Skip to main content
Top
Published in: Cellular Oncology 5/2019

Open Access 01-10-2019 | Review

Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction

Authors: Agnieszka Toma-Jonik, Natalia Vydra, Patryk Janus, Wiesława Widłak

Published in: Cellular Oncology | Issue 5/2019

Login to get access

Abstract

Background

The p53 and HSF1 transcription factors are key players in cellular responses to stress. They activate important signaling pathways triggering adaptive mechanisms that maintain cellular homeostasis. HSF1 is mainly activated by proteotoxic stress, and its induction leads to the synthesis of chaperones that provide proteome integrity. The p53 protein, which is primarily activated in response to DNA damage, causes cell cycle arrest allowing for DNA repair or directs cells to apoptosis, thereby maintaining genome integrity. Both signaling pathways are also involved in neoplastic transformation and tumor progression. Loss of tumor suppressor abilities of the wild-type p53 protein results in oncogenesis, whereas proper HSF1 action, though non-oncogenic itself, actively supports this process.

Conclusions

Here, we describe in detail the interplay between the p53 and HSF1 signaling pathways, with particular emphasis on the molecular mechanisms involved, as well as their importance for normal cellular behavior, cancer development, the effectiveness of anti-cancer therapies and their toxicity. Detailed knowledge of the complex interplay between HSF1 and p53 may form a basis for the design of new protocols for cancer treatment.
Literature
2.
go back to reference Z. Török, T. Crul, B. Maresca, G.J. Schütz, F. Viana, L. Dindia, S. Piotto, M. Brameshuber, G. Balogh, M. Péter, A. Porta, A. Trapani, I. Gombos, A. Glatz, B. Gungor, B. Peksel, L. Vigh, B. Csoboz, I. Horváth, M.M. Vijayan, P.L. Hooper, J.L. Harwood, L. Vigh, Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochim. Biophys. Acta 1838, 1594–1618 (2014)CrossRefPubMed Z. Török, T. Crul, B. Maresca, G.J. Schütz, F. Viana, L. Dindia, S. Piotto, M. Brameshuber, G. Balogh, M. Péter, A. Porta, A. Trapani, I. Gombos, A. Glatz, B. Gungor, B. Peksel, L. Vigh, B. Csoboz, I. Horváth, M.M. Vijayan, P.L. Hooper, J.L. Harwood, L. Vigh, Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochim. Biophys. Acta 1838, 1594–1618 (2014)CrossRefPubMed
3.
go back to reference A. Samali, C.I. Holmberg, L. Sistonen, S. Orrenius, Thermotolerance and cell death are distinct cellular responses to stress: Dependence on heat shock proteins. FEBS Lett. 461, 306–310 (1999)CrossRefPubMed A. Samali, C.I. Holmberg, L. Sistonen, S. Orrenius, Thermotolerance and cell death are distinct cellular responses to stress: Dependence on heat shock proteins. FEBS Lett. 461, 306–310 (1999)CrossRefPubMed
5.
go back to reference W. Widlak, N. Vydra, The role of heat shock factors in mammalian spermatogenesis. Adv. Anat. Embryol. Cell Biol. 222, 45–65 (2017)CrossRefPubMed W. Widlak, N. Vydra, The role of heat shock factors in mammalian spermatogenesis. Adv. Anat. Embryol. Cell Biol. 222, 45–65 (2017)CrossRefPubMed
6.
go back to reference L. Pirkkala, P. Nykänen, L. Sistonen, Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118–1131 (2001)CrossRefPubMed L. Pirkkala, P. Nykänen, L. Sistonen, Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118–1131 (2001)CrossRefPubMed
7.
go back to reference T. Guettouche, F. Boellmann, W.S. Lane, R. Voellmy, Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6, 4 (2005)CrossRefPubMedPubMedCentral T. Guettouche, F. Boellmann, W.S. Lane, R. Voellmy, Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6, 4 (2005)CrossRefPubMedPubMedCentral
8.
go back to reference H.H. Kampinga, J. Hageman, M.J. Vos, H. Kubota, R.M. Tanguay, E.A. Bruford, M.E. Cheetham, B. Chen, L.E. Hightower, Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111 (2009)CrossRefPubMed H.H. Kampinga, J. Hageman, M.J. Vos, H. Kubota, R.M. Tanguay, E.A. Bruford, M.E. Cheetham, B. Chen, L.E. Hightower, Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111 (2009)CrossRefPubMed
9.
go back to reference W. Rupik, K. Jasik, J. Bembenek, W. Widłak, The expression patterns of heat shock genes and proteins and their role during vertebrate’s development. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 349–366 (2011)CrossRefPubMed W. Rupik, K. Jasik, J. Bembenek, W. Widłak, The expression patterns of heat shock genes and proteins and their role during vertebrate’s development. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 349–366 (2011)CrossRefPubMed
11.
go back to reference D. Kennedy, R. Jäger, D.D. Mosser, A. Samali, Regulation of apoptosis by heat shock proteins. IUBMB Life 66, 327–338 (2014)CrossRefPubMed D. Kennedy, R. Jäger, D.D. Mosser, A. Samali, Regulation of apoptosis by heat shock proteins. IUBMB Life 66, 327–338 (2014)CrossRefPubMed
12.
go back to reference D.R. McMillan, X. Xiao, L. Shao, K. Graves, I.J. Benjamin, Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273, 7523–7528 (1998)CrossRefPubMed D.R. McMillan, X. Xiao, L. Shao, K. Graves, I.J. Benjamin, Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273, 7523–7528 (1998)CrossRefPubMed
13.
go back to reference Y. Zhang, L. Huang, J. Zhang, D. Moskophidis, N.F. Mivechi, Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J. Cell. Biochem. 86, 376–393 (2002)CrossRefPubMed Y. Zhang, L. Huang, J. Zhang, D. Moskophidis, N.F. Mivechi, Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J. Cell. Biochem. 86, 376–393 (2002)CrossRefPubMed
14.
go back to reference X. Xiao, X. Zuo, A.A. Davis, D.R. McMillan, B.B. Curry, J.A. Richardson, I.J. Benjamin, HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943–5952 (1999)CrossRefPubMedPubMedCentral X. Xiao, X. Zuo, A.A. Davis, D.R. McMillan, B.B. Curry, J.A. Richardson, I.J. Benjamin, HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943–5952 (1999)CrossRefPubMedPubMedCentral
15.
go back to reference R. Abane, V. Mezger, Roles of heat shock factors in gametogenesis and development. FEBS J. 277, 4150–4172 (2010)CrossRefPubMed R. Abane, V. Mezger, Roles of heat shock factors in gametogenesis and development. FEBS J. 277, 4150–4172 (2010)CrossRefPubMed
16.
go back to reference L. Bai, W.-G. Zhu, p53: Structure, function and therapeutic applications. J. Cancer Mol. 2, 141–153 (2006) L. Bai, W.-G. Zhu, p53: Structure, function and therapeutic applications. J. Cancer Mol. 2, 141–153 (2006)
17.
go back to reference B. Wawrzynow, A. Zylicz, M. Wallace, T. Hupp, M. Zylicz, MDM2 chaperones the p53 tumor suppressor. J. Biol. Chem. 282, 32603–32612 (2007)CrossRefPubMed B. Wawrzynow, A. Zylicz, M. Wallace, T. Hupp, M. Zylicz, MDM2 chaperones the p53 tumor suppressor. J. Biol. Chem. 282, 32603–32612 (2007)CrossRefPubMed
18.
go back to reference K.D. Sullivan, M.D. Galbraith, Z. Andrysik, J.M. Espinosa, Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25, 133–143 (2018)CrossRefPubMed K.D. Sullivan, M.D. Galbraith, Z. Andrysik, J.M. Espinosa, Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25, 133–143 (2018)CrossRefPubMed
20.
go back to reference M. Olivier, M. Hollstein, P. Hainaut, TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010)CrossRefPubMedPubMedCentral M. Olivier, M. Hollstein, P. Hainaut, TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010)CrossRefPubMedPubMedCentral
22.
go back to reference I.R. Logan, H.V. McNeill, S. Cook, X. Lu, D.W. Meek, F.V. Fuller-Pace, J. Lunec, C.N. Robson, Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage. Nucleic Acids Res. 37, 2962–2973 (2009)CrossRefPubMedPubMedCentral I.R. Logan, H.V. McNeill, S. Cook, X. Lu, D.W. Meek, F.V. Fuller-Pace, J. Lunec, C.N. Robson, Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage. Nucleic Acids Res. 37, 2962–2973 (2009)CrossRefPubMedPubMedCentral
24.
go back to reference G. Kawamura, M. Hattori, K. Takamatsu, T. Tsukada, Y. Ninomiya, I. Benjamin, P. Sassone-Corsi, T. Ozawa, T. Tamaru, Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. Commun. Biol. 1, 204 (2018) G. Kawamura, M. Hattori, K. Takamatsu, T. Tsukada, Y. Ninomiya, I. Benjamin, P. Sassone-Corsi, T. Ozawa, T. Tamaru, Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. Commun. Biol. 1, 204 (2018)
25.
go back to reference A. Sharma, A.S. Meena, M.K. Bhat, Hyperthermia-associated carboplatin resistance: Differential role of p53, HSF1 and Hsp70 in hepatoma cells. Cancer Sci. 101, 1186–1193 (2010)CrossRefPubMed A. Sharma, A.S. Meena, M.K. Bhat, Hyperthermia-associated carboplatin resistance: Differential role of p53, HSF1 and Hsp70 in hepatoma cells. Cancer Sci. 101, 1186–1193 (2010)CrossRefPubMed
26.
go back to reference J.C. Luft, I.J. Benjamin, R. Mestril, D.J. Dix, Heat shock factor 1-mediated thermotolerance prevents cell death and results in G2/M cell cycle arrest. Cell Stress Chaperones 6, 326–336 (2001)CrossRefPubMedPubMedCentral J.C. Luft, I.J. Benjamin, R. Mestril, D.J. Dix, Heat shock factor 1-mediated thermotolerance prevents cell death and results in G2/M cell cycle arrest. Cell Stress Chaperones 6, 326–336 (2001)CrossRefPubMedPubMedCentral
27.
28.
go back to reference T. Ohnishi, X. Wang, K. Ohnishi, H. Matsumoto, A. Takahashi, p53-dependent induction of WAF1 by heat treatment in human glioblastoma cells. J. Biol. Chem. 271, 14510–14513 (1996)CrossRefPubMed T. Ohnishi, X. Wang, K. Ohnishi, H. Matsumoto, A. Takahashi, p53-dependent induction of WAF1 by heat treatment in human glioblastoma cells. J. Biol. Chem. 271, 14510–14513 (1996)CrossRefPubMed
29.
go back to reference M. Nitta, H. Okamura, S. Aizawa, M. Yamaizumi, Heat shock induces transient p53-dependent cell cycle arrest at G1/S. Oncogene 15, 561–568 (1997)CrossRefPubMed M. Nitta, H. Okamura, S. Aizawa, M. Yamaizumi, Heat shock induces transient p53-dependent cell cycle arrest at G1/S. Oncogene 15, 561–568 (1997)CrossRefPubMed
30.
go back to reference Q. Li, R.A. Feldman, V.M. Radhakrishnan, S. Carey, J.D. Martinez, Hsf1 is required for the nuclear translocation of p53 tumor suppressor. Neoplasia N Y N 10, 1138–1145 (2008)CrossRef Q. Li, R.A. Feldman, V.M. Radhakrishnan, S. Carey, J.D. Martinez, Hsf1 is required for the nuclear translocation of p53 tumor suppressor. Neoplasia N Y N 10, 1138–1145 (2008)CrossRef
31.
go back to reference X. Jin, D. Moskophidis, Y. Hu, A. Phillips, N.F. Mivechi, Heat shock factor 1 deficiency via its downstream target gene alphaB-crystallin (Hspb5) impairs p53 degradation. J. Cell. Biochem. 107, 504–515 (2009)CrossRefPubMedPubMedCentral X. Jin, D. Moskophidis, Y. Hu, A. Phillips, N.F. Mivechi, Heat shock factor 1 deficiency via its downstream target gene alphaB-crystallin (Hspb5) impairs p53 degradation. J. Cell. Biochem. 107, 504–515 (2009)CrossRefPubMedPubMedCentral
32.
go back to reference S. Lecomte, F. Desmots, F. Le Masson, P. Le Goff, D. Michel, E.S. Christians, Y. Le Dréan, Roles of heat shock factor 1 and 2 in response to proteasome inhibition: Consequence on p53 stability. Oncogene 29, 4216–4224 (2010)CrossRefPubMed S. Lecomte, F. Desmots, F. Le Masson, P. Le Goff, D. Michel, E.S. Christians, Y. Le Dréan, Roles of heat shock factor 1 and 2 in response to proteasome inhibition: Consequence on p53 stability. Oncogene 29, 4216–4224 (2010)CrossRefPubMed
33.
go back to reference Q. Jiang, Z. Zhang, S. Li, Z. Wang, Y. Ma, Y. Hu, Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen-transformed MEF cells. Mol. Med. Rep. 12, 6517–6526 (2015)CrossRefPubMedPubMedCentral Q. Jiang, Z. Zhang, S. Li, Z. Wang, Y. Ma, Y. Hu, Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen-transformed MEF cells. Mol. Med. Rep. 12, 6517–6526 (2015)CrossRefPubMedPubMedCentral
34.
go back to reference M.V. Blagosklonny, J. Toretsky, S. Bohen, L. Neckers, Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl. Acad. Sci. U. S. A. 93, 8379–8383 (1996)CrossRefPubMedPubMedCentral M.V. Blagosklonny, J. Toretsky, S. Bohen, L. Neckers, Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl. Acad. Sci. U. S. A. 93, 8379–8383 (1996)CrossRefPubMedPubMedCentral
35.
go back to reference F.W. King, A. Wawrzynow, J. Höhfeld, M. Zylicz, Co-chaperones Bag-1, hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J. 20, 6297–6305 (2001)CrossRefPubMedPubMedCentral F.W. King, A. Wawrzynow, J. Höhfeld, M. Zylicz, Co-chaperones Bag-1, hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J. 20, 6297–6305 (2001)CrossRefPubMedPubMedCentral
36.
go back to reference D. Walerych, G. Kudla, M. Gutkowska, B. Wawrzynow, L. Muller, F.W. King, A. Helwak, J. Boros, A. Zylicz, M. Zylicz, Hsp90 chaperones wild-type p53 tumor suppressor protein. J. Biol. Chem. 279, 48836–48845 (2004)CrossRefPubMed D. Walerych, G. Kudla, M. Gutkowska, B. Wawrzynow, L. Muller, F.W. King, A. Helwak, J. Boros, A. Zylicz, M. Zylicz, Hsp90 chaperones wild-type p53 tumor suppressor protein. J. Biol. Chem. 279, 48836–48845 (2004)CrossRefPubMed
37.
go back to reference D. Walerych, M.B. Olszewski, M. Gutkowska, A. Helwak, M. Zylicz, A. Zylicz, Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions. Oncogene 28, 4284–4294 (2009)CrossRefPubMed D. Walerych, M.B. Olszewski, M. Gutkowska, A. Helwak, M. Zylicz, A. Zylicz, Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions. Oncogene 28, 4284–4294 (2009)CrossRefPubMed
38.
go back to reference B. Wawrzynow, A. Zylicz, M. Zylicz, Chaperoning the guardian of the genome. The two-faced role of molecular chaperones in p53 tumor suppressor action. Biochim. Biophys. Acta Rev. Cancer. 1869, 161–174 (2018)CrossRefPubMed B. Wawrzynow, A. Zylicz, M. Zylicz, Chaperoning the guardian of the genome. The two-faced role of molecular chaperones in p53 tumor suppressor action. Biochim. Biophys. Acta Rev. Cancer. 1869, 161–174 (2018)CrossRefPubMed
39.
go back to reference P. Muller, R. Hrstka, D. Coomber, D.P. Lane, B. Vojtesek, Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27, 3371–3383 (2008)CrossRefPubMed P. Muller, R. Hrstka, D. Coomber, D.P. Lane, B. Vojtesek, Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27, 3371–3383 (2008)CrossRefPubMed
40.
go back to reference M. Wiech, M.B. Olszewski, Z. Tracz-Gaszewska, B. Wawrzynow, M. Zylicz, A. Zylicz, Molecular mechanism of mutant p53 stabilization: The role of HSP70 and MDM2. PLoS One 7, e51426 (2012)CrossRefPubMedPubMedCentral M. Wiech, M.B. Olszewski, Z. Tracz-Gaszewska, B. Wawrzynow, M. Zylicz, A. Zylicz, Molecular mechanism of mutant p53 stabilization: The role of HSP70 and MDM2. PLoS One 7, e51426 (2012)CrossRefPubMedPubMedCentral
41.
go back to reference Y. Peng, L. Chen, C. Li, W. Lu, J. Chen, Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J. Biol. Chem. 276, 40583–40590 (2001)CrossRefPubMed Y. Peng, L. Chen, C. Li, W. Lu, J. Chen, Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J. Biol. Chem. 276, 40583–40590 (2001)CrossRefPubMed
42.
go back to reference D. Li, N.D. Marchenko, R. Schulz, V. Fischer, T. Velasco-Hernandez, F. Talos, U.M. Moll, Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol. Cancer. Res. MCR 9, 577–588 (2011)CrossRefPubMed D. Li, N.D. Marchenko, R. Schulz, V. Fischer, T. Velasco-Hernandez, F. Talos, U.M. Moll, Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol. Cancer. Res. MCR 9, 577–588 (2011)CrossRefPubMed
43.
go back to reference P. Giannakakou, D.L. Sackett, Y. Ward, K.R. Webster, M.V. Blagosklonny, T. Fojo, p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell Biol. 2, 709–717 (2000)CrossRefPubMed P. Giannakakou, D.L. Sackett, Y. Ward, K.R. Webster, M.V. Blagosklonny, T. Fojo, p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell Biol. 2, 709–717 (2000)CrossRefPubMed
44.
go back to reference Q. Li, J.D. Martinez, P53 is transported into the nucleus via an Hsf1-dependent nuclear localization mechanism. Mol. Carcinog. 50, 143–152 (2011)CrossRefPubMed Q. Li, J.D. Martinez, P53 is transported into the nucleus via an Hsf1-dependent nuclear localization mechanism. Mol. Carcinog. 50, 143–152 (2011)CrossRefPubMed
45.
go back to reference P. Liang, T.H. MacRae, Molecular chaperones and the cytoskeleton. J. Cell Sci. 110, 1431–1440 (1997)PubMed P. Liang, T.H. MacRae, Molecular chaperones and the cytoskeleton. J. Cell Sci. 110, 1431–1440 (1997)PubMed
46.
go back to reference E. Takaki, M. Fujimoto, T. Nakahari, S. Yonemura, Y. Miyata, N. Hayashida, K. Yamamoto, R.B. Vallee, T. Mikuriya, K. Sugahara, H. Yamashita, S. Inouye, A. Nakai, Heat shock transcription factor 1 is required for maintenance of ciliary beating in mice. J. Biol. Chem. 282, 37285–37292 (2007)CrossRefPubMed E. Takaki, M. Fujimoto, T. Nakahari, S. Yonemura, Y. Miyata, N. Hayashida, K. Yamamoto, R.B. Vallee, T. Mikuriya, K. Sugahara, H. Yamashita, S. Inouye, A. Nakai, Heat shock transcription factor 1 is required for maintenance of ciliary beating in mice. J. Biol. Chem. 282, 37285–37292 (2007)CrossRefPubMed
47.
go back to reference M.D. Galigniana, J.M. Harrell, H.M. O’Hagen, M. Ljungman, W.B. Pratt, Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus. J. Biol. Chem. 279, 22483–22489 (2004)CrossRefPubMed M.D. Galigniana, J.M. Harrell, H.M. O’Hagen, M. Ljungman, W.B. Pratt, Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus. J. Biol. Chem. 279, 22483–22489 (2004)CrossRefPubMed
48.
go back to reference J.M. Vicencio, L. Galluzzi, N. Tajeddine, C. Ortiz, A. Criollo, E. Tasdemir, E. Morselli, A. Ben Younes, M.C. Maiuri, S. Lavandero, G. Kroemer, Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a mini-review. Gerontology 54, 92–99 (2008)CrossRefPubMed J.M. Vicencio, L. Galluzzi, N. Tajeddine, C. Ortiz, A. Criollo, E. Tasdemir, E. Morselli, A. Ben Younes, M.C. Maiuri, S. Lavandero, G. Kroemer, Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a mini-review. Gerontology 54, 92–99 (2008)CrossRefPubMed
49.
go back to reference A. Erol, Deciphering the intricate regulatory mechanisms for the cellular choice between cell repair, apoptosis or senescence in response to damaging signals. Cell. Signal. 23, 1076–1081 (2011)CrossRefPubMed A. Erol, Deciphering the intricate regulatory mechanisms for the cellular choice between cell repair, apoptosis or senescence in response to damaging signals. Cell. Signal. 23, 1076–1081 (2011)CrossRefPubMed
50.
go back to reference H.-L. Ou, B. Schumacher, DNA damage responses and p53 in the aging process. Blood 131, 488–495 (2018)CrossRefPubMed H.-L. Ou, B. Schumacher, DNA damage responses and p53 in the aging process. Blood 131, 488–495 (2018)CrossRefPubMed
51.
go back to reference N. Shemesh, A. Ben-Zvi, in Heat Shock Factor, ed. by A. Nakai (Springer Japan, Tokyo, 2016), pp. 93–113 N. Shemesh, A. Ben-Zvi, in Heat Shock Factor, ed. by A. Nakai (Springer Japan, Tokyo, 2016), pp. 93–113
52.
go back to reference J. Füllgrabe, G. Ghislat, D.-H. Cho, D.C. Rubinsztein, Transcriptional regulation of mammalian autophagy at a glance. J. Cell Sci. 129, 3059–3066 (2016)CrossRefPubMed J. Füllgrabe, G. Ghislat, D.-H. Cho, D.C. Rubinsztein, Transcriptional regulation of mammalian autophagy at a glance. J. Cell Sci. 129, 3059–3066 (2016)CrossRefPubMed
53.
go back to reference E. Tasdemir, M.C. Maiuri, L. Galluzzi, I. Vitale, M. Djavaheri-Mergny, M. D’Amelio, A. Criollo, E. Morselli, C. Zhu, F. Harper, U. Nannmark, C. Samara, P. Pinton, J.M. Vicencio, R. Carnuccio, U.M. Moll, F. Madeo, P. Paterlini-Brechot, R. Rizzuto, G. Szabadkai, G. Pierron, K. Blomgren, N. Tavernarakis, P. Codogno, F. Cecconi, G. Kroemer, Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol. 10, 676–687 (2008)CrossRefPubMedPubMedCentral E. Tasdemir, M.C. Maiuri, L. Galluzzi, I. Vitale, M. Djavaheri-Mergny, M. D’Amelio, A. Criollo, E. Morselli, C. Zhu, F. Harper, U. Nannmark, C. Samara, P. Pinton, J.M. Vicencio, R. Carnuccio, U.M. Moll, F. Madeo, P. Paterlini-Brechot, R. Rizzuto, G. Szabadkai, G. Pierron, K. Blomgren, N. Tavernarakis, P. Codogno, F. Cecconi, G. Kroemer, Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol. 10, 676–687 (2008)CrossRefPubMedPubMedCentral
54.
go back to reference S. Haupt, M. Berger, Z. Goldberg, Y. Haupt, Apoptosis - the p53 network. J. Cell Sci. 116, 4077–4085 (2003)CrossRefPubMed S. Haupt, M. Berger, Z. Goldberg, Y. Haupt, Apoptosis - the p53 network. J. Cell Sci. 116, 4077–4085 (2003)CrossRefPubMed
55.
go back to reference A.S. Sreedhar, P. Csermely, Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy: a comprehensive review. Pharmacol. Ther. 101, 227–257 (2004)CrossRefPubMed A.S. Sreedhar, P. Csermely, Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy: a comprehensive review. Pharmacol. Ther. 101, 227–257 (2004)CrossRefPubMed
56.
go back to reference A. Nakai, M. Suzuki, M. Tanabe, Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J. 19, 1545–1554 (2000)CrossRefPubMedPubMedCentral A. Nakai, M. Suzuki, M. Tanabe, Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J. 19, 1545–1554 (2000)CrossRefPubMedPubMedCentral
57.
go back to reference W. Widlak, N. Vydra, E. Malusecka, V. Dudaladava, B. Winiarski, D. Scieglińska, P. Widlak, Heat shock transcription factor 1 down-regulates spermatocyte-specific 70 kDa heat shock protein expression prior to the induction of apoptosis in mouse testes. Genes Cells Devoted Mol. Cell. Mech. 12, 487–499 (2007)CrossRef W. Widlak, N. Vydra, E. Malusecka, V. Dudaladava, B. Winiarski, D. Scieglińska, P. Widlak, Heat shock transcription factor 1 down-regulates spermatocyte-specific 70 kDa heat shock protein expression prior to the induction of apoptosis in mouse testes. Genes Cells Devoted Mol. Cell. Mech. 12, 487–499 (2007)CrossRef
58.
go back to reference N. Vydra, E. Malusecka, M. Jarzab, K. Lisowska, M. Glowala-Kosinska, K. Benedyk, P. Widlak, Z. Krawczyk, W. Widlak, Spermatocyte-specific expression of constitutively active heat shock factor 1 induces HSP70i-resistant apoptosis in male germ cells. Cell Death Differ. 13, 212–222 (2006)CrossRefPubMed N. Vydra, E. Malusecka, M. Jarzab, K. Lisowska, M. Glowala-Kosinska, K. Benedyk, P. Widlak, Z. Krawczyk, W. Widlak, Spermatocyte-specific expression of constitutively active heat shock factor 1 induces HSP70i-resistant apoptosis in male germ cells. Cell Death Differ. 13, 212–222 (2006)CrossRefPubMed
59.
go back to reference A. Rufini, P. Tucci, I. Celardo, G. Melino, Senescence and aging: The critical roles of p53. Oncogene 32, 5129–5143 (2013)CrossRefPubMed A. Rufini, P. Tucci, I. Celardo, G. Melino, Senescence and aging: The critical roles of p53. Oncogene 32, 5129–5143 (2013)CrossRefPubMed
60.
go back to reference Z.N. Demidenko, L.G. Korotchkina, A.V. Gudkov, M.V. Blagosklonny, Paradoxical suppression of cellular senescence by p53. Proc. Natl. Acad. Sci. U. S. A. 107, 9660–9664 (2010)CrossRefPubMedPubMedCentral Z.N. Demidenko, L.G. Korotchkina, A.V. Gudkov, M.V. Blagosklonny, Paradoxical suppression of cellular senescence by p53. Proc. Natl. Acad. Sci. U. S. A. 107, 9660–9664 (2010)CrossRefPubMedPubMedCentral
61.
go back to reference G. Kim, A.B. Meriin, V.L. Gabai, E. Christians, I. Benjamin, A. Wilson, B. Wolozin, M.Y. Sherman, The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 11, 617–627 (2012)CrossRefPubMedPubMedCentral G. Kim, A.B. Meriin, V.L. Gabai, E. Christians, I. Benjamin, A. Wilson, B. Wolozin, M.Y. Sherman, The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 11, 617–627 (2012)CrossRefPubMedPubMedCentral
62.
go back to reference T. Oda, T. Sekimoto, K. Kurashima, M. Fujimoto, A. Nakai, T. Yamashita, Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. J. Cell Sci. 131, jcs210724 (2018)CrossRefPubMed T. Oda, T. Sekimoto, K. Kurashima, M. Fujimoto, A. Nakai, T. Yamashita, Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. J. Cell Sci. 131, jcs210724 (2018)CrossRefPubMed
63.
go back to reference Z. Feng, H. Zhang, A.J. Levine, S. Jin, The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U. S. A. 102, 8204–8209 (2005)CrossRefPubMedPubMedCentral Z. Feng, H. Zhang, A.J. Levine, S. Jin, The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U. S. A. 102, 8204–8209 (2005)CrossRefPubMedPubMedCentral
64.
go back to reference P. Hasty, Z.D. Sharp, T.J. Curiel, J. Campisi, mTORC1 and p53: Clash of the gods? Cell Cycle Georget. Tex. 12, 20–25 (2013)CrossRef P. Hasty, Z.D. Sharp, T.J. Curiel, J. Campisi, mTORC1 and p53: Clash of the gods? Cell Cycle Georget. Tex. 12, 20–25 (2013)CrossRef
65.
go back to reference S.-D. Chou, T. Prince, J. Gong, S.K. Calderwood, mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One 7, e39679 (2012)CrossRefPubMedPubMedCentral S.-D. Chou, T. Prince, J. Gong, S.K. Calderwood, mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One 7, e39679 (2012)CrossRefPubMedPubMedCentral
66.
go back to reference P. Nilendu, S.C. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G.S. Sarode, J.K. Pal, N.K. Sharma, Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance. Cell. Oncol. 41, 353–367 (2018)CrossRef P. Nilendu, S.C. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G.S. Sarode, J.K. Pal, N.K. Sharma, Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance. Cell. Oncol. 41, 353–367 (2018)CrossRef
67.
go back to reference T.J. Page, D. Sikder, L. Yang, L. Pluta, R.D. Wolfinger, T. Kodadek, R.S. Thomas, Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol. BioSyst. 2, 627–639 (2006)CrossRefPubMed T.J. Page, D. Sikder, L. Yang, L. Pluta, R.D. Wolfinger, T. Kodadek, R.S. Thomas, Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol. BioSyst. 2, 627–639 (2006)CrossRefPubMed
68.
go back to reference M. Kus-Liśkiewicz, J. Polańska, J. Korfanty, M. Olbryt, N. Vydra, A. Toma, W. Widłak, Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia. BMC Genomics 14, 456 (2013)CrossRefPubMedPubMedCentral M. Kus-Liśkiewicz, J. Polańska, J. Korfanty, M. Olbryt, N. Vydra, A. Toma, W. Widłak, Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia. BMC Genomics 14, 456 (2013)CrossRefPubMedPubMedCentral
69.
70.
go back to reference M.L. Mendillo, S. Santagata, M. Koeva, G.W. Bell, R. Hu, R.M. Tamimi, E. Fraenkel, T.A. Ince, L. Whitesell, S. Lindquist, HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549–562 (2012)CrossRefPubMedPubMedCentral M.L. Mendillo, S. Santagata, M. Koeva, G.W. Bell, R. Hu, R.M. Tamimi, E. Fraenkel, T.A. Ince, L. Whitesell, S. Lindquist, HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549–562 (2012)CrossRefPubMedPubMedCentral
71.
go back to reference A.J. Levine, The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 384, 285–293 (2009)CrossRefPubMed A.J. Levine, The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 384, 285–293 (2009)CrossRefPubMed
72.
go back to reference P. Ozenne, B. Eymin, E. Brambilla, S. Gazzeri, The ARF tumor suppressor: Structure, functions and status in cancer. Int. J. Cancer 127, 2239–2247 (2010)CrossRefPubMed P. Ozenne, B. Eymin, E. Brambilla, S. Gazzeri, The ARF tumor suppressor: Structure, functions and status in cancer. Int. J. Cancer 127, 2239–2247 (2010)CrossRefPubMed
74.
go back to reference J.-N. Min, L. Huang, D.B. Zimonjic, D. Moskophidis, N.F. Mivechi, Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26, 5086–5097 (2007)CrossRefPubMed J.-N. Min, L. Huang, D.B. Zimonjic, D. Moskophidis, N.F. Mivechi, Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26, 5086–5097 (2007)CrossRefPubMed
75.
go back to reference C. Dai, L. Whitesell, A.B. Rogers, S. Lindquist, Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007)CrossRefPubMedPubMedCentral C. Dai, L. Whitesell, A.B. Rogers, S. Lindquist, Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007)CrossRefPubMedPubMedCentral
76.
go back to reference D. Li, A. Yallowitz, L. Ozog, N. Marchenko, A gain-of-function mutant p53-HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress. Cell Death Dis. 5, e1194 (2014)CrossRefPubMedPubMedCentral D. Li, A. Yallowitz, L. Ozog, N. Marchenko, A gain-of-function mutant p53-HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress. Cell Death Dis. 5, e1194 (2014)CrossRefPubMedPubMedCentral
77.
go back to reference R. Schulz, F. Streller, A.H. Scheel, J. Rüschoff, M.-C. Reinert, M. Dobbelstein, N.D. Marchenko, U.M. Moll, HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis. 5, e980 (2014)CrossRefPubMedPubMedCentral R. Schulz, F. Streller, A.H. Scheel, J. Rüschoff, M.-C. Reinert, M. Dobbelstein, N.D. Marchenko, U.M. Moll, HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis. 5, e980 (2014)CrossRefPubMedPubMedCentral
78.
go back to reference D.P. Lane, L.V. Crawford, T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979)CrossRefPubMed D.P. Lane, L.V. Crawford, T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979)CrossRefPubMed
79.
go back to reference D.I. Linzer, A.J. Levine, Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979)CrossRefPubMed D.I. Linzer, A.J. Levine, Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979)CrossRefPubMed
80.
go back to reference E.K. Colvin, C. Weir, R.J. Ikin, A.L. Hudson, SV40 TAg mouse models of cancer. Semin. Cell Dev. Biol. 27, 61–73 (2014)CrossRefPubMed E.K. Colvin, C. Weir, R.J. Ikin, A.L. Hudson, SV40 TAg mouse models of cancer. Semin. Cell Dev. Biol. 27, 61–73 (2014)CrossRefPubMed
81.
go back to reference Q. Jiang, Z. Zhang, Y. Hu, Y. Ma, Function of Hsf1 in SV40 T-antigen-transformed HEK293T cells. Mol. Med. Rep. 10, 3139–3144 (2014)CrossRefPubMed Q. Jiang, Z. Zhang, Y. Hu, Y. Ma, Function of Hsf1 in SV40 T-antigen-transformed HEK293T cells. Mol. Med. Rep. 10, 3139–3144 (2014)CrossRefPubMed
82.
go back to reference L. Meng, V.L. Gabai, M.Y. Sherman, Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene 29, 5204–5213 (2010)CrossRefPubMedPubMedCentral L. Meng, V.L. Gabai, M.Y. Sherman, Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene 29, 5204–5213 (2010)CrossRefPubMedPubMedCentral
83.
go back to reference V.L. Gabai, L. Meng, G. Kim, T.A. Mills, I.J. Benjamin, M.Y. Sherman, Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding pprotein HuR. Mol. Cell. Biol. 32, 929–940 (2012)CrossRefPubMedPubMedCentral V.L. Gabai, L. Meng, G. Kim, T.A. Mills, I.J. Benjamin, M.Y. Sherman, Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding pprotein HuR. Mol. Cell. Biol. 32, 929–940 (2012)CrossRefPubMedPubMedCentral
84.
go back to reference C.H. Nguyen, B.J. Lang, R.C.C. Chai, J.L. Vieusseux, M.M. Kouspou, J.T. Price, Heat-shock factor 1 both positively and negatively affects cellular clonogenic growth depending on p53 status. Biochem. J. 452, 321–329 (2013)CrossRefPubMed C.H. Nguyen, B.J. Lang, R.C.C. Chai, J.L. Vieusseux, M.M. Kouspou, J.T. Price, Heat-shock factor 1 both positively and negatively affects cellular clonogenic growth depending on p53 status. Biochem. J. 452, 321–329 (2013)CrossRefPubMed
85.
go back to reference M. Williams, M.S. Lyu, Y.L. Yang, E.P. Lin, R. Dunbrack, B. Birren, J. Cunningham, K. Hunter, Ier5, a novel member of the slow-kinetics immediate-early genes. Genomics 55, 327–334 (1999)CrossRefPubMed M. Williams, M.S. Lyu, Y.L. Yang, E.P. Lin, R. Dunbrack, B. Birren, J. Cunningham, K. Hunter, Ier5, a novel member of the slow-kinetics immediate-early genes. Genomics 55, 327–334 (1999)CrossRefPubMed
86.
go back to reference E. Kis, T. Szatmári, M. Keszei, R. Farkas, O. Esik, K. Lumniczky, A. Falus, G. Sáfrány, Microarray analysis of radiation response genes in primary human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 66, 1506–1514 (2006)CrossRefPubMed E. Kis, T. Szatmári, M. Keszei, R. Farkas, O. Esik, K. Lumniczky, A. Falus, G. Sáfrány, Microarray analysis of radiation response genes in primary human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 66, 1506–1514 (2006)CrossRefPubMed
87.
go back to reference Y. Asano, T. Kawase, A. Okabe, S. Tsutsumi, H. Ichikawa, S. Tatebe, I. Kitabayashi, F. Tashiro, H. Namiki, T. Kondo, K. Semba, H. Aburatani, Y. Taya, H. Nakagama, R. Ohki, IER5 generates a novel hypo-phosphorylated active form of HSF1 and contributes to tumorigenesis. Sci. Rep. 6, 19174 (2016)CrossRefPubMedPubMedCentral Y. Asano, T. Kawase, A. Okabe, S. Tsutsumi, H. Ichikawa, S. Tatebe, I. Kitabayashi, F. Tashiro, H. Namiki, T. Kondo, K. Semba, H. Aburatani, Y. Taya, H. Nakagama, R. Ohki, IER5 generates a novel hypo-phosphorylated active form of HSF1 and contributes to tumorigenesis. Sci. Rep. 6, 19174 (2016)CrossRefPubMedPubMedCentral
88.
go back to reference Y. Ishikawa, S. Kawabata, H. Sakurai, HSF1 transcriptional activity is modulated by IER5 and PP2A/B55. FEBS Lett. 589, 1150–1155 (2015)CrossRefPubMed Y. Ishikawa, S. Kawabata, H. Sakurai, HSF1 transcriptional activity is modulated by IER5 and PP2A/B55. FEBS Lett. 589, 1150–1155 (2015)CrossRefPubMed
89.
go back to reference A. Toma-Jonik, W. Widlak, J. Korfanty, T. Cichon, R. Smolarczyk, A. Gogler-Piglowska, P. Widlak, N. Vydra, Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell. Signal. 27, 394–401 (2015)CrossRefPubMed A. Toma-Jonik, W. Widlak, J. Korfanty, T. Cichon, R. Smolarczyk, A. Gogler-Piglowska, P. Widlak, N. Vydra, Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell. Signal. 27, 394–401 (2015)CrossRefPubMed
90.
go back to reference Y. Ishikawa, H. Sakurai, Heat-induced expression of the immediate-early gene IER5 and its involvement in the proliferation of heat-shocked cells. FEBS J. 282, 332–340 (2015)CrossRefPubMed Y. Ishikawa, H. Sakurai, Heat-induced expression of the immediate-early gene IER5 and its involvement in the proliferation of heat-shocked cells. FEBS J. 282, 332–340 (2015)CrossRefPubMed
91.
92.
go back to reference M. Soto, J.A. Raaijmakers, B. Bakker, D.C.J. Spierings, P.M. Lansdorp, F. Foijer, R.H. Medema, p53 prohibits propagation of chromosome segregation errors that produce structural aneuploidies. Cell Rep. 19, 2423–2431 (2017)CrossRefPubMed M. Soto, J.A. Raaijmakers, B. Bakker, D.C.J. Spierings, P.M. Lansdorp, F. Foijer, R.H. Medema, p53 prohibits propagation of chromosome segregation errors that produce structural aneuploidies. Cell Rep. 19, 2423–2431 (2017)CrossRefPubMed
93.
go back to reference R. Hermsen, P. Toonen, E. Kuijk, S.A. Youssef, R. Kuiper, S. van Heesch, A. de Bruin, E. Cuppen, M. Simonis, Lack of major genome instability in tumors of p53 null rats. PLoS One 10, e0122066 (2015)CrossRefPubMedPubMedCentral R. Hermsen, P. Toonen, E. Kuijk, S.A. Youssef, R. Kuiper, S. van Heesch, A. de Bruin, E. Cuppen, M. Simonis, Lack of major genome instability in tumors of p53 null rats. PLoS One 10, e0122066 (2015)CrossRefPubMedPubMedCentral
94.
go back to reference F. Bunz, C. Fauth, M.R. Speicher, A. Dutriaux, J.M. Sedivy, K.W. Kinzler, B. Vogelstein, C. Lengauer, Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 62, 1129–1133 (2002)PubMed F. Bunz, C. Fauth, M.R. Speicher, A. Dutriaux, J.M. Sedivy, K.W. Kinzler, B. Vogelstein, C. Lengauer, Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 62, 1129–1133 (2002)PubMed
96.
go back to reference E.-H. Kim, Y.-J. Lee, S. Bae, J.S. Lee, J. Kim, Y.-S. Lee, Heat shock factor 1-mediated aneuploidy requires a defective function of p53. Cancer Res. 69, 9404–9412 (2009)CrossRefPubMed E.-H. Kim, Y.-J. Lee, S. Bae, J.S. Lee, J. Kim, Y.-S. Lee, Heat shock factor 1-mediated aneuploidy requires a defective function of p53. Cancer Res. 69, 9404–9412 (2009)CrossRefPubMed
97.
go back to reference Y. Wang, J.R. Theriault, H. He, J. Gong, S.K. Calderwood, Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J. Biol. Chem. 279, 32651–32659 (2004)CrossRefPubMed Y. Wang, J.R. Theriault, H. He, J. Gong, S.K. Calderwood, Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J. Biol. Chem. 279, 32651–32659 (2004)CrossRefPubMed
98.
go back to reference Y.-J. Lee, E.-H. Kim, J.S. Lee, D. Jeoung, S. Bae, S.H. Kwon, Y.-S. Lee, HSF1 as a mitotic regulator: Phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer Res. 68, 7550–7560 (2008)CrossRefPubMed Y.-J. Lee, E.-H. Kim, J.S. Lee, D. Jeoung, S. Bae, S.H. Kwon, Y.-S. Lee, HSF1 as a mitotic regulator: Phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer Res. 68, 7550–7560 (2008)CrossRefPubMed
99.
go back to reference Y.J. Lee, H.J. Lee, J.S. Lee, D. Jeoung, C.M. Kang, S. Bae, S.J. Lee, S.H. Kwon, D. Kang, Y.S. Lee, A novel function for HSF1-induced mitotic exit failure and genomic instability through direct interaction between HSF1 and Cdc20. Oncogene 27, 2999–3009 (2008)CrossRefPubMed Y.J. Lee, H.J. Lee, J.S. Lee, D. Jeoung, C.M. Kang, S. Bae, S.J. Lee, S.H. Kwon, D. Kang, Y.S. Lee, A novel function for HSF1-induced mitotic exit failure and genomic instability through direct interaction between HSF1 and Cdc20. Oncogene 27, 2999–3009 (2008)CrossRefPubMed
100.
go back to reference R. Pagliarini, W. Shao, W.R. Sellers, Oncogene addiction: Pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 16, 280–296 (2015)CrossRefPubMedPubMedCentral R. Pagliarini, W. Shao, W.R. Sellers, Oncogene addiction: Pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 16, 280–296 (2015)CrossRefPubMedPubMedCentral
101.
go back to reference R. Schulz-Heddergott, U.M. Moll, Gain-of function (GOF) mutant p53 as actionable therapeutic target. Cancers 10, E188 (2018)CrossRefPubMed R. Schulz-Heddergott, U.M. Moll, Gain-of function (GOF) mutant p53 as actionable therapeutic target. Cancers 10, E188 (2018)CrossRefPubMed
102.
go back to reference S. Chatterjee, T.F. Burns, Targeting heat shock proteins in cancer: A promising therapeutic approach. Int. J. Mol. Sci. 18, E1978 (2017)CrossRefPubMed S. Chatterjee, T.F. Burns, Targeting heat shock proteins in cancer: A promising therapeutic approach. Int. J. Mol. Sci. 18, E1978 (2017)CrossRefPubMed
103.
go back to reference P.W. Piper, S.H. Millson, Mechanisms of resistance to Hsp90 inhibitor drugs: A complex mosaic emerges. Pharm. Basel Switz 4, 1400–1422 (2011) P.W. Piper, S.H. Millson, Mechanisms of resistance to Hsp90 inhibitor drugs: A complex mosaic emerges. Pharm. Basel Switz 4, 1400–1422 (2011)
104.
go back to reference N. Vydra, A. Toma, M. Glowala-Kosinska, A. Gogler-Piglowska, W. Widlak, Overexpression of heat shock transcription factor 1 enhances the resistance of melanoma cells to doxorubicin and paclitaxel. BMC Cancer 13, 504 (2013) N. Vydra, A. Toma, M. Glowala-Kosinska, A. Gogler-Piglowska, W. Widlak, Overexpression of heat shock transcription factor 1 enhances the resistance of melanoma cells to doxorubicin and paclitaxel. BMC Cancer 13, 504 (2013)
105.
go back to reference J.R. McConnell, L.K. Buckton, S.R. McAlpine, Regulating the master regulator: Controlling heat shock factor 1 as a chemotherapy approach. Bioorg. Med. Chem. Lett. 25, 3409–3414 (2015)CrossRefPubMed J.R. McConnell, L.K. Buckton, S.R. McAlpine, Regulating the master regulator: Controlling heat shock factor 1 as a chemotherapy approach. Bioorg. Med. Chem. Lett. 25, 3409–3414 (2015)CrossRefPubMed
106.
go back to reference H.-J. Moon, H.-B. Kim, S.-H. Lee, S.-E. Jeun, C.-D. Kang, S.-H. Kim, Sensitization of multidrug-resistant cancer cells to Hsp90 inhibitors by NSAIDs-induced apoptotic and autophagic cell death. Oncotarget 9, 11303–11321 (2018)PubMedPubMedCentral H.-J. Moon, H.-B. Kim, S.-H. Lee, S.-E. Jeun, C.-D. Kang, S.-H. Kim, Sensitization of multidrug-resistant cancer cells to Hsp90 inhibitors by NSAIDs-induced apoptotic and autophagic cell death. Oncotarget 9, 11303–11321 (2018)PubMedPubMedCentral
107.
go back to reference N.J. O’Neil, M.L. Bailey, P. Hieter, Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017)CrossRefPubMed N.J. O’Neil, M.L. Bailey, P. Hieter, Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017)CrossRefPubMed
108.
go back to reference A. Fedier, M. Schlamminger, V.A. Schwarz, U. Haller, S.B. Howell, D. Fink, Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 14, 938–945 (2003)CrossRef A. Fedier, M. Schlamminger, V.A. Schwarz, U. Haller, S.B. Howell, D. Fink, Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 14, 938–945 (2003)CrossRef
109.
go back to reference P. Nghiem, P.K. Park, Y. Kim, C. Vaziri, S.L. Schreiber, ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl. Acad. Sci. U. S. A. 98, 9092–9097 (2001)CrossRefPubMedPubMedCentral P. Nghiem, P.K. Park, Y. Kim, C. Vaziri, S.L. Schreiber, ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl. Acad. Sci. U. S. A. 98, 9092–9097 (2001)CrossRefPubMedPubMedCentral
110.
go back to reference C. Dai, S. Santagata, Z. Tang, J. Shi, J. Cao, H. Kwon, R.T. Bronson, L. Whitesell, S. Lindquist, Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J. Clin. Invest. 122, 3742–3754 (2012)CrossRefPubMedPubMedCentral C. Dai, S. Santagata, Z. Tang, J. Shi, J. Cao, H. Kwon, R.T. Bronson, L. Whitesell, S. Lindquist, Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J. Clin. Invest. 122, 3742–3754 (2012)CrossRefPubMedPubMedCentral
111.
go back to reference E.M. Alexandrova, N.D. Marchenko, Mutant p53 - heat shock response oncogenic cooperation: A new mechanism of cancer cell survival. Front. Endocrinol. 6, 53 (2015) E.M. Alexandrova, N.D. Marchenko, Mutant p53 - heat shock response oncogenic cooperation: A new mechanism of cancer cell survival. Front. Endocrinol. 6, 53 (2015)
112.
go back to reference D. Li, N.D. Marchenko, ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells. Oncotarget 8, 5823–5833 (2017) D. Li, N.D. Marchenko, ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells. Oncotarget 8, 5823–5833 (2017)
113.
go back to reference A. Yallowitz, A. Ghaleb, L. Garcia, E.M. Alexandrova, N. Marchenko, Heat shock factor 1 confers resistance to lapatinib in ERBB2-positive breast cancer cells. Cell Death Dis. 9, 621 (2018) A. Yallowitz, A. Ghaleb, L. Garcia, E.M. Alexandrova, N. Marchenko, Heat shock factor 1 confers resistance to lapatinib in ERBB2-positive breast cancer cells. Cell Death Dis. 9, 621 (2018)
Metadata
Title
Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction
Authors
Agnieszka Toma-Jonik
Natalia Vydra
Patryk Janus
Wiesława Widłak
Publication date
01-10-2019
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 5/2019
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-019-00452-0

Other articles of this Issue 5/2019

Cellular Oncology 5/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine