine neurons by gamma-hydroxybutyric acid (GHBA) are specifically induced by activation of GABA(B) receptors. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:611–9.CrossRefPubMed
31.
32.
go back to reference Bosch OS, Esposito F, Havranek MM, Dornbierer D, Van Rotz R, Stampfli P, Quednow BB, Seifritz E. Gammahydroxybutyrate increases resting state limbic perfusion and body and emotion awareness. Neuropsychpharmacol. 2017;42:2141–51.CrossRef Bosch OS, Esposito F, Havranek MM, Dornbierer D, Van Rotz R, Stampfli P, Quednow BB, Seifritz E. Gammahydroxybutyrate increases resting state limbic perfusion and body and emotion awareness. Neuropsychpharmacol. 2017;42:2141–51.CrossRef
33.
go back to reference Williams JT, North RA, Shefner SA, Nishi S, Egan TM. Membrane properties of rat locus coeruleus neurones. Neuroscience. 1984;13:137–56.CrossRefPubMed Williams JT, North RA, Shefner SA, Nishi S, Egan TM. Membrane properties of rat locus coeruleus neurones. Neuroscience. 1984;13:137–56.CrossRefPubMed
34.
go back to reference Szabo ST, Gold MS, Goldberger BA, Blier P. Effects of sustained gamma-hydroxybutyrate treatments on spontaneous and evoked firing activity of locus coeruleus norepinephrine neurons. Biol Psychiatry. 2004;55:934–9.CrossRefPubMed Szabo ST, Gold MS, Goldberger BA, Blier P. Effects of sustained gamma-hydroxybutyrate treatments on spontaneous and evoked firing activity of locus coeruleus norepinephrine neurons. Biol Psychiatry. 2004;55:934–9.CrossRefPubMed
35.
go back to reference Sethy VH, Roth RH, Walters JR, Marini J, Van Woert MH. Effect of anesthetic doses of gamma-hydroxybutyrate on the acetylcholine content of rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1976;295:9–14.CrossRefPubMed Sethy VH, Roth RH, Walters JR, Marini J, Van Woert MH. Effect of anesthetic doses of gamma-hydroxybutyrate on the acetylcholine content of rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1976;295:9–14.CrossRefPubMed
36.
go back to reference Nava F, Carta G, Bortolato M, Gessa GL. Gamma-hydroxybutyric acid and baclofen decrease extracellular acetylcholine levels in the hippocampus via GABA(B) receptors. Eur J Pharmacol. 2001;430:261–3.CrossRefPubMed Nava F, Carta G, Bortolato M, Gessa GL. Gamma-hydroxybutyric acid and baclofen decrease extracellular acetylcholine levels in the hippocampus via GABA(B) receptors. Eur J Pharmacol. 2001;430:261–3.CrossRefPubMed
37.
go back to reference Ondo WG, Perkins T, Swick T, Hull KL Jr, Jimenez JE, Garris TS, Pardi D. Sodium oxybate for excessive daytime sleepiness in Parkinson disease: an open-label polysomnographic study. Arch Neurol. 2008;65:1337–40.CrossRefPubMed Ondo WG, Perkins T, Swick T, Hull KL Jr, Jimenez JE, Garris TS, Pardi D. Sodium oxybate for excessive daytime sleepiness in Parkinson disease: an open-label polysomnographic study. Arch Neurol. 2008;65:1337–40.CrossRefPubMed
39.
go back to reference Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzhimers Dement. 2015;11:99–103.CrossRef Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzhimers Dement. 2015;11:99–103.CrossRef
Metadata
Title
Parkinson’s Disease, the Dopaminergic Neuron and Gammahydroxybutyrate
Author
Mortimer Mamelak
Publication date
01-06-2018
Publisher
Springer Healthcare
Published in
Neurology and Therapy / Issue 1/2018
Print ISSN: 2193-8253
Electronic ISSN: 2193-6536
DOI
https://doi.org/10.1007/s40120-018-0091-2

Other articles of this Issue 1/2018

Neurology and Therapy 1/2018 Go to the issue