Skip to main content
Top
Published in: Journal of Radiation Oncology 4/2018

01-12-2018 | Original Research

Clinical evidence for dose tolerance of the central nervous system in hypofractionated radiotherapy

Authors: Jinyu Xue, Bahman Emami, Jimm Grimm, Gregory J. Kubicek, Sucha O. Asbell, Rachelle Lanciano, James S. Welsh, Luke Peng, Harry Quon, Wolfram Laub, Chengcheng Gui, Nicholas Spoleti, Indra J. Das, Howard Warren Goldman, Kristin J. Redmond, Lawrence R. Kleinberg, Luther W. Brady

Published in: Journal of Radiation Oncology | Issue 4/2018

Login to get access

Abstract

Background

Stereotactic radiosurgery (SRS), stereotactic body radiotherapy (SBRT), and stereotactic ablative body radiotherapy (SABR) are commonly used in the treatment of central nervous system (CNS) disease. This study has refined the radiation toxicity estimates for some normal tissues of the CNS based on review and analysis of the clinical evidence for single fraction radiosurgery, hypofractionated SBRT, and conventionally fractionated radiation therapy.

Methods

Published guidelines and protocols are reviewed. In the past, many normal tissue tolerances were compiled based on the experience of the investigators and publications in the literature. Some tolerances were determined by modeling or calculation using the existing biological formulas, in particular the linear quadratic (LQ) model. In the present study, the estimate of risk for each dose tolerance limit in some CNS tissues is provided exclusively with normal tissue complication probability (NTCP). The clinical outcomes are compared to understand the difference in biological effect between radiosurgery and radiotherapy.

Results

Normal tissue dose tolerances and the corresponding complication rates are provided for brainstem, optic nerves, cochlea, and spinal cord, including single fraction SRS, five-fraction SBRT, and conventional radiation therapy. Calculation of biologically effective dose (BED) or single fraction equivalent dose (SFED) alone using the LQ model conveys no consensus on the biological effect across different fractionations. Comparison of conventional radiation therapy to brain and spinal cord with single fraction equivalent dose leads to even conflicting clinical outcomes.

Conclusions

Effective differences between single fraction SRS and conventional radiotherapy need to be better understood. The existing biological model might not be valid to predict the radiosurgical outcomes based on conventionally fractionated radiotherapy. However, application of the statistical dose response models of clinical SRS and SBRT outcomes data to selected current dose tolerance guidelines into simple tables can be a clinically useful resource.
Footnotes
1
The Hindo et al. study [90] of parallel opposed whole brain fields during the era of Cobalt differs in many ways from the modern era of radiosurgery, especially in terms of patient selection, prognosis, dose distribution, and other factors. Perhaps the most relevant comparison is for brainstem, since the entire cross-section of brainstem was probably within ± 10% of a comparable physical dose of 10 Gy/1 fraction in the whole brain study, whereas for modern radiosurgery only a small volume of the critical structure is usually allowed to reach levels like 10 Gy in 1 fraction. We are not advocating 10 Gy in 1 fraction to a large volume, but we feel it is an interesting historical point of comparison.
 
Literature
1.
go back to reference Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122 Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122
2.
go back to reference Emami B, Roeske J, Block A, Welsh JS (2017) The Emami paper 25 years later. J Radiat Oncol 6(1):1–9 Emami B, Roeske J, Block A, Welsh JS (2017) The Emami paper 25 years later. J Radiat Oncol 6(1):1–9
3.
go back to reference Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76(3 Suppl):S1–S2PubMed Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76(3 Suppl):S1–S2PubMed
4.
go back to reference Asbell SO, Grimm J, Xue J, Chew MS, LaCouture TL (2016) Introduction and clinical overview of the DVH risk map. Semin Radiat Oncol 26(2):89–96PubMed Asbell SO, Grimm J, Xue J, Chew MS, LaCouture TL (2016) Introduction and clinical overview of the DVH risk map. Semin Radiat Oncol 26(2):89–96PubMed
5.
go back to reference Grimm J, Sahgal A, Soltys SG, Luxton G, Patel A, Herbert S, Xue J, Ma L, Yorke E, Adler JR, Gibbs IC (2016) Estimated risk level of unified stereotactic body radiation therapy dose tolerance limits for spinal cord. Semin Radiat Oncol 26(2):165–171PubMedPubMedCentral Grimm J, Sahgal A, Soltys SG, Luxton G, Patel A, Herbert S, Xue J, Ma L, Yorke E, Adler JR, Gibbs IC (2016) Estimated risk level of unified stereotactic body radiation therapy dose tolerance limits for spinal cord. Semin Radiat Oncol 26(2):165–171PubMedPubMedCentral
6.
go back to reference Hiniker SM, Modlin LA, Choi CY, Atalar B, Seiger K, Binkley MS, Harris JP, Liao YJ, Fischbein N, Wang L, Ho A, Lo A, Chang SD, Harsh GR, Gibbs IC, Hancock SL, Li G, Adler JR, Soltys SG (2016) Dose-response modeling of the visual pathway tolerance to single-fraction and hypofractionated stereotactic radiosurgery. Semin Radiat Oncol 26(2):97–104PubMed Hiniker SM, Modlin LA, Choi CY, Atalar B, Seiger K, Binkley MS, Harris JP, Liao YJ, Fischbein N, Wang L, Ho A, Lo A, Chang SD, Harsh GR, Gibbs IC, Hancock SL, Li G, Adler JR, Soltys SG (2016) Dose-response modeling of the visual pathway tolerance to single-fraction and hypofractionated stereotactic radiosurgery. Semin Radiat Oncol 26(2):97–104PubMed
7.
go back to reference Rashid A, Karam SD, Rashid B, Kim JH, Pang D, Jean W, Grimm J, Collins SP (2016) Multisession radiosurgery for hearing preservation. Semin Radiat Oncol 26(2):105–111PubMed Rashid A, Karam SD, Rashid B, Kim JH, Pang D, Jean W, Grimm J, Collins SP (2016) Multisession radiosurgery for hearing preservation. Semin Radiat Oncol 26(2):105–111PubMed
8.
go back to reference Coia L, Galvin J, Sontag M, Blitzer P, Brenner H, Cheng E, Doppke K, Harms W, Hunt M, Mohan R, Munzenrider J, Simpson J (1991) Three-dimensional photon treatment planning in carcinoma of the larynx. Int J Radiat Oncol Biol Phys 21(1):183–192PubMed Coia L, Galvin J, Sontag M, Blitzer P, Brenner H, Cheng E, Doppke K, Harms W, Hunt M, Mohan R, Munzenrider J, Simpson J (1991) Three-dimensional photon treatment planning in carcinoma of the larynx. Int J Radiat Oncol Biol Phys 21(1):183–192PubMed
9.
go back to reference Simpson JR, Purdy JA, Manolis JM, Pilepich MV, Burman C, Forman J, Fuks Z, Cheng E, Chu J, Matthews J, Mohan R, Solin L, Tepper J, Urie M (1991) Three-dimensional treatment planning considerations for prostate cancer. Int J Radiat Oncol Biol Phys 21(1):243–252PubMed Simpson JR, Purdy JA, Manolis JM, Pilepich MV, Burman C, Forman J, Fuks Z, Cheng E, Chu J, Matthews J, Mohan R, Solin L, Tepper J, Urie M (1991) Three-dimensional treatment planning considerations for prostate cancer. Int J Radiat Oncol Biol Phys 21(1):243–252PubMed
10.
go back to reference Shank B, LoSasso T, Brewster L, Burman C, Cheng E, Chu JC, Drzymala RE, Manolis J, Pilepich MV, Solin LJ, Tepper JE, Urie M (1991) Three-dimensional treatment planning for postoperative treatment of rectal carcinoma. Int J Radiat Oncol Biol Phys 21(1):253–265PubMed Shank B, LoSasso T, Brewster L, Burman C, Cheng E, Chu JC, Drzymala RE, Manolis J, Pilepich MV, Solin LJ, Tepper JE, Urie M (1991) Three-dimensional treatment planning for postoperative treatment of rectal carcinoma. Int J Radiat Oncol Biol Phys 21(1):253–265PubMed
11.
go back to reference Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76(3 Suppl):S10–S19PubMedPubMedCentral Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76(3 Suppl):S10–S19PubMedPubMedCentral
12.
go back to reference Milano MT, Grimm J, Soltys SG, Yorke E, Moiseenko V, Tomé WA, Sahgal A, Xue J, Ma L, Solberg T, Kirkpatrick JP, Constine LS, Flickinger JC, Marks LB, El Naqa I. Single and multi-fraction stereotactic radiosurgery dose tolerances of the optic pathways. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press] Milano MT, Grimm J, Soltys SG, Yorke E, Moiseenko V, Tomé WA, Sahgal A, Xue J, Ma L, Solberg T, Kirkpatrick JP, Constine LS, Flickinger JC, Marks LB, El Naqa I. Single and multi-fraction stereotactic radiosurgery dose tolerances of the optic pathways. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press]
13.
go back to reference Vargo JA, Moiseenko V, Grimm J, Caudell J, Clump DA, Yorke E, Xue J, Vinogradskiy Y, Moros EG, Mavroidis P, Jain S, El Naqa I, Marks LB, Heron DE. Head and neck tumor control probability: radiation dose-volume effects in SBRT for locally-recurrent previously-irradiated head and neck cancer. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press] Vargo JA, Moiseenko V, Grimm J, Caudell J, Clump DA, Yorke E, Xue J, Vinogradskiy Y, Moros EG, Mavroidis P, Jain S, El Naqa I, Marks LB, Heron DE. Head and neck tumor control probability: radiation dose-volume effects in SBRT for locally-recurrent previously-irradiated head and neck cancer. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press]
14.
go back to reference Ohri N, Tomé WA, Méndez Romero A, Miften M, Ten Haken RK, Dawson LA, Grimm J, Yorke E, Jackson A. Local control following stereotactic body radiation therapy for liver tumors. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press] Ohri N, Tomé WA, Méndez Romero A, Miften M, Ten Haken RK, Dawson LA, Grimm J, Yorke E, Jackson A. Local control following stereotactic body radiation therapy for liver tumors. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press]
15.
go back to reference Miften M, Vinogradskiy Y, Moiseenko V, Grimm J, Yorke E, Jackson A, Tomé WA, Ten Haken R, Ohri N, Méndez Romero A, Goodman KA, Marks LB, Kavanagh B, Dawson LA. Radiation dose-volume effects for liver SBRT. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press] Miften M, Vinogradskiy Y, Moiseenko V, Grimm J, Yorke E, Jackson A, Tomé WA, Ten Haken R, Ohri N, Méndez Romero A, Goodman KA, Marks LB, Kavanagh B, Dawson LA. Radiation dose-volume effects for liver SBRT. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press]
17.
go back to reference Borst GR, Ishikawa M, Nijkamp J, Hauptmann M, Shirato H, Bengua G, Onimaru R, de Josien BA, Lebesque JV, Sonke JJ (2010) Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77(5):1596–1603PubMed Borst GR, Ishikawa M, Nijkamp J, Hauptmann M, Shirato H, Bengua G, Onimaru R, de Josien BA, Lebesque JV, Sonke JJ (2010) Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77(5):1596–1603PubMed
19.
go back to reference Dale RG (1985) The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58(690):515–528PubMed Dale RG (1985) The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58(690):515–528PubMed
20.
go back to reference Fowler JF, Stern BE (1958) Dose-rate factors in integral dose estimations [letter]. Br J Radiol 31:316 Fowler JF, Stern BE (1958) Dose-rate factors in integral dose estimations [letter]. Br J Radiol 31:316
21.
go back to reference Fowler JF, Stern BE (1960) Dose-rate effects: some theoretical and practical considerations. Br J Radiol 33:389–395PubMed Fowler JF, Stern BE (1960) Dose-rate effects: some theoretical and practical considerations. Br J Radiol 33:389–395PubMed
22.
go back to reference Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62(740):679–694PubMed Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62(740):679–694PubMed
23.
go back to reference Hall EJ, Giacca AJ (2012) Radiobiology for the radiologist, 7th edn. Lippincott Williams & Wilkins, Philadelphia Hall EJ, Giacca AJ (2012) Radiobiology for the radiologist, 7th edn. Lippincott Williams & Wilkins, Philadelphia
24.
go back to reference Joiner M, Avd K (eds) (2009) Basic clinical radiobiology 4th Edition. Hodder Arnold, Great Britain Joiner M, Avd K (eds) (2009) Basic clinical radiobiology 4th Edition. Hodder Arnold, Great Britain
25.
go back to reference Brown JM, Brenner DJ, Carlson DJ (2013) Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys 85(5):1159–1160PubMedPubMedCentral Brown JM, Brenner DJ, Carlson DJ (2013) Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys 85(5):1159–1160PubMedPubMedCentral
26.
go back to reference Brown JM, Carlson DJ, Brenner DJ (2014) The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys 88(2):254–262PubMedPubMedCentral Brown JM, Carlson DJ, Brenner DJ (2014) The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys 88(2):254–262PubMedPubMedCentral
27.
go back to reference Kehwar TS, Rathore RP, Supe SJ, Gupta MK (1995) Many component model and its parameters to fractionated irradiation. Strahlenther Onkol 171(10):573–580PubMed Kehwar TS, Rathore RP, Supe SJ, Gupta MK (1995) Many component model and its parameters to fractionated irradiation. Strahlenther Onkol 171(10):573–580PubMed
28.
go back to reference Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49(20):4825–4835PubMed Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49(20):4825–4835PubMed
29.
go back to reference Kirkpatrick JP, Marks LB (2004) Modeling killing and repopulation kinetics of subclinical cancer: direct calculations from clinical data. Int J Radiat Oncol Biol Phys 58:641–654PubMed Kirkpatrick JP, Marks LB (2004) Modeling killing and repopulation kinetics of subclinical cancer: direct calculations from clinical data. Int J Radiat Oncol Biol Phys 58:641–654PubMed
30.
go back to reference Carlone M, Wilkins D, Raaphorst P (2005) The modified linear-quadratic model of Guerrero and Li can be derived from a mechanistic basis and exhibits linear-quadratic-linear behaviour. Phys Med Biol. 50(10):L9–13; author reply L13–5. Carlone M, Wilkins D, Raaphorst P (2005) The modified linear-quadratic model of Guerrero and Li can be derived from a mechanistic basis and exhibits linear-quadratic-linear behaviour. Phys Med Biol. 50(10):L9–13; author reply L13–5.
31.
go back to reference Tai A, Erickson B, Khater KA, Li XA (2008) Estimate of radiobiologic parameters from clinical data for biologically based treatment planning for liver irradiation. Int J Radiat Oncol Biol Phys 70(3):900–907PubMed Tai A, Erickson B, Khater KA, Li XA (2008) Estimate of radiobiologic parameters from clinical data for biologically based treatment planning for liver irradiation. Int J Radiat Oncol Biol Phys 70(3):900–907PubMed
32.
go back to reference Park C, Papiez L, Zhang S, Story M, Timmerman RD (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70(3):847–852PubMed Park C, Papiez L, Zhang S, Story M, Timmerman RD (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70(3):847–852PubMed
33.
go back to reference Fowler JF (2008) Linear quadratics is alive and well: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852). Int J Radiat Oncol Biol Phys 72(3):957 author reply 958PubMed Fowler JF (2008) Linear quadratics is alive and well: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852). Int J Radiat Oncol Biol Phys 72(3):957 author reply 958PubMed
34.
go back to reference Tomé WA (2009) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy: in regard to Parks et al. (Int J Radiat Oncol Biol Phys 2008;72:1620–1621). Int J Radiat Oncol Biol Phys 73(4):1286PubMed Tomé WA (2009) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy: in regard to Parks et al. (Int J Radiat Oncol Biol Phys 2008;72:1620–1621). Int J Radiat Oncol Biol Phys 73(4):1286PubMed
35.
go back to reference Guerrero M, Carlone M (2010) Mechanistic formulation of a lineal-quadratic-linear (LQL) model: split-dose experiments and exponentially decaying sources. Med Phys 37(8):4173–4181PubMed Guerrero M, Carlone M (2010) Mechanistic formulation of a lineal-quadratic-linear (LQL) model: split-dose experiments and exponentially decaying sources. Med Phys 37(8):4173–4181PubMed
36.
go back to reference Hanin LG, Zaider M (2010) Cell-survival probability at large doses: an alternative to the linear-quadratic model. Phys Med Biol 55:4687–4702PubMed Hanin LG, Zaider M (2010) Cell-survival probability at large doses: an alternative to the linear-quadratic model. Phys Med Biol 55:4687–4702PubMed
37.
go back to reference Kirkpatrick JP, Meyer JJ, Marks LB (2008) The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 18:240–243PubMed Kirkpatrick JP, Meyer JJ, Marks LB (2008) The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 18:240–243PubMed
38.
go back to reference Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234–239PubMedPubMedCentral Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234–239PubMedPubMedCentral
39.
go back to reference Song CW, Cho LC, Yuan J, Dusenbery KE, Griffin RJ, Levitt SH (2013) Radiobiology of stereotactic body radiation therapy/stereotactic radiosurgery and the linear-quadratic model. Int J Radiat Oncol Biol Phys 87(1):18–19PubMed Song CW, Cho LC, Yuan J, Dusenbery KE, Griffin RJ, Levitt SH (2013) Radiobiology of stereotactic body radiation therapy/stereotactic radiosurgery and the linear-quadratic model. Int J Radiat Oncol Biol Phys 87(1):18–19PubMed
40.
go back to reference Rao SS, Oh JH, Jackson A, Deasy JO (2014) Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. In regard to Brown et al. Int J Radiat Oncol Biol Phys 89(3):692–3 Rao SS, Oh JH, Jackson A, Deasy JO (2014) Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. In regard to Brown et al. Int J Radiat Oncol Biol Phys 89(3):692–3
41.
go back to reference Song CW, Kim MS, Cho LC, Dusenbery K, Sperduto PW (2014) Radiobiological basis of SBRT and SRS. Int J Clin Oncol 19(4):570–578PubMed Song CW, Kim MS, Cho LC, Dusenbery K, Sperduto PW (2014) Radiobiological basis of SBRT and SRS. Int J Clin Oncol 19(4):570–578PubMed
42.
go back to reference Sperduto PW, Song CW, Kirkpatrick JP, Glatstein E (2015) A hypothesis: indirect cell death in the radiosurgery era. Int J Radiat Oncol Biol Phys 91(1):11–13PubMed Sperduto PW, Song CW, Kirkpatrick JP, Glatstein E (2015) A hypothesis: indirect cell death in the radiosurgery era. Int J Radiat Oncol Biol Phys 91(1):11–13PubMed
43.
go back to reference Song CW, Lee Y-J, Griffin RJ, Park I, Koonce NA, Hui S, Kim M-S, Dusenbery KE, Sperduto PW, Cho LC (2015) Indirect tumor cell death after high dose hypo-fractionated irradiation: implications for SBRT and SRS. Int J Radiat Oncol Biol Phys 93:166–172PubMedPubMedCentral Song CW, Lee Y-J, Griffin RJ, Park I, Koonce NA, Hui S, Kim M-S, Dusenbery KE, Sperduto PW, Cho LC (2015) Indirect tumor cell death after high dose hypo-fractionated irradiation: implications for SBRT and SRS. Int J Radiat Oncol Biol Phys 93:166–172PubMedPubMedCentral
44.
go back to reference Shuryak I, Carlson DJ, Brown JM, Brenner DJ (2015) High-dose and fractionation effects in stereotactic radiation therapy: analysis of tumor control data from 2965 patients. Radiother Oncol 115(3):327–334PubMed Shuryak I, Carlson DJ, Brown JM, Brenner DJ (2015) High-dose and fractionation effects in stereotactic radiation therapy: analysis of tumor control data from 2965 patients. Radiother Oncol 115(3):327–334PubMed
45.
go back to reference Emami B, Woloschak G, Small W Jr (2015) Beyond the linear quadratic model: intraoperative radiotherapy and normal tissue tolerance. Transl Cancer Res 4(2):140–147 Emami B, Woloschak G, Small W Jr (2015) Beyond the linear quadratic model: intraoperative radiotherapy and normal tissue tolerance. Transl Cancer Res 4(2):140–147
46.
go back to reference Leksell L (1971) Sterotaxic radiosurgery in trigeminal neuralgia. Acta Chir Scand 137(4):311–314PubMed Leksell L (1971) Sterotaxic radiosurgery in trigeminal neuralgia. Acta Chir Scand 137(4):311–314PubMed
47.
go back to reference Barcia-Salorio JL, Broseta J, Hernandez G, Roldan P, Bordes V (1982) A new approach for direct CT localization in stereotaxis. Appl Neurophysiol 45(4–5):383–386PubMed Barcia-Salorio JL, Broseta J, Hernandez G, Roldan P, Bordes V (1982) A new approach for direct CT localization in stereotaxis. Appl Neurophysiol 45(4–5):383–386PubMed
48.
go back to reference Betti OO, Derechinsky YE (1982) Irradiations stereotaxiques multifaisceaux. Neurochirurgie 28:55–56 Betti OO, Derechinsky YE (1982) Irradiations stereotaxiques multifaisceaux. Neurochirurgie 28:55–56
49.
go back to reference Colombo F, Benedetti A, Pozza F, Avanzo RC, Marchetti C, Chierego G, Zanardo A (1985) External stereotactic irradiation by linear accelerator. Neurosurgery 16(2):154–160PubMed Colombo F, Benedetti A, Pozza F, Avanzo RC, Marchetti C, Chierego G, Zanardo A (1985) External stereotactic irradiation by linear accelerator. Neurosurgery 16(2):154–160PubMed
50.
go back to reference Hartmann GH, Schlegel W, Sturm V, Kober B, Pastyr O, Lorenz WJ (1985) Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11(6):1185–1192PubMed Hartmann GH, Schlegel W, Sturm V, Kober B, Pastyr O, Lorenz WJ (1985) Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11(6):1185–1192PubMed
51.
go back to reference Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14(2):373–381PubMed Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14(2):373–381PubMed
52.
go back to reference Friedman WA, Bova FJ (1989) The University of Florida radiosurgery system. Surg Neurol 32(5):334–342PubMed Friedman WA, Bova FJ (1989) The University of Florida radiosurgery system. Surg Neurol 32(5):334–342PubMed
53.
go back to reference Lax I, Blomgren H, Näslund I, Svanström R (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33(6):677–683PubMed Lax I, Blomgren H, Näslund I, Svanström R (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33(6):677–683PubMed
55.
go back to reference Suit H, Wette R (1966) Radiation dose fractionation and tumor control probability. Radiat Res 29(2):267–281PubMed Suit H, Wette R (1966) Radiation dose fractionation and tumor control probability. Radiat Res 29(2):267–281PubMed
56.
go back to reference Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123–135PubMed Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123–135PubMed
57.
go back to reference Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO (2010) The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys 76(3 Suppl):S155–S160PubMedPubMedCentral Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO (2010) The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys 76(3 Suppl):S155–S160PubMedPubMedCentral
58.
go back to reference Deasy JO, Bentzen SM, Jackson A, Ten Haken RK, Yorke ED, Constine LS, Sharma A, Marks LB (2010) Improving normal tissue complication probability models: the need to adopt a “data-pooling” culture. Int J Radiat Oncol Biol Phys 76(3 Suppl):S151–S154PubMedPubMedCentral Deasy JO, Bentzen SM, Jackson A, Ten Haken RK, Yorke ED, Constine LS, Sharma A, Marks LB (2010) Improving normal tissue complication probability models: the need to adopt a “data-pooling” culture. Int J Radiat Oncol Biol Phys 76(3 Suppl):S151–S154PubMedPubMedCentral
59.
go back to reference Williamson JF, Das SK, Goodsitt MS, Deasy JO (2017) Introducing the medical physics dataset article. Med Phys 44(2):349–350PubMed Williamson JF, Das SK, Goodsitt MS, Deasy JO (2017) Introducing the medical physics dataset article. Med Phys 44(2):349–350PubMed
60.
go back to reference Grimm J, LaCouture T, Zhu Y, Xue J, Yeo I, Croce RJ (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):267–292PubMedCentral Grimm J, LaCouture T, Zhu Y, Xue J, Yeo I, Croce RJ (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):267–292PubMedCentral
61.
go back to reference Timmerman RD (2008) An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol 18:215–222PubMed Timmerman RD (2008) An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol 18:215–222PubMed
62.
go back to reference Kim DWN, Medin PM, Timmerman RD (2017) Emphasis on repair, not just avoidance of injury, facilitates prudent stereotactic ablative radiotherapy. Semin Radiat Oncol 27(4):378–392PubMed Kim DWN, Medin PM, Timmerman RD (2017) Emphasis on repair, not just avoidance of injury, facilitates prudent stereotactic ablative radiotherapy. Semin Radiat Oncol 27(4):378–392PubMed
63.
go back to reference Benedict S, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L, Purdie T, Sadagopan R, Schell MC, Salter B, Schlesinger DJ, Shiu AS, Solberg T, Song DY, Stieber V, Timmerman R, Tomé WA, Verellen D, Wang L, Yin FF (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101PubMed Benedict S, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L, Purdie T, Sadagopan R, Schell MC, Salter B, Schlesinger DJ, Shiu AS, Solberg T, Song DY, Stieber V, Timmerman R, Tomé WA, Verellen D, Wang L, Yin FF (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101PubMed
64.
65.
66.
go back to reference Daly ME, Chen AM, Bucci MK, El-Sayed I, Xia P, Kaplan MJ, Eisele DW (2007) Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses. Int J Radiat Oncol Biol Phys 67(1):151–157PubMed Daly ME, Chen AM, Bucci MK, El-Sayed I, Xia P, Kaplan MJ, Eisele DW (2007) Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses. Int J Radiat Oncol Biol Phys 67(1):151–157PubMed
67.
go back to reference Lee N, Garden A, Pfister D, et al. RTOG 0615 A phase II study of concurrent chemoradiotherapy using three-dimensional conformal radiotherapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) + bevacizumab (BV) for locally or regionally advanced nasopharyngeal cancer Lee N, Garden A, Pfister D, et al. RTOG 0615 A phase II study of concurrent chemoradiotherapy using three-dimensional conformal radiotherapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) + bevacizumab (BV) for locally or regionally advanced nasopharyngeal cancer
68.
go back to reference National Cancer Institute. Common terminology criteria for adverse events v4.0. NIH publication # 09–7473. NCI, NIH, DHHS. May 29, 2009 National Cancer Institute. Common terminology criteria for adverse events v4.0. NIH publication # 09–7473. NCI, NIH, DHHS. May 29, 2009
69.
go back to reference Chapman JD, Nahum A (2015) Radiotherapy treatment planning, linear-quadratic radiobiology. CRC Press, Taylor & Francis Group LLC, Boca Raton Chapman JD, Nahum A (2015) Radiotherapy treatment planning, linear-quadratic radiobiology. CRC Press, Taylor & Francis Group LLC, Boca Raton
70.
go back to reference Kirkpatrick JP, van der Kogel AJ, Schultheiss TE (2010) Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys 76(3 Suppl):S42–S49PubMed Kirkpatrick JP, van der Kogel AJ, Schultheiss TE (2010) Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys 76(3 Suppl):S42–S49PubMed
71.
go back to reference Grimm J, Shen C, Redmond KJ, Quon H, Kleinberg LR. Avoiding necrosis in radiosurgery of non-AVM intracranial tumors. ACRO 2017 Grimm J, Shen C, Redmond KJ, Quon H, Kleinberg LR. Avoiding necrosis in radiosurgery of non-AVM intracranial tumors. ACRO 2017
72.
go back to reference Grimm J, Shen CJ, Redmond KJ, Sloan L, Hazell S, Seo Y, Chan L, Nikolaidis D, Moore J, Huang E, Quon H, Bettegowda C, Lim M, Kleinberg LR. Low Risk of Symptomatic Radionecrosis Following Stereotactic Radiosurgery for Multiple Brain Metastases, ASTRO 2017 Grimm J, Shen CJ, Redmond KJ, Sloan L, Hazell S, Seo Y, Chan L, Nikolaidis D, Moore J, Huang E, Quon H, Bettegowda C, Lim M, Kleinberg LR. Low Risk of Symptomatic Radionecrosis Following Stereotactic Radiosurgery for Multiple Brain Metastases, ASTRO 2017
73.
go back to reference Inoue HK, Seto K, Nozaki A, Torikai K, Suzuki Y, Saitoh JI, Noda SE, Nakano T (2013) Three-fraction CyberKnife radiotherapy for brain metastases in critical areas: referring to the risk evaluating radiation necrosis and the surrounding brain volumes circumscribed with a single dose equivalence of 14 Gy (V14). J Radiat Res 54(4):727–735PubMedPubMedCentral Inoue HK, Seto K, Nozaki A, Torikai K, Suzuki Y, Saitoh JI, Noda SE, Nakano T (2013) Three-fraction CyberKnife radiotherapy for brain metastases in critical areas: referring to the risk evaluating radiation necrosis and the surrounding brain volumes circumscribed with a single dose equivalence of 14 Gy (V14). J Radiat Res 54(4):727–735PubMedPubMedCentral
74.
go back to reference Inoue HK, Sato H, Seto KI, Torikai K, Suzuki Y, Saitoh JI, Noda SE, Nakano T (2014) Five-fraction CyberKnife radiotherapy for large brain metastases in critical areas: impact on the surrounding brain volumes circumscribed with a single dose equivalent of 14 Gy (V14) to avoid radiation necrosis. J Radiat Res 55(2):334–342PubMed Inoue HK, Sato H, Seto KI, Torikai K, Suzuki Y, Saitoh JI, Noda SE, Nakano T (2014) Five-fraction CyberKnife radiotherapy for large brain metastases in critical areas: impact on the surrounding brain volumes circumscribed with a single dose equivalent of 14 Gy (V14) to avoid radiation necrosis. J Radiat Res 55(2):334–342PubMed
75.
go back to reference Fowler J, Yang J, Lamond J, Lanciano R, Feng J, Brady L (2010) A “Red Shell” concept of increased radiation damage hazard to normal tissues just outside the PTV target volume. Radiother Oncol 94(3):384PubMed Fowler J, Yang J, Lamond J, Lanciano R, Feng J, Brady L (2010) A “Red Shell” concept of increased radiation damage hazard to normal tissues just outside the PTV target volume. Radiother Oncol 94(3):384PubMed
76.
go back to reference Yang J, Fowler JF, Lamond JP, Lanciano R, Feng J, Brady LW (2010) Red shell: defining a high-risk zone of normal tissue damage in stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 77(3):903–909PubMed Yang J, Fowler JF, Lamond JP, Lanciano R, Feng J, Brady LW (2010) Red shell: defining a high-risk zone of normal tissue damage in stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 77(3):903–909PubMed
77.
go back to reference Yang J, Lamond J, Fowler J, Lanciano R, Feng J, Brady L (2013) Effect of fractionation in stereotactic body radiation therapy using the linear quadratic model. Int J Radiat Oncol Biol Phys 86(1):150–156PubMed Yang J, Lamond J, Fowler J, Lanciano R, Feng J, Brady L (2013) Effect of fractionation in stereotactic body radiation therapy using the linear quadratic model. Int J Radiat Oncol Biol Phys 86(1):150–156PubMed
78.
go back to reference Lunsford LD (2009) Top 25 cited Gamma Knife articles in the Journal of Neurosurgery. J Neurosurg 111(3):1–2 Lunsford LD (2009) Top 25 cited Gamma Knife articles in the Journal of Neurosurgery. J Neurosurg 111(3):1–2
80.
go back to reference Timmer FC, Hanssens PE, van Haren AE, Mulder JJ, Cremers CW, Beynon AJ, van Overbeeke JJ, Graamans K (2009) Gamma knife radiosurgery for vestibular schwannomas: results of hearing preservation in relation to the cochlear radiation dose. Laryngoscope 119(6):1076–1081PubMed Timmer FC, Hanssens PE, van Haren AE, Mulder JJ, Cremers CW, Beynon AJ, van Overbeeke JJ, Graamans K (2009) Gamma knife radiosurgery for vestibular schwannomas: results of hearing preservation in relation to the cochlear radiation dose. Laryngoscope 119(6):1076–1081PubMed
81.
go back to reference Gardner G, Robertson JH (1988) Hearing preservation in unilateral acoustic neuroma surgery. Ann Otol, Rhinol, Laryngol 97:55–66 Gardner G, Robertson JH (1988) Hearing preservation in unilateral acoustic neuroma surgery. Ann Otol, Rhinol, Laryngol 97:55–66
82.
go back to reference Schell MJ, McHaney VA, Green AA, Kun LE, Hayes FA, Horowitz M, Meyer WH (1989) Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation. J Clin Oncol 7(6):754–760PubMed Schell MJ, McHaney VA, Green AA, Kun LE, Hayes FA, Horowitz M, Meyer WH (1989) Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation. J Clin Oncol 7(6):754–760PubMed
83.
go back to reference Ross CJ, Katzov-Eckert H, Dubé MP, Brooks B, Rassekh SR, Barhdadi A, Feroz-Zada Y, Visscher H, Brown AM, Rieder MJ, Rogers PC, Phillips MS, Carleton BC, Hayden MR, CPNDS Consortium (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41(12):1345–1349 Ross CJ, Katzov-Eckert H, Dubé MP, Brooks B, Rassekh SR, Barhdadi A, Feroz-Zada Y, Visscher H, Brown AM, Rieder MJ, Rogers PC, Phillips MS, Carleton BC, Hayden MR, CPNDS Consortium (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41(12):1345–1349
84.
go back to reference Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, Laithier V, Ronghe M, Dall’Igna P, Hiyama E, Brichard B, Skeen J, Mateos ME, Capra M, Rangaswami AA, Ansari M, Rechnitzer C, Veal GJ, Covezzoli A, Brugières L, Perilongo G, Czauderna P, Morland B, Neuwelt EA (2018) Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med 378(25):2376–2385PubMed Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, Laithier V, Ronghe M, Dall’Igna P, Hiyama E, Brichard B, Skeen J, Mateos ME, Capra M, Rangaswami AA, Ansari M, Rechnitzer C, Veal GJ, Covezzoli A, Brugières L, Perilongo G, Czauderna P, Morland B, Neuwelt EA (2018) Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med 378(25):2376–2385PubMed
85.
go back to reference Ishikawa E, Sugimoto H, Hatano M, Nakanishi Y, Tsuji A, Endo K, Kondo S, Wakisaka N, Murono S, Ito M, Yoshizaki T (2015) Protective effects of sodium thiosulfate for cisplatin-mediated ototoxicity in patients with head and neck cancer. Acta Otolaryngol 135(9):919–924PubMed Ishikawa E, Sugimoto H, Hatano M, Nakanishi Y, Tsuji A, Endo K, Kondo S, Wakisaka N, Murono S, Ito M, Yoshizaki T (2015) Protective effects of sodium thiosulfate for cisplatin-mediated ototoxicity in patients with head and neck cancer. Acta Otolaryngol 135(9):919–924PubMed
86.
go back to reference Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76(3 Suppl):S20–S27PubMedPubMedCentral Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76(3 Suppl):S20–S27PubMedPubMedCentral
87.
go back to reference Rubin P (1967) Clinical oncology for medical students and physicians a multidisciplinary approach. Rochester, American Cancer Society Rubin P (1967) Clinical oncology for medical students and physicians a multidisciplinary approach. Rochester, American Cancer Society
88.
go back to reference Jackson A, Yorke E, Rosenzweig K (2006) The atlas of complication incidence: a proposal for a new standard for reporting the results of radiotherapy protocols. Semin Radiat Oncol 16:260–268PubMed Jackson A, Yorke E, Rosenzweig K (2006) The atlas of complication incidence: a proposal for a new standard for reporting the results of radiotherapy protocols. Semin Radiat Oncol 16:260–268PubMed
89.
go back to reference Kimsey F, McKay J, Gefter J, Milano MT, Moiseenko V, Grimm J, Berg R (2016) Dose-response model for chest wall tolerance of stereotactic body radiation therapy. Semin Radiat Oncol 26(2):129–134PubMed Kimsey F, McKay J, Gefter J, Milano MT, Moiseenko V, Grimm J, Berg R (2016) Dose-response model for chest wall tolerance of stereotactic body radiation therapy. Semin Radiat Oncol 26(2):129–134PubMed
90.
go back to reference Hindo WA, DeTrana FA 3rd, Lee MS, Hendrickson FR (1970) Large dose increment irradiation in treatment of cerebral metastases. Cancer 26:138–141PubMed Hindo WA, DeTrana FA 3rd, Lee MS, Hendrickson FR (1970) Large dose increment irradiation in treatment of cerebral metastases. Cancer 26:138–141PubMed
91.
go back to reference Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van Der Kogel AJ (2005) Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys 61(2):543–551PubMed Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van Der Kogel AJ (2005) Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys 61(2):543–551PubMed
92.
go back to reference Philippens ME, Pop LA, Visser AG, Peeters WJ, van der Kogel AJ (2009) Bath and shower effect in spinal cord: the effect of time interval. Int J Radiat Oncol Biol Phys 73(2):514–522PubMed Philippens ME, Pop LA, Visser AG, Peeters WJ, van der Kogel AJ (2009) Bath and shower effect in spinal cord: the effect of time interval. Int J Radiat Oncol Biol Phys 73(2):514–522PubMed
93.
go back to reference van Luijk P, Faber H, Schippers JM, Brandenburg S, Langendijk JA, Meertens H, Coppes RP (2009) Bath and shower effects in the rat parotid gland explain increased relative risk of parotid gland dysfunction after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 74(4):1002–1005PubMed van Luijk P, Faber H, Schippers JM, Brandenburg S, Langendijk JA, Meertens H, Coppes RP (2009) Bath and shower effects in the rat parotid gland explain increased relative risk of parotid gland dysfunction after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 74(4):1002–1005PubMed
94.
go back to reference Xue J, Goldman HW, Grimm J, LaCouture T, Chen Y, Hughes L, Yorke E (2012) Dose-volume effects on brainstem dose tolerance in radiosurgery. J Neurosurg 117(Suppl):189–196PubMed Xue J, Goldman HW, Grimm J, LaCouture T, Chen Y, Hughes L, Yorke E (2012) Dose-volume effects on brainstem dose tolerance in radiosurgery. J Neurosurg 117(Suppl):189–196PubMed
95.
go back to reference Wang JZ, Huang Z, Lo SS, Yuh WT, Mayr NA (2010) A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med 2(39):39ra48PubMed Wang JZ, Huang Z, Lo SS, Yuh WT, Mayr NA (2010) A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med 2(39):39ra48PubMed
96.
go back to reference Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76(3 Suppl):S28–S35PubMed Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76(3 Suppl):S28–S35PubMed
97.
go back to reference Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76(3 Suppl):S36–S41PubMedPubMedCentral Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76(3 Suppl):S36–S41PubMedPubMedCentral
98.
go back to reference Barendsen GW (1982) Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8(11):1981–1997PubMed Barendsen GW (1982) Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8(11):1981–1997PubMed
Metadata
Title
Clinical evidence for dose tolerance of the central nervous system in hypofractionated radiotherapy
Authors
Jinyu Xue
Bahman Emami
Jimm Grimm
Gregory J. Kubicek
Sucha O. Asbell
Rachelle Lanciano
James S. Welsh
Luke Peng
Harry Quon
Wolfram Laub
Chengcheng Gui
Nicholas Spoleti
Indra J. Das
Howard Warren Goldman
Kristin J. Redmond
Lawrence R. Kleinberg
Luther W. Brady
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Journal of Radiation Oncology / Issue 4/2018
Print ISSN: 1948-7894
Electronic ISSN: 1948-7908
DOI
https://doi.org/10.1007/s13566-018-0367-2

Other articles of this Issue 4/2018

Journal of Radiation Oncology 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine